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Summary for the day

Generating Functions:
⋄ Review Definitions.
⋄ Properties.
⋄ Example (Poisson Sums).

Complex Analysis:
⋄ Warnings, good/bad examples.
⋄ Complex functions and differentiability.
⋄ Definitions.
⋄ Accumulation point theorem.
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Generating Functions
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Definitions

Generating Function

Given a sequence {an}∞n=0, we define its generating
function by

Ga(s) =
∞∑

n=0

ansn

for all s where the sum converges.

Useful choice is an = Prob(X = n) if X ∈ {0, 1, 2, . . . }.

Leads to GX (s) = E[sX ].
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Results

Uniqueness Theorem

Let {am}∞m=0 and {bm}∞m=0 be two sequences of numbers
with generating functions Ga(s) and Gb(s) which
converge for ∣s∣ < r . Then the two sequences are equal
(i.e., ai = bi for all i) if and only if Ga(s) = Gb(s) for all
∣s∣ < r . We may recover the sequence from the
generating function by differentiating: am = 1

m!
dmGa(s)

dsm .

Other results:

E[X ] = G′

X (1).
Var(X ) = G′′

X (1) + G′

X (1)− G′

X (1)
2.
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Equivalent formulations: t imaginary =⇒ use complex analysis

Probability Generating Function

X r.v., probability generating function is GX (s) = E[sX ].

Moment Generating Function

X r.v., moment generating function is MX (t) = E[etX ].

Key results:

MX (t) = GX (et).
X , Y independent: GX+Y (s) = GX (s)GY (s) and
MX+Y (t) = MX (t)MY (t).
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Theorem: Let X be a random variable with moments �′

k .

1

MX (t) = 1 + �′

1t +
�′

2t2

2!
+

�′

3t3

3!
+ ⋅ ⋅ ⋅ ;

in particular, �′

k = dkMX (t)/dtk
∣∣∣
t=0

.

2 �, � constants: M�X+�(t) = e�tMX (�t). Also
MX+�(t) = e�tMX (t), M�X (t) = MX (�t),
M(X+�)/�(t) = e�t/�MX (t/�).

3 Xi ’s indep. r.v., MGF MXi (t) converge for ∣t ∣ < r then
MX1+⋅⋅⋅+XN (t) = MX1(t)MX2(t) ⋅ ⋅ ⋅MXN (t); if i.i.d.r.v.
equals MX (t)N .
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Poisson Example

Xi Poiss(�i):

f (n) = Prob(Xi = n) =
�n

i e−�i

n!
for n ≥ 0, and 0 otherwise.
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Poisson Example

Xi Poiss(�i):

f (n) = Prob(Xi = n) =
�n

i e−�i

n!
for n ≥ 0, and 0 otherwise.
Moment generating function is

MX (t) =

∞∑

n=0

etnf (n) = e�(et
−1).
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Poisson Example

Xi Poiss(�i):

f (n) = Prob(Xi = n) =
�n

i e−�i

n!
for n ≥ 0, and 0 otherwise.
Moment generating function is

MX (t) =

∞∑

n=0

etnf (n) = e�(et
−1).

Independent then

MX1+X2(t) = MX1(t)MX2(t) = e(�1+�2)(et
−1).
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Poisson Example

Xi Poiss(�i):

f (n) = Prob(Xi = n) =
�n

i e−�i

n!
for n ≥ 0, and 0 otherwise.
Moment generating function is

MX (t) =

∞∑

n=0

etnf (n) = e�(et
−1).

Independent then

MX1+X2(t) = MX1(t)MX2(t) = e(�1+�2)(et
−1).

Does this imply sum of Poissons is Poisson?
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Poisson Example

Xi Poiss(�i):

f (n) = Prob(Xi = n) =
�n

i e−�i

n!
for n ≥ 0, and 0 otherwise.
Moment generating function is

MX (t) =

∞∑

n=0

etnf (n) = e�(et
−1).

Independent then

MX1+X2(t) = MX1(t)MX2(t) = e(�1+�2)(et
−1).

