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Summary for the Day
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Summary for the day

Complex Analysis:
⋄ Review definitions / statements.
⋄ Accumulation point theorems.

Clicker question:
⋄ Statement of the CLT.
⋄ Clicker question on rate of convergence.

Central Limit Theorem:
⋄ Poisson example.
⋄ Proof with MGFs.
⋄ Proof with Fourier analysis.

3



Summary for the Day Review Accumulation and Moments Clicker Questions CLT and MGF CLT and Fourier Analysis

Review
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Accumulation points and functions

Theorem
Let f be an analytic function on an open set U, with
infinitely many zeros z1, z2, z3, . . . . If limn→∞ zn ∈ U, then f
is identically zero on U. In other words, if a function is
zero along a sequence in U whose accumulation point is
also in U, then that function is identically zero in U.
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Schwartz Space

Schwartz space S(ℝ): all infinitely differentiable functions
f such that, for any non-negative integers m and n,

sup
x∈ℝ

∣∣∣∣(1 + x2)m dnf
dxn

∣∣∣∣ < ∞.

Inversion Theorem for Fourier Transform: Let f ∈ S(ℝ).
Then

f (x) =

∫ ∞

−∞
f̂ (y)e2�ixydy .

f , g ∈ S(ℝ) with f̂ = ĝ then f (x) = g(x).
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Accumulation
and Moments
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Accumulation Points and Moments

Theorem
Assume the MGFs MX (t) and MY (t) exist in a
neighborhood of zero (i.e., there is some � such that both
functions exist for ∣t ∣ < �). If MX (t) = MY (t) in this
neighborhood, then FX (u) = FY (u) for all u. As the
densities are the derivatives of the cumulative distribution
functions, we have f = g.
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Accumulation Points and Moments

Theorem
Let {Xi}i∈I be a sequence of random variables with MGFs
MXi (t). Assume there is a � > 0 such that when ∣t ∣ < � we
have limi→∞ MXi (t) = MX (t) for some MGF MX (t), and all
MGFs converge for ∣t ∣ < �. Then there exists a unique
cumulative distribution function F whose moments are
determined from MX (t) and for all x where FX (x) is
continuous, limn→∞ FXi (x) = FX (x).
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Accumulation Points and Moments

Theorem: X and Y continuous random variables on
[0,∞) with continuous densities f and g, all of whose
moments are finite and agree, and

1 ∃C > 0 st ∀c ≤ C, e(c+1)t f (et) and e(c+1)t g(et ) are
Schwartz functions.

2 The (not necessarily integral) moments

�′
rn
(f ) =

∫ ∞

0
x rn f (x)dx and �′

rn
(g) =

∫ ∞

0
x rng(x)dx

agree for some sequence of non-negative real
numbers {rn}∞n=0 which has a finite accumulation point
(i.e., limn→∞ rn = r < ∞).

Then f = g (in other words, knowing all these moments
uniquely determines the probability density).
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Application to equal integral moments

Return to the two densities causing trouble:

f1(x) =
1√

2�x2
e−(log2 x)/2

f2(x) = f1(x) [1 + sin(2� log x)] .
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Application to equal integral moments

Return to the two densities causing trouble:

f1(x) =
1√

2�x2
e−(log2 x)/2

f2(x) = f1(x) [1 + sin(2� log x)] .

Same integral moments: ek2/2.
Have the correct decay.
Using complex analysis (specifically, contour
integration), we can calculate the (a + ib)thmoments:

For f1 : e(a+ib)2/2

For f2 : e(a+ib)2/2 +
i
2

(
e(a+i(b−2�))2/2 − e(a+i(b+2�))2/2

)
.
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Application to equal integral moments

Return to the two densities causing trouble:

f1(x) =
1√

2�x2
e−(log2 x)/2

f2(x) = f1(x) [1 + sin(2� log x)] .

