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Summary for the day

@ Complex Analysis:
< Review definitions / statements.
o Accumulation point theorems.

@ Clicker question:
o Statement of the CLT.
o Clicker question on rate of convergence.

@ Central Limit Theorem:
© Poisson example.
o Proof with MGFs.
o Proof with Fourier analysis.
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Review

Accumulation points and functions

Theorem

Let f be an analytic function on an open set U, with
infinitely many zeros z,,z;, 23, .... Iflimy_, .z, € U, then f
is identically zero on U. In other words, if a function is
zero along a sequence in U whose accumulation point is
also in U, then that function is identically zero in U.
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Schwartz Space

Schwartz space S(R): all infinitely differentiable functions
f such that, for any non-negative integers m and n,

n

d
(1 +x%)™ o

sup < 0.

xXeR

Inversion Theorem for Fourier Transform: Let f € S(R).
Then

f(x) = /OO f(y)e?™dy.

[e.e]

f,g € S(R) with f = g then f(x) = g(x).

¢
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Accumulation Points and Moments

Theorem

Assume the MGFs My (t) and My (t) exist in a
neighborhood of zero (i.e., there is some § such that both
functions exist for [t| < d). If Mx(t) = My (t) in this
neighborhood, then Fx (u) = Fy(u) for all u. As the
densities are the derivatives of the cumulative distribution
functions, we have f = g.
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Accumulation Points and Moments

Theorem

Let {X;}ic be a sequence of random variables with MGFs
My (t). Assume there is a ¢ > 0 such that when |t| < ¢ we
have lim;_, ., My, (t) = Mx(t) for some MGF Mx(t), and all
MGFs converge for |t| < . Then there exists a unique
cumulative distribution function F whose moments are
determined from Mx (t) and for all x where Fx(x) is
continuous, limp_, Fx, (X) = Fx(x).




Accumulation and Moments
.

Accumulation Points and Moments

Theorem: X and Y continuous random variables on

[0, o) with continuous densities f and g, all of whose

moments are finite and agree, and

© 3C > 0stVc < C, ec*if(e!) and ec+ig(et) are
Schwartz functions.

@ The (not necessarily integral) moments

(6 = [ xetodx and s (@) = [ xeg(x)ix
0 0

agree for some sequence of non-negative real
numbers {r,}>° , which has a finite accumulation point
(e, limy_ oy =1 < 00).
Then f = g (in other words, knowing all these moments
uniquely determines the probability density).




Accumulation and Moments
°

Application to equal integral moments

Return to the two densities causing trouble:

W) = et
f(x) = f1(x)[1+ sin(2rlogx)].




Accumulation and Moments
°

Application to equal integral moments

Return to the two densities causing trouble:
1

fl(X) — W e—(logzx)/Z
f(x) = fi(X)[1+ sin(2rlogx)].

@ Same integral moments: ek®/2,
@ Have the correct decay.

@ Using complex analysis (specifically, contour
integration), we can calculate the (a + ib)"moments:

Forf, : e@t)?/2

Forf,: e(@t®)?/2 ! ((:"(f"Jri(b*ZW))z/2 — e(a+i(b+27r))2/2> )




Accumulation and Moments
°

Application to equal integral moments

Return to the two densities causing trouble:

1

fl(X) — W e—(logzx)/Z
f(x) = fi(X)[1+ sin(2rlogx)].

@ No sequence of real moments having an
accumulation point where they agree.

o a®moment of f, is
ea2/2 + e(a72i7r)2/2 (1 . e4ia7r) :

and this is never zero unless a is a half-integer.
@ Only way this can vanish is if 1 = 43,
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Clicker Questions
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Normalization of a random variable

Normalization (standardization) of a random variable

Let X be a random variable with mean p and standard
deviation o, both of which are finite. The normalization, Y,
is defined by

_X-EX]  X-upu
~ StDev(X) o

Note that

E[Y] = 0 and StDev(Y) = 1.




Clicker Questions
[ ]

Statement of the Central Limit Theorem

Normal distribution

A random variable X is normally distributed (or has the
normal distribution, or is a Gaussian random variable)
with mean p and variance o2 if the density of X is

f(x) = \/% exp (—%).

We often write X ~ N(u, 0?) to denote this. If x = 0 and
0% =1, we say X has the standard normal distribution.

