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Summary for the day

@ Generating Functions:
© Review Definitions.
© Properties.
o Example (Poisson Sums).

@ Complex Analysis:
© Warnings, good/bad examples.
o Complex functions and differentiability.
o Definitions.
© Accumulation point theorem.
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Definitions

Generating Function

Given a sequence {an}>°,, we define its generating
function by

Ga(s) = Zans”
n=0

for all s where the sum converges.

Useful choice is a, = Prob(X =n) if X € {0,1,2,...}.

Leads to Gy (s) = E[s*].
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Uniqueness Theorem

Let {am }m_o and {by }_, be two sequences of numbers
with generating functions G,(s) and Gy(s) which
converge for |s| < r. Then the two sequences are equal
(i.e., a = b; for all i) if and only if G5(s) = Gp(s) for all
|s| < r. We may recover the sequence from the

generating function by differentiating: a, = - 4"oa(),

Other results:
o E[X] = G{(1).
@ Var(X) = G (1) + G4 (1) — G{(1)2

¢
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Equivalent formulations: t imaginary — use complex analysis

Probability Generating Function
X r.v., probability generating function is Gy (s) = E[s*].

Moment Generating Function

X r.v., moment generating function is My (t) = E[e%].

Key results:
@ My (t) = Gy (et).
@ X, Y independent: Gx,v(s) = Gx(s)Gy(s) and
Mx v (t) = Mx (t)My ().

y




Generating Functions
.

Theorem: Let X be a random variable with moments g .

o
pot? | st
Mx(t) = 14 pjt+ o T T

in particular, p, = d*My(t)/dtk o

@ o, constants: M,x5(t) = e’*Mx(at). Also
Mx+5(t) = eBth(t), Max(t) = Mx(OJt),
Mox+5)/a(t) = /My (t/a).

© X’s indep. r.v., MGF M (t) converge for |t| < r then
My, 4 1xy (t) = My, (£)Mx, (t) - - - My (t); if i.i.d.r.v.
equals My (t)N.
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Poisson Example

@ X POI$()\,)
Ae
n!

f(n) = Prob(Xi =n) =

for n > 0, and O otherwise.
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Poisson Example

@ X POI$()\,)
Ae

f(n) = Prob(Xi =n) = .y

for n > 0, and 0 otherwise.
@ Moment generating function is

Mx(t) = > e™(n) = eXb.
n=0
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Poisson Example

@ X POI$()\,)
Ae

f(n) = Prob(Xi =n) = .y

for n > 0, and 0 otherwise.
@ Moment generating function is

Mx(t) = > e™(n) = eXb.
n=0

@ Independent then
MX1+X2(t) = Mxl(t)sz(t) — e()\lJr)\z)(etfl).
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Poisson Example

@ X POI$()\,)
Ae

f(n) = Prob(Xi =n) = .y

for n > 0, and 0 otherwise.
@ Moment generating function is

Mx(t) = > e™(n) = eXb.
n=0

@ Independent then
MX1+X2(t) = Mxl(t)sz(t) — e()\lJr)\z)(etfl).

@ Does this imply sum of Poissons is Poisson?
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Poisson Example

@ X POI$()\,)
Ae

f(n) = Prob(Xi =n) = .y

for n > 0, and 0 otherwise.
@ Moment generating function is

Mx(t) = > e™(n) = eXb.
n=0

@ Independent then
MX1+X2(t) = Mxl(t)sz(t) — e()\lJr)\z)(etfl).

@ Does this imply sum of Poissons is Poisson?Yes
because...
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Uniqueness Theorem

Unigueness of moment generating functions for

discrete random variables

X and Y discrete random variables on {0,1,2, ... }) with
MGFs Mx (t) and My (t) converging for |t| < . Then X and
Y have the same distribution iff My (t) = My (t) for |t| < 6.
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Uniqueness Theorem

Unigueness of moment generating functions for

discrete random variables

X and Y discrete random variables on {0,1,2, ... }) with
MGFs Mx (t) and My (t) converging for |t| < . Then X and
Y have the same distribution iff My (t) = My (t) for |t| < 6.

@ Proof: follows from uniqueness of generating
functions as My (t) = Gx(e').
@ Proof: If only take on finite values, consider

PIXE 4 -+ PmXS = yf + -+ gnyr.
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Warning!

Dream theorem: A probability distribution is uniquely
determined by its moments.
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Warning!

Dream theorem: A probability distribution is uniquely
determined by its moments.

Exist distinct probability distributions with same
moments. Standard example: for x > 0,

1

h() = = e s
f(x) = fi(X)[1+ sin(2rlogx)].
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Warning!

Dream theorem: A probability distribution is uniquely
determined by its moments.

Exist distinct probability distributions with same
moments. Standard example: for x > 0,

h(X) = o el
f(x) = fi(X)[1+ sin(2rlogx)].

Plan of attack:

@ Explore what goes wrong with the functions.

@ Discuss properties needed to prevent this. Soln
involves complex analysis, tells us when a MGF
uniquely determines a distribution.
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Warning from Real Analysis

Consider the function g : R — R given by

—1/x2
g(x) = {e ifx #0

0 otherwise.