No sequence of real moments having an
accumulation point where they agree.
athmoment of f2 is

ea2/2 + e(a−2i�)2/2
(
1 − e4ia�

)
,

and this is never zero unless a is a half-integer.
Only way this can vanish is if 1 = e4ia�.
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Clicker
Questions
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Normalization of a random variable

Normalization (standardization) of a random variable
Let X be a random variable with mean � and standard
deviation �, both of which are finite. The normalization, Y ,
is defined by

Y :=
X − E[X ]

StDev(X )
=

X − �

�
.

Note that

E[Y ] = 0 and StDev(Y ) = 1.
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Statement of the Central Limit Theorem

Normal distribution
A random variable X is normally distributed (or has the
normal distribution, or is a Gaussian random variable)
with mean � and variance �2 if the density of X is

f (x) =
1√

2��2
exp

(
−(x − �)2

2�2

)
.

We often write X ∼ N(�, �2) to denote this. If � = 0 and
�2 = 1, we say X has the standard normal distribution.
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Statement of the Central Limit Theorem

Central Limit Theorem
Let X1, . . . ,XN be independent, identically distributed
random variables whose moment generating functions
converge for ∣t ∣ < � for some � > 0 (this implies all the
moments exist and are finite). Denote the mean by � and
the variance by �2, let

X N =
X1 + ⋅ ⋅ ⋅+ XN

N

and set

ZN =
X N − �

�/
√

N
.

Then as N → ∞, the distribution of ZN converges to the
standard normal.
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Statement of the Central Limit Theorem

Why are there only tables of values of standard normal?
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Statement of the Central Limit Theorem

Why are there only tables of values of standard normal?

Answer: normalization. Similar to log tables (only need
one from change of base formula).
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Alternative Statement of the Central Limit Theorem

Central Limit Theorem
Let X1, . . . ,XN be independent, identically distributed
random variables whose moment generating functions
converge for ∣t ∣ < � for some � > 0 (this implies all the
moments exist and are finite). Denote the mean by � and
the variance by �2, let

SN = X1 + ⋅ ⋅ ⋅+ XN

and set

ZN =
SN − N�√

N�2
.

Then as N → ∞, the distribution of ZN converges to the
standard normal.
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Key Probabilities:

Key probabilities for Z ∼ N(0, 1) (i.e., Z has the standard
normal distribution).

Prob(∣Z ∣ ≤ 1) ≈ 68.2%.

Prob(∣Z ∣ ≤ 1.96) ≈ 95%.

Prob(∣Z ∣ ≤ 2.575) ≈ 99%.
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Convergence to the standard normal

Question:
Let X1,X2, . . . be iidrv with mean 0 and variance 1, and let
ZN = X N/(1/

√
N). By the CLT ZN → N(0, 1); which

choice converges fastest? Slowest?

1 Uniform: X ∼ Unif(−
√

3,
√

3).
2 Laplace: fX (x) = e−

√
2∣x∣/

√
2.

3 Normal: X ∼ N(0, 1).
4 Millered Cauchy: fX (x) =

4a sin(�/8)
�

1
1+(ax)8 ,

a =
√√

2 − 1.

22



Summary for the Day Review Accumulation and Moments Clicker Questions CLT and MGF CLT and Fourier Analysis

Convergence to the standard normal

Question:
Let X1,X2, . . . be iidrv with mean 0 and variance 1, and let
ZN = X N/(1/

√
N). By the CLT ZN → N(0, 1); which

choice converges fastest? Slowest?

1 Uniform: X ∼ Unif(−
√

3,
√

3). Kurtosis: 1.8.
2 Laplace: fX (x) = e−

√
2∣x∣/

√
2. Kurtosis: 6.

3 Normal: X ∼ N(0, 1). Kurtosis: 3.
4 Millered Cauchy: fX (x) =

4a sin(�/8)
�

1
1+(ax)8 ,

a =
√√

2 − 1. Kurtosis: 1 +
√

2 ≈ 2.414.
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Convergence to the standard normal

Question:
Let X1,X2, . . . be iidrv with mean 0 and variance 1, and let
ZN = X N/(1/

√
N). By the CLT ZN → N(0, 1); which

choice converges fastest? Slowest?