>
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Statement of the Central Limit Theorem

Central Limit Theorem

Let Xy,..., Xy be independent, identically distributed
random variables whose moment generating functions
converge for |t| < § for some ¢ > O (this implies all the
moments exist and are finite). Denote the mean by ;. and
the variance by o2, let

X1+ -+ Xy

Xy — -

and set .
XN — U
N = .
T g /UN
Then as N — oo, the distribution of Zy converges to the
standard normal.
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Statement of the Central Limit Theorem

Why are there only tables of values of standard normal?




Clicker Questions
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Statement of the Central Limit Theorem

Why are there only tables of values of standard normal?

Answer: normalization. Similar to log tables (only need
one from change of base formula).
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Alternative Statement of the Central Limit Theorem

Central Limit Theorem

Let Xy,..., Xy be independent, identically distributed
random variables whose moment generating functions
converge for |t| < § for some ¢ > O (this implies all the
moments exist and are finite). Denote the mean by ; and
the variance by o2, let

SN = X1—|—..._|_XN
and set
SN—N/L
No2

Then as N — oo, the distribution of Zy converges to the
standard normal.

Zy =
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Key Probabilities:

Key probabilities for Z ~ N(0, 1) (i.e., Z has the standard
normal distribution).

e Prob(|Z| < 1) ~ 68.2%.
@ Prob(|Z| < 1.96) ~ 95%.

@ Prob(|Z| < 2.575) ~ 99%.
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Convergence to the standard normal

Let Xy, Xz, ... be iidrv with mean 0 and variance 1, and let
Zy = Xn/(1/V/N). By the CLT Zy — N(O, 1); which
choice converges fastest? Slowest?

@ Uniform: X ~ Unif(—v/3,1/3).

@ Laplace: fy(x) = e~ V2l /y/2.

© Normal: X ~ N(0, 1).

Q Millered Cauchy: fy (x) = 2508 L,
a=+vv2-1.
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Convergence to the standard normal

Let Xy, Xz, ... be iidrv with mean 0 and variance 1, and let
Zy = Xn/(1/V/N). By the CLT Zy — N(O, 1); which
choice converges fastest? Slowest?

© Uniform: X ~ Unif(—v/3,v/3). Kurtosis: 1.8.
@ Laplace: fx(x) = e~V2XI/\/2. Kurtosis: 6.
© Normal: X ~ N(0,1). Kurtosis: 3.

© Millered Cauchy: fy(x) = 4as";(”/8) H(gx)s,

a=1v+v2— 1. Kurtosis: 1 + /2 ~ 2.414.
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Convergence to the standard normal

Let X1, X5, ... be iidrv with mean 0 and variance 1, and let
Zn = Xn/(1/+v/N). By the CLT Zy — N(0, 1); which
choice converges fastest? Slowest?

@ Uniform: X ~ Unif(—+/3,+/3). Kurtosis: 1.8.
@ Laplace: fx(x) = eVl /\/2. Kurtosis: 6.
© Normal: X ~ N(0,1). Kurtosis: 3.

O Millered Cauchy: fi(x) = 2ninld) Lo,

™

a=vv2-— KurtosiS' 1++/2 ~2.414.
log My (t) = +<“4 I 4 O(t9).
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Convergence to the standard normal

Let X1, X5, ... be iidrv with mean 0 and variance 1, and let
Zn = Xn/(1/+v/N). By the CLT Zy — N(0, 1); which
choice converges fastest? Slowest?

@ Uniform: X ~ Unif(—/3,v/3). Excess Kurtosis: -1.2.
@ Laplace: fx(x) = e"V2XI/\/2. Excess Kurtosis: 3.

© Normal: X ~ N(0,1). Excess Kurtosis: 0.

Q Millered Cauchy: fi(x) = 2ninld) Lo,

™

a=v+v2— 1. Excess Kurtosis: 1+ v2 — 3 ~ —.586.
log Mx(t) = & 4 @23 4 Ot6).
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Convergence to the standard normal

Figure: Convolutions of 5 Uniforms.
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Convergence to the standard normal

Figure: Convolutions of 5 Laplaces.




Clicker Questions
L]

Convergence to the standard normal

Figure: Convolutions of 5 Normals.
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Convergence to the standard normal

Figure: Convolutions of 1 Millered Cauchy.
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Convergence to the standard normal

Figure: Convolutions of 2 Millered Cauchy.
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CLT and MGF
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MGF and the CLT

Moment generating function of normal distributions

Let X be a normal random variable with mean p and
variance ¢2. Its moment generating function satisfies

)
My (t) = et t52.