Does this imply sum of Poissons is Poisson?Yes
because...
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Uniqueness Theorem

Uniqueness of moment generating functions for
discrete random variables
X and Y discrete random variables on {0, 1, 2, . . . }) with
MGFs MX (t) and MY (t) converging for ∣t ∣ < �. Then X and
Y have the same distribution iff MX (t) = MY (t) for ∣t ∣ < �.
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Uniqueness Theorem

Uniqueness of moment generating functions for
discrete random variables
X and Y discrete random variables on {0, 1, 2, . . . }) with
MGFs MX (t) and MY (t) converging for ∣t ∣ < �. Then X and
Y have the same distribution iff MX (t) = MY (t) for ∣t ∣ < �.

Proof: follows from uniqueness of generating
functions as MX (t) = GX (et).
Proof: If only take on finite values, consider

p1xk
1 + ⋅ ⋅ ⋅+ pmxk

m = q1y k
1 + ⋅ ⋅ ⋅+ qny k

n .
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Warning!

Dream theorem: A probability distribution is uniquely
determined by its moments.
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Warning!

Dream theorem: A probability distribution is uniquely
determined by its moments.

Exist distinct probability distributions with same
moments. Standard example: for x ≥ 0,

f1(x) =
1√

2�x2
e−(log2 x)/2

f2(x) = f1(x) [1 + sin(2� log x)] .
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Warning!

Dream theorem: A probability distribution is uniquely
determined by its moments.

Exist distinct probability distributions with same
moments. Standard example: for x ≥ 0,

f1(x) =
1√

2�x2
e−(log2 x)/2

f2(x) = f1(x) [1 + sin(2� log x)] .

Plan of attack:
Explore what goes wrong with the functions.
Discuss properties needed to prevent this. Soln
involves complex analysis, tells us when a MGF
uniquely determines a distribution.
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Complex Analysis
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Warning from Real Analysis

Consider the function g : ℝ → ℝ given by

g(x) =

{
e−1/x2

if x ∕= 0
0 otherwise.

Using the definition of the derivative and L’Hopital’s rule,
we can show that f is infinitely differentiable, and all of its
derivatives at the origin vanish.

20



Summary for the Day Generating Functions Complex Analysis

Warning from Real Analysis

Consider the function g : ℝ → ℝ given by

g(x) =

{
e−1/x2

if x ∕= 0
0 otherwise.

Using the definition of the derivative and L’Hopital’s rule,
we can show that f is infinitely differentiable, and all of its
derivatives at the origin vanish.

Ridiculous! Taylor series (which converges for all x !) only
agrees with the function when x = 0.
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Warning from Real Analysis

Consider the function g : ℝ → ℝ given by

g(x) =

{
e−1/x2

if x ∕= 0
0 otherwise.

Using the definition of the derivative and L’Hopital’s rule,
we can show that f is infinitely differentiable, and all of its
derivatives at the origin vanish.

Ridiculous! Taylor series (which converges for all x !) only
agrees with the function when x = 0.

A Taylor series does not uniquely determine a function!
Both sin x and sin x + g(x) have the same Taylor series
about x = 0.
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Complex Analysis Definitions

Complex variable, complex function
Any complex number z can be written as z = x + iy , with
x and y real. A complex function is a map f from ℂ to ℂ;
in other words f (z) ∈ ℂ. Frequently one writes x = ℜe(z),
y = ℑm(z), and f (z) = u(x , y) + iv(x , y) with u and v
functions from ℝ2 to ℝ.
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Complex Analysis Definitions

Differentiable
f is differentiable at z0 means

lim
h→0

f (z0 + h)− f (z0)

h

exists, h tends to zero along any path in the complex
plane. Write f ′(z0) if exists. If f is differentiable, then f
satisfies the Cauchy-Riemann equations:

f ′(z) =
∂u
∂x

+ i
∂v
∂x

= −i
∂u
∂y

+
∂v
∂y

(one direction easy: send h → 0 along the paths h̃ and i h̃,
with h̃ ∈ ℝ).
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Complex Analysis Definitions

Many of the theorems below deal with open sets. We
briefly review their definition and give some examples.