Using the definition of the derivative and L'Hopital’s rule,
we can show that f is infinitely differentiable, and all of its
derivatives at the origin vanish.
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Warning from Real Analysis

Consider the function g : R — R given by

—1/x2
g(x) = {e ifx #0

0 otherwise.

Using the definition of the derivative and L'Hopital’s rule,
we can show that f is infinitely differentiable, and all of its
derivatives at the origin vanish.

Ridiculous! Taylor series (which converges for all x!) only
agrees with the function when x = 0.
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Warning from Real Analysis

Consider the function g : R — R given by

—1/x2
g(x) = {e ifx #0

0 otherwise.

Using the definition of the derivative and L'Hopital’s rule,
we can show that f is infinitely differentiable, and all of its
derivatives at the origin vanish.

Ridiculous! Taylor series (which converges for all x!) only
agrees with the function when x = 0.

A Taylor series does not uniquely determine a function!
Both sinx and sinx + g(x) have the same Taylor series

about x = 0.
D
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Complex Analysis Definitions

Complex variable, complex function

Any complex number z can be written as z = x + Iy, with
x and y real. A complex function is a map f from C to C;
in other words f(z) € C. Frequently one writes x = Re(z),
y =Jm(z), and f(z) = u(x,y) +iv(x,y) with u and v
functions from R? to R.
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Complex Analysis Definitions
Differentiable
f is differentiable at zo means

i f(ZO -+ h) = f(ZQ)
h—0 h

exists, h tends to zero along any path in the complex
plane. Write f'(z) if exists. If f is differentiable, then f
satisfies the Cauchy-Riemann equations:

ou .ov .OU oV

f/ = —4i— = —ji— 4 —
() OX +I8X Iay Jr8y

(one direction easy: send h — 0 along the paths h and ih,
with h € R).

v
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Complex Analysis Definitions

Many of the theorems below deal with open sets. We
briefly review their definition and give some examples.

Open set, closed set

A subset U of C is an open set if for any z; € U there is a
d such that whenever |z — zy| < ¢ then z € U (note § is
allowed to depend on zp). A set C is closed if its
complement, C\ C, is open.
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Examples of Open Sets, Closed Sets

Open sets:

Q@ U, ={z:|z|] <r}foranyr > 0. This is usually called
the ball of radius r centered at the origin.

Q U, = {z : Re(z) > 0}.
Closed sets:

Q@C ={z:|z1<r}.

Q C, ={z:Re(z) > 0}.

For a set that is neither open nor closed, consider
S=U,UC,.
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Holomorphic = Analytic

Holomorphic, analytic

Let U be an open subset of C, and let f be a complex
function.

@ We say f is holomorphic on U if f is differentiable at
every point z € U.

@ We say f is analytic on U if f has a series expansion
that converges and agrees with f on U. This means
that for any z, € U, for z close to z, we can choose
a,’s such that

f(z) = ian(z—zo)”.
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Holomorphic = Analytic

Holomorphic equals Analytic

Let f be a complex function and U an open set. Then f is
holomorphic on U if and only if f is analytic on U, and the
series expansion for f is its Taylor series.

o If f is differentiable once, it is infinitely differentiable
and f agrees with its Taylor series expansion!

@ Very different than what happens in the case of
functions of a real variable.
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Limit points

Limit or accumulation point

We say z is a limit (or an accumulation) point of a
sequence {z,}22, if there exists a subsequence {z,, }:°,
converging to z.
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Limit points

Limit or accumulation point

We say z is a limit (or an accumulation) point of a
sequence {z,}2, if there exists a subsequence {z,, }2,
converging to z.

@ If z, = 1/n, then 0 is a limit point.

@ If z, = cos(wn) then there are two limit points, namely
1 and —1. (If z, = cos(n) then every pointin [-1,1] is
a limit point of the sequence, though this is harder to
show.)
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Limit points

Limit or accumulation point

We say z is a limit (or an accumulation) point of a
sequence {z,}:2, if there exists a subsequence {z, }2°,
converging to z.

o Ifz,=(1+(—-1)")"+ 1/n, then O is a limit point. We
can see this by taking the subsequence
{21, 23,125,277, ...}, note the subsequence
{20, 22,24, ... } diverges to infinity.

@ Let z, denote the number of distinct prime factors of
n. Then every positive integer is a limit point!
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Limit points

Limit or accumulation point

We say z is a limit (or an accumulation) point of a
sequence {z,}2, if there exists a subsequence {z,, }2,
converging to z.

@ If z, = n? then there are no limit points, as
Iimnﬁoo Zn = Q.

@ Z, any odd, positive integer, set

3z, +1 ifz,is odd
Znya = . .
zn/2 if z, is even.

Conjectured that 1 is always a limit point.
QD
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Accumulation points and functions

Theorem

Let f be an analytic function on an open set U, with
infinitely many zeros z,,z;, 23, .... Iflimy_, .z, € U, then f
is identically zero on U. In other words, if a function is
zero along a sequence in U whose accumulation point is
also in U, then that function is identically zero in U.
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Accumulation points and functions

Consider h(x) = x3sin(1/x):

0.000015 |-

......

Figure: Plot of x3sin(1/x).

Show x?sin(1/x) is not complex differentiable. It will help
if you recall €'Y = cosf +ising, or sinf = (e'’ —e~'%)/2.
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