In particular, if Z has the standard normal distribution, its
moment generating function is

M (t) = et/2.
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MGF and the CLT

Moment generating function of normal distributions

Let X be a normal random variable with mean p and
variance ¢2. Its moment generating function satisfies

)
My (t) = et t52.

In particular, if Z has the standard normal distribution, its
moment generating function is

M (t) = et/2.

Proof: Complete the square.




CLT and MGF
°

Poisson Example of the CLT

Example

Let X, Xy, ..., Xy be Poisson random variables with
parameter \. Let

— X1+ -4+ Xy X — E[X]
X N — —7 Y == - — .
N StDev(X)
Then as N — oo, Y converges to having the standard
normal distribution.




CLT and MGF
°

Poisson Example of the CLT

Example

Let X, Xy, ..., Xy be Poisson random variables with
parameter \. Let

< ~ Xit e+ Xy Y_Y—E[Y]
§ N ’ StDev(X)’

Then as N — oo, Y converges to having the standard
normal distribution.

Moment generating function: My (t) = exp(A(e' — 1)).
Independent formula: My, ;+x,(t) = My, (t)Mx,(t).
Shift formula: Max b (t) = e’ My(at).
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General proof via Moment Generating Functions

Xi's lidrv,
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General proof via Moment Generating Functions

Xi's lidrv,
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General proof via Moment Generating Functions

Xi's lidrv,
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General proof via Moment Generating Functions (cont)

Expansion of MGF:

/t2 lt
My (t) = 1—0—/[[—0—”2 T = 1_|_t(lu_|_’u_2_|_...).

2!
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General proof via Moment Generating Functions (cont)

Expansion of MGF:

/t2 lt
My (t) = 1+ut+“§| fo = 1+t(u+%+-~-).
Expansion for log(1 + u) is
uz ud
= U—— 4+ ——--.
log(1 + u) > T3

A
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General proof via Moment Generating Functions (cont)

Expansion of MGF:

/t2 lt
My (t) = 1+ut+“§| fo = 1+t(u+%+-~-).
Expansion for log(1 + u) is
uz  ud
Iog(1+u):u—?+§—---

Combining gives

/t t2<lu/+%/2t_|_...>2
logMy(t) = t(ﬂ+“72+...)_ : T

t? 4+ termsin t* or higher.

Hpy — H
= ut4+22 7
P+ =

A
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General proof via Moment Generating Functions (cont)

t
logM ( )
9 ovN
t 2 t? .
- A Jrg——jttermsmt3/N3/2 or lower in N.

oVN

A7
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General proof via Moment Generating Functions (cont)

o (1)

t 2 t? :
- A Jrg——jttermsmt3/N3/2 or lower in N.

oVN

Denote lower order terms by O(N~%/2). Collecting gives

logMz (1) = ’ut\/_ ( +£+O(N3/2))

ovN 2N
t\/ tVN
_ VN VN oy
o o 2
2
N )

2

A




CLT and Fourier Analysis

Central Limit Theorem
and Fourier Analysis

A




CLT and Fourier Analysis

Convolutions

Convolution of f and g:

hiy) = (f xg)(y) = /f(x)g(yfx)dx - /Rf(xfy)g(x)dx.

R

AT




CLT and Fourier Analysis

Convolutions

Convolution of f and g:

hiy) = (f xg)(y) = /f(x)g(yfx)dx - /Rf(xfy)g(x)dx.

R

X3 and X, independent random variables with probability density p.

X—+AX
Prob(X; € [x,x + Ax]) = / p(t)dt ~ p(x)Ax.

00 X+AX—X;
Prob(X; + X3) € [X,x + AX] = / / P(X1)p(X2)dx20X;.
Xp=—00 JX

2=X—X1

A




CLT and Fourier Analysis

Convolutions

Convolution of f and g:

hiy) = (f xg)(y) = /f(x)g(yfx)dx - /Rf(xfy)g(x)dx.

R

X3 and X, independent random variables with probability density p.

X—+AX
Prob(X; € [x,x + Ax]) = / p(t)dt ~ p(x)Ax.