Open set, closed set
A subset U of ℂ is an open set if for any z0 ∈ U there is a
� such that whenever ∣z − z0∣ < � then z ∈ U (note � is
allowed to depend on z0). A set C is closed if its
complement, ℂ ∖ C, is open.
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Examples of Open Sets, Closed Sets

Open sets:

1 U1 = {z : ∣z∣ < r} for any r > 0. This is usually called
the ball of radius r centered at the origin.

2 U2 = {z : ℜe(z) > 0}.

Closed sets:

1 C1 = {z : ∣z∣ ≤ r}.
2 C2 = {z : ℜe(z) ≥ 0}.

For a set that is neither open nor closed, consider
S = U1 ∪ C2.
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Holomorphic = Analytic

Holomorphic, analytic
Let U be an open subset of ℂ, and let f be a complex
function.

We say f is holomorphic on U if f is differentiable at
every point z ∈ U.
We say f is analytic on U if f has a series expansion
that converges and agrees with f on U. This means
that for any z0 ∈ U, for z close to z0 we can choose
an’s such that

f (z) =

∞∑

n=0

an(z − z0)
n.
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Holomorphic = Analytic

Holomorphic equals Analytic
Let f be a complex function and U an open set. Then f is
holomorphic on U if and only if f is analytic on U, and the
series expansion for f is its Taylor series.

If f is differentiable once, it is infinitely differentiable
and f agrees with its Taylor series expansion!
Very different than what happens in the case of
functions of a real variable.
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Limit points

Limit or accumulation point
We say z is a limit (or an accumulation) point of a
sequence {zn}∞n=0 if there exists a subsequence {znk}∞k=0
converging to z.
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Limit points

Limit or accumulation point
We say z is a limit (or an accumulation) point of a
sequence {zn}∞n=0 if there exists a subsequence {znk}∞k=0
converging to z.

If zn = 1/n, then 0 is a limit point.

If zn = cos(�n) then there are two limit points, namely
1 and −1. (If zn = cos(n) then every point in [−1, 1] is
a limit point of the sequence, though this is harder to
show.)
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Limit points

Limit or accumulation point
We say z is a limit (or an accumulation) point of a
sequence {zn}∞n=0 if there exists a subsequence {znk}∞k=0
converging to z.

If zn = (1 + (−1)n)n + 1/n, then 0 is a limit point. We
can see this by taking the subsequence
{z1, z3, z5, z7, . . . }; note the subsequence
{z0, z2, z4, . . . } diverges to infinity.

Let zn denote the number of distinct prime factors of
n. Then every positive integer is a limit point!
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Limit points

Limit or accumulation point
We say z is a limit (or an accumulation) point of a
sequence {zn}∞n=0 if there exists a subsequence {znk}∞k=0
converging to z.

If zn = n2 then there are no limit points, as
limn→∞ zn = ∞.

z0 any odd, positive integer, set

zn+1 =

{
3zn + 1 if zn is odd
zn/2 if zn is even.

Conjectured that 1 is always a limit point.
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Accumulation points and functions

Theorem
Let f be an analytic function on an open set U, with
infinitely many zeros z1, z2, z3, . . . . If limn→∞ zn ∈ U, then f
is identically zero on U. In other words, if a function is
zero along a sequence in U whose accumulation point is
also in U, then that function is identically zero in U.
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Accumulation points and functions

Consider h(x) = x3 sin(1/x):

-0.03 -0.02 -0.01 0.01 0.02 0.03

-0.00002

-0.000015

-0.00001

-5.´10-6

5.´10-6

0.00001

0.000015

Figure: Plot of x3 sin(1/x).

Show x3 sin(1/x) is not complex differentiable. It will help
if you recall ei� = cos � + i sin �, or sin � = (ei� − e−i�)/2.
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