1 Uniform: X ∼ Unif(−
√

3,
√

3). Kurtosis: 1.8.
2 Laplace: fX (x) = e−

√
2∣x∣/

√
2. Kurtosis: 6.

3 Normal: X ∼ N(0, 1). Kurtosis: 3.
4 Millered Cauchy: fX (x) =

4a sin(�/8)
�

1
1+(ax)8 ,

a =
√√

2 − 1. Kurtosis: 1 +
√

2 ≈ 2.414.

log MX (t) = t2

2 + (�4−3)t4

4! + O(t6).
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Convergence to the standard normal

Question:
Let X1,X2, . . . be iidrv with mean 0 and variance 1, and let
ZN = X N/(1/

√
N). By the CLT ZN → N(0, 1); which

choice converges fastest? Slowest?

1 Uniform: X ∼ Unif(−
√

3,
√

3). Excess Kurtosis: -1.2.
2 Laplace: fX (x) = e−

√
2∣x∣/

√
2. Excess Kurtosis: 3.

3 Normal: X ∼ N(0, 1). Excess Kurtosis: 0.
4 Millered Cauchy: fX (x) =

4a sin(�/8)
�

1
1+(ax)8 ,

a =
√√

2 − 1. Excess Kurtosis: 1 +
√

2 − 3 ≈ −.586.

log MX (t) = t2

2 + (�4−3)t4

4! + O(t6).
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Convergence to the standard normal

-4 -2 2 4

0.05

0.10

0.15

Figure: Convolutions of 5 Uniforms.
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Convergence to the standard normal

-4 -2 2 4

0.05

0.10

0.15

Figure: Convolutions of 5 Laplaces.
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Convergence to the standard normal

-4 -2 2 4

0.1

0.2

0.3

0.4

Figure: Convolutions of 5 Normals.
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Convergence to the standard normal

-4 -2 2 4
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Figure: Convolutions of 1 Millered Cauchy.
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Convergence to the standard normal

-4 -2 2 4
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0.15
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Figure: Convolutions of 2 Millered Cauchy.
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Central Limit Theorem
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MGF and the CLT

Moment generating function of normal distributions
Let X be a normal random variable with mean � and
variance �2. Its moment generating function satisfies

MX (t) = e�t+�
2 t2

2 .

In particular, if Z has the standard normal distribution, its
moment generating function is

MZ (t) = et2/2.
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MGF and the CLT

Moment generating function of normal distributions
Let X be a normal random variable with mean � and
variance �2. Its moment generating function satisfies

MX (t) = e�t+�
2 t2

2 .

In particular, if Z has the standard normal distribution, its
moment generating function is

MZ (t) = et2/2.

Proof: Complete the square.
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Poisson Example of the CLT

Example
Let X ,X1, . . . ,XN be Poisson random variables with
parameter �. Let

X N =
X1 + ⋅ ⋅ ⋅+ XN

N
, Y =

X − E[X ]

StDev(X )
.

Then as N → ∞, Y converges to having the standard
normal distribution.
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Poisson Example of the CLT

Example
Let X ,X1, . . . ,XN be Poisson random variables with
parameter �. Let

X N =
X1 + ⋅ ⋅ ⋅+ XN

N
, Y =

X − E[X ]

StDev(X )
.

Then as N → ∞, Y converges to having the standard
normal distribution.

Moment generating function: MX (t) = exp(�(et − 1)).
Independent formula: MX1+X2(t) = MX1(t)MX2(t).
Shift formula: MaX+b(t) = ebtMX (at).
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General proof via Moment Generating Functions

Xi ’s iidrv,

ZN =
X − �

�/
√

N
=

N∑

n=1

Xi − �

�
√

N
.
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General proof via Moment Generating Functions

Xi ’s iidrv,

ZN =
X − �

�/
√

N
=

N∑

n=1

Xi − �

�
√

N
.