00 X+AX—X;
Prob(X; + X3) € [X,x + AX] = / / P(X1)p(X2)dx20X;.
Xp=—00 JX

2=X—X1

As Ax — 0 we obtain the convolution of p with itself:
b
Prob(X1 + Xo € [a,b]) = / (p+p)(2)dz.
a

Exercise to show non-negative and integrates to 1.




CLT and Fourier Analysis
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A

Statement of Central Limit Theorem

@ WLOG p has mean zero, variance one, finite third moment and
decays rapidly so all convolution integrals converge: p infinitely
differentiable function satisfying

/ xp(x)dx = 0, / x?p(x)dx = 1, / X[3p(x)dx < oo.

@ X1,Xp,... areiidrv with density p.
@ Define Sy = Y, Xi.

. . . 2
@ Standard Gaussian (mean zero, variance one) is \/Lz_ﬂefx /2,




CLT and Fourier Analysis
°

Statement of Central Limit Theorem

@ WLOG p has mean zero, variance one, finite third moment and
decays rapidly so all convolution integrals converge: p infinitely
differentiable function satisfying

/ x)dx = 0, / x)dx = 1, / X[3p(x)dx < oo.

@ X1,Xp,... areiidrv with density p.
@ Define Sy = Y, Xi.

. . . 2
@ Standard Gaussian (mean zero, variance one) is \/Lz_ﬂefx /2,

Central Limit Theorem Let X;, Sy be as above and assume the third
moment of each X; is finite. Then SN/\/N converges in probability to
the standard Gaussian:

Jim_Prob (j—NN € [a b]) \/_/ e /20x.

A




CLT and Fourier Analysis
°

Proof of the Central Limit Theorem

@ The Fourier transform: p(y) = [~_p(x)e~2"dx.

— 00




CLT and Fourier Analysis
°

Proof of the Central Limit Theorem

@ The Fourier transform: p(y) = [*_p(x)e 2™ dx.

@ Derivative of g is the Fourier transform of —27ixg(x);
differentiation (hard) is converted to multiplication (easy).

g'ly) = / —27ix - g(x)e ™ dx;

g prob. density, g’(0) = —27iE[x], " (0) = —472E[x?].




CLT and Fourier Analysis
°

Proof of the Central Limit Theorem

@ The Fourier transform: p(y) = [*_p(x)e 2™ dx.

@ Derivative of g is the Fourier transform of —27ixg(x);
differentiation (hard) is converted to multiplication (easy).

g'(ly) = / —27iX - g(x)e_z”i"ydx;
g prob. density, g’(0) = —27iE[x], " (0) = —472E[x?].

@ Natural: mean and variance simple multiples of derivatives of p
at zero: p’(0) = 0, p”(0) = —4r2.




CLT and Fourier Analysis
°

Proof of the Central Limit Theorem

@ The Fourier transform: p(y) = [*_p(x)e 2™ dx.

@ Derivative of g is the Fourier transform of —27ixg(x);
differentiation (hard) is converted to multiplication (easy).

g'ly) = / —27ix - g(x)e ™ dx;

g prob. density, g’(0) = —27iE[x], " (0) = —472E[x?].

@ Natural: mean and variance simple multiples of derivatives of p
at zero: p’(0) = 0, p”(0) = —4r2.

@ We Taylor expand p (need technical conditions on p):

"
~ 0
p(y) — 1+pT()y2+ — 1*27T2y2+0(y3).

Near origin, p a concave down parabola.

eSS




CLT and Fourier Analysis
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Proof of the Central Limit Theorem (cont)

@ Prob(X; +---+ Xy €[a,b]) = [(px---#p)(z)dz.




CLT and Fourier Analysis
°

Proof of the Central Limit Theorem (cont)

@ Prob(X; +---+ Xy €[a,b]) = [(px---#p)(z)dz.

@ The Fourier transform converts convolution to multiplication. If
FT[f](y) denotes the Fourier transform of f evaluated at y:

FT[p*---xpl(y) = p(y)---pP(y).




CLT and Fourier Analysis
°

Proof of the Central Limit Theorem (cont)

@ Prob(X; +---+ Xy €[a,b]) = [(px---#p)(z)dz.
@ The Fourier transform converts convolution to multiplication. If
FT[f](y) denotes the Fourier transform of f evaluated at y:

FT[p*---xpl(y) = p(y)---pP(y).

@ Do not want the distribution of X; + - - - + Xy = X, but rather
SN = XXy X
B~ .