Moment Generating Function is:

MZN (t) =
N∏

n=1

e
−�t
�

√
N MX

(
t

�
√

N

)
= e

−�t
√

N
� MX

(
t

�
√

N

)N
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General proof via Moment Generating Functions

Xi ’s iidrv,

ZN =
X − �

�/
√

N
=

N∑

n=1

Xi − �

�
√

N
.

Moment Generating Function is:

MZN (t) =
N∏

n=1

e
−�t
�

√
N MX

(
t

�
√

N

)
= e

−�t
√

N
� MX

(
t

�
√

N

)N

Taking logarithms:

log MZN (t) = −�t
√

N
�

+ N log MX

(
t

�
√

N

)
.
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General proof via Moment Generating Functions (cont)

Expansion of MGF:

MX (t) = 1 + �t +
�′

2t2

2!
+ ⋅ ⋅ ⋅ = 1 + t

(
�+

�′
2t
2

+ ⋅ ⋅ ⋅
)
.
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General proof via Moment Generating Functions (cont)

Expansion of MGF:

MX (t) = 1 + �t +
�′

2t2

2!
+ ⋅ ⋅ ⋅ = 1 + t

(
�+

�′
2t
2

+ ⋅ ⋅ ⋅
)
.

Expansion for log(1 + u) is

log(1 + u) = u − u2

2
+

u3

3!
− ⋅ ⋅ ⋅ .
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General proof via Moment Generating Functions (cont)

Expansion of MGF:

MX (t) = 1 + �t +
�′

2t2

2!
+ ⋅ ⋅ ⋅ = 1 + t

(
�+

�′
2t
2

+ ⋅ ⋅ ⋅
)
.

Expansion for log(1 + u) is

log(1 + u) = u − u2

2
+

u3

3!
− ⋅ ⋅ ⋅ .

Combining gives

log MX (t) = t
(
�+

�′
2t
2

+ ⋅ ⋅ ⋅
)
−

t2
(
�+

�′
2t
2 + ⋅ ⋅ ⋅

)2

2
+ ⋅ ⋅ ⋅

= �t +
�′

2 − �2

2
t2 + terms in t3 or higher.
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General proof via Moment Generating Functions (cont)

log MX

(
t

�
√

N

)

=
�t

�
√

N
+

�2

2
t2

�2N
+ terms in t3/N3/2 or lower in N.
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General proof via Moment Generating Functions (cont)

log MX

(
t

�
√

N

)

=
�t

�
√

N
+

�2

2
t2

�2N
+ terms in t3/N3/2 or lower in N.

Denote lower order terms by O(N−3/2). Collecting gives

log MZN (t) = −�t
√

N
�

+ N
(

�t

�
√

N
+

t2

2N
+ O(N−3/2)

)

= −�t
√

N
�

+
�t
√

N
�

+
t2

2
+ O(N−1/2)

=
t2

2
+ O(N−1/2).
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Central Limit Theorem
and Fourier Analysis
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Convolutions

Convolution of f and g:

h(y) = (f ∗ g)(y) =

∫

ℝ

f (x)g(y − x)dx =

∫

ℝ

f (x − y)g(x)dx .
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Convolutions

Convolution of f and g:

h(y) = (f ∗ g)(y) =

∫

ℝ

f (x)g(y − x)dx =

∫

ℝ

f (x − y)g(x)dx .

X1 and X2 independent random variables with probability density p.

Prob(Xi ∈ [x , x +Δx ]) =

∫ x+Δx

x
p(t)dt ≈ p(x)Δx .

Prob(X1 + X2) ∈ [x , x +Δx ] =

∫ ∞

x1=−∞

∫ x+Δx−x1

x2=x−x1

p(x1)p(x2)dx2dx1.
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Convolutions

Convolution of f and g:

h(y) = (f ∗ g)(y) =

∫

ℝ

f (x)g(y − x)dx =

∫

ℝ

f (x − y)g(x)dx .

X1 and X2 independent random variables with probability density p.

Prob(Xi ∈ [x , x +Δx ]) =

∫ x+Δx

x
p(t)dt ≈ p(x)Δx .

Prob(X1 + X2) ∈ [x , x +Δx ] =

∫ ∞

x1=−∞

∫ x+Δx−x1

x2=x−x1

p(x1)p(x2)dx2dx1.

As Δx → 0 we obtain the convolution of p with itself:

Prob(X1 + X2 ∈ [a, b]) =

∫ b

a
(p ∗ p)(z)dz.

Exercise to show non-negative and integrates to 1.
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Statement of Central Limit Theorem

WLOG p has mean zero, variance one, finite third moment and
decays rapidly so all convolution integrals converge: p infinitely
differentiable function satisfying
∫ ∞

−∞
xp(x)dx = 0,

∫ ∞

−∞
x2p(x)dx = 1,

∫ ∞

−∞
∣x ∣3p(x)dx < ∞.

X1,X2, . . . are iidrv with density p.

Define SN =
∑N

i=1 Xi .

Standard Gaussian (mean zero, variance one) is 1√
2�

e−x2/2.
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Statement of Central Limit Theorem

WLOG p has mean zero, variance one, finite third moment and
decays rapidly so all convolution integrals converge: p infinitely
differentiable function satisfying
∫ ∞

−∞
xp(x)dx = 0,

∫ ∞

−∞
x2p(x)dx = 1,

∫ ∞

−∞
∣x ∣3p(x)dx < ∞.

X1,X2, . . . are iidrv with density p.

Define SN =
∑N

i=1 Xi .

Standard Gaussian (mean zero, variance one) is 1√
2�

e−x2/2.

Central Limit Theorem Let Xi ,SN be as above and assume the third
moment of each Xi is finite. Then SN/

√
N converges in probability to

the standard Gaussian:

lim
N→∞

Prob

(
SN√

N
∈ [a, b]

)
=

1√
2�

∫ b

a
e−x2/2dx .
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Proof of the Central Limit Theorem

The Fourier transform: p̂(y) =
∫∞
−∞ p(x)e−2�ixy dx .

50



Summary for the Day Review Accumulation and Moments Clicker Questions CLT and MGF CLT and Fourier Analysis

Proof of the Central Limit Theorem

The Fourier transform: p̂(y) =
∫∞
−∞ p(x)e−2�ixy dx .

Derivative of ĝ is the Fourier transform of −2�ixg(x);
differentiation (hard) is converted to multiplication (easy).

ĝ′(y) =

∫ ∞

−∞
−2�ix ⋅ g(x)e−2�ixy dx ;

g prob. density, ĝ′(0) = −2�iE[x ], ĝ′′(0) = −4�2
E[x2].
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Proof of the Central Limit Theorem

The Fourier transform: p̂(y) =
∫∞
−∞ p(x)e−2�ixy dx .

Derivative of ĝ is the Fourier transform of −2�ixg(x);
differentiation (hard) is converted to multiplication (easy).

ĝ′(y) =

∫ ∞

−∞
−2�ix ⋅ g(x)e−2�ixy dx ;

g prob. density, ĝ′(0) = −2�iE[x ], ĝ′′(0) = −4�2
E[x2].

Natural: mean and variance simple multiples of derivatives of p̂
at zero: p̂′(0) = 0, p̂′′(0) = −4�2.
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Proof of the Central Limit Theorem

The Fourier transform: p̂(y) =
∫∞
−∞ p(x)e−2�ixy dx .

Derivative of ĝ is the Fourier transform of −2�ixg(x);
differentiation (hard) is converted to multiplication (easy).