CLT and Fourier Analysis
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Proof of the Central Limit Theorem (cont)

@ Prob(X; +---+ Xy €[a,b]) = [(px---#p)(z)dz.

@ The Fourier transform converts convolution to multiplication. If
FT[f](y) denotes the Fourier transform of f evaluated at y:

FT[p*---xpl(y) = p(y)---pP(y).

@ Do not want the distribution of X; + - - - + Xy = X, but rather
SN = XXy X
B~ .

@ 1f B(x) = A(cx) for some fixed ¢ # 0, then B(y) = A (¥).




CLT and Fourier Analysis
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Proof of the Central Limit Theorem (cont)

@ Prob(X; +---+ Xy €[a,b]) = [(px---#p)(z)dz.
@ The Fourier transform converts convolution to multiplication. If
FT[f](y) denotes the Fourier transform of f evaluated at y:

FT[p*---xpl(y) = p(y)---pP(y).

@ Do not want the distribution of X; + - - - + Xy = X, but rather
SN = XXy X
B~ .

@ 1f B(x) = A(cx) for some fixed ¢ # 0, then B(y) = A (¥).
° Prob(%:x) — (VNp - % VNP)(xVN).
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Proof of the Central Limit Theorem (cont)

@ Prob(X; +---+ Xy €[a,b]) = [(px---#p)(z)dz.

@ The Fourier transform converts convolution to multiplication. If
FT[f](y) denotes the Fourier transform of f evaluated at y:

FT[p*---xpl(y) = p(y)---pP(y).

@ Do not want the distribution of X; + - - - + Xy = X, but rather
SN = XXy X
B~ .

@ 1f B(x) = A(cx) for some fixed ¢ # 0, then B(y) = A (¥).
° Prob(%:x) — (VNp - % VNP)(xVN).

o FT [t VR ) = [3 (3]
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Proof of the Central Limit Theorem (cont)

@ Can find the Fourier transform of the distribution of Sy:

&

GO
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Proof of the Central Limit Theorem (cont)

@ Can find the Fourier transform of the distribution of Sy:
b ()]
VN

@ Take the limit as N — oo for fixed vy.

R
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Proof of the Central Limit Theorem (cont)

@ Can find the Fourier transform of the distribution of Sy:
b3
VN
@ Take the limit as N — oo for fixed vy.
@ Know p(y) = 1 — 272y2 + O(y?). Thus study

272y2 y3 N
[1_ s +o(N3/Z)].

R




CLT and Fourier Analysis
°

Proof of the Central Limit Theorem (cont)

¢

@ Can find the Fourier transform of the distribution of Sy:
b3
VN
@ Take the limit as N — oo for fixed vy.
@ Know p(y) = 1 — 272y2 + O(y?). Thus study

272y2 y3 N
[1_ s +o(N3/Z)].

@ For any fixed vy,

2,2 3 N -
im [1_277Ny +O(y )] — e-2my?

N—o0
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Proof of the Central Limit Theorem (cont)
@ Can find the Fourier transform of the distribution of Sy:
PR
VN
@ Take the limit as N — oo for fixed vy.
@ Know p(y) = 1 — 272y2 + O(y?). Thus study

272y2 y3 N
[1_ s +o(N3/Z)].

@ For any fixed vy,

2,2 3 N -
im [1_2773/ +O(y )] — e-2my?

N N3/2

. 2 . 2,2
@ Fourier transform of - e™*"/2 aty is e=27Y",
V2
RA
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Proof of the Central Limit Theorem (cont)

We have shown:

@ the Fourier transform of the distribution of Sy converges to
—27r2y2.
e ’

@ the Fourier transform of \/LZ_W e /2 aty is e~V

Therefore the distribution of Sy equalling x converges to \/%7 e /2,

RE




CLT and Fourier Analysis
°

Proof of the Central Limit Theorem (cont)

We have shown:

@ the Fourier transform of the distribution of Sy converges to
—27r2y2.
e ’

@ the Fourier transform of \/Lz_ﬂ e /2 aty is e~V

Therefore the distribution of Sy equalling x converges to \/%7 e /2,
We need complex analysis to justify this inversion. Must be careful:

Consider ,
e /X ifx #£0
X =
9(x) {O if x = 0.

All the Taylor coefficients about x = 0 are zero, but the function is not
identically zero in a neighborhood of x = 0.

AR
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