ĝ′(y) =

∫ ∞

−∞
−2�ix ⋅ g(x)e−2�ixy dx ;

g prob. density, ĝ′(0) = −2�iE[x ], ĝ′′(0) = −4�2
E[x2].

Natural: mean and variance simple multiples of derivatives of p̂
at zero: p̂′(0) = 0, p̂′′(0) = −4�2.

We Taylor expand p̂ (need technical conditions on p):

p̂(y) = 1 +
p′′(0)

2
y2 + ⋅ ⋅ ⋅ = 1 − 2�2y2 + O(y3).

Near origin, p̂ a concave down parabola.
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).

Do not want the distribution of X1 + ⋅ ⋅ ⋅+ XN = x , but rather
SN = X1+⋅⋅⋅+XN√

N
= x .
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).

Do not want the distribution of X1 + ⋅ ⋅ ⋅+ XN = x , but rather
SN = X1+⋅⋅⋅+XN√

N
= x .

If B(x) = A(cx) for some fixed c ∕= 0, then B̂(y) = 1
c Â

( y
c

)
.
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).

Do not want the distribution of X1 + ⋅ ⋅ ⋅+ XN = x , but rather
SN = X1+⋅⋅⋅+XN√

N
= x .

If B(x) = A(cx) for some fixed c ∕= 0, then B̂(y) = 1
c Â

( y
c

)
.

Prob
(

X1+⋅⋅⋅+XN√
N

= x
)

= (
√

Np ∗ ⋅ ⋅ ⋅ ∗
√

Np)(x
√

N).
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).

Do not want the distribution of X1 + ⋅ ⋅ ⋅+ XN = x , but rather
SN = X1+⋅⋅⋅+XN√

N
= x .

If B(x) = A(cx) for some fixed c ∕= 0, then B̂(y) = 1
c Â

( y
c

)
.

Prob
(

X1+⋅⋅⋅+XN√
N

= x
)

= (
√

Np ∗ ⋅ ⋅ ⋅ ∗
√

Np)(x
√

N).

FT
[
(
√

Np ∗ ⋅ ⋅ ⋅ ∗
√

Np)(x
√

N)
]
(y) =

[
p̂
(

y√
N

)]N
.
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.

Take the limit as N → ∞ for fixed y .
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.

Take the limit as N → ∞ for fixed y .

Know p̂(y) = 1 − 2�2y2 + O(y3). Thus study
[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

.
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.

Take the limit as N → ∞ for fixed y .

Know p̂(y) = 1 − 2�2y2 + O(y3). Thus study
[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

.

For any fixed y ,

lim
N→∞

[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

= e−2�2y2

.
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.

Take the limit as N → ∞ for fixed y .

Know p̂(y) = 1 − 2�2y2 + O(y3). Thus study
[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

.

For any fixed y ,

lim
N→∞

[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

= e−2�2y2

.

Fourier transform of 1√
2�

e−x2/2 at y is e−2�2y2
.
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Proof of the Central Limit Theorem (cont)

We have shown:

the Fourier transform of the distribution of SN converges to
e−2�2y2

;

the Fourier transform of 1√
2�

e−x2/2 at y is e−2�2y2
.

Therefore the distribution of SN equalling x converges to 1√
2�

e−x2/2.

65



Summary for the Day Review Accumulation and Moments Clicker Questions CLT and MGF CLT and Fourier Analysis

Proof of the Central Limit Theorem (cont)

We have shown:

the Fourier transform of the distribution of SN converges to
e−2�2y2

;

the Fourier transform of 1√
2�

e−x2/2 at y is e−2�2y2
.

Therefore the distribution of SN equalling x converges to 1√
2�

e−x2/2.
We need complex analysis to justify this inversion. Must be careful:
Consider

g(x) =

{
e−1/x2

if x ∕= 0

0 if x = 0.

All the Taylor coefficients about x = 0 are zero, but the function is not
identically zero in a neighborhood of x = 0.
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