Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs

Math 341: Probability Twenty-second Lecture (12/1/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, December 1, 2009

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs

Summary for the Day

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
●	000000		00000000	0000000
Summary for th	ne day			

• Benford's Law and the CLT Modulo 1:

- Poisson Summation.
- Estimates of Normal Probabilities.
- The Modulo 1 CLT
- More Sum Than Difference Sets:
 - Definition.
 - Examples.
 - Inputs (Chebyshev's Theorem).
 - Proofs.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
				000000

The Modulo 1 Central Limit Theorem

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
	00000			

Needed Input: Poisson Summation Formula

Poisson Summation Formula

$$f$$
 nice:

$$\sum_{\ell=-\infty}^{\infty} f(\ell) = \sum_{\ell=-\infty}^{\infty} \widehat{f}(\ell),$$
Fourier transform $\widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx.$

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
	00000			

Needed Input: Poisson Summation Formula

Poisson Summation Formula

$$f$$
 nice:

$$\sum_{\ell=-\infty}^{\infty} f(\ell) = \sum_{\ell=-\infty}^{\infty} \hat{f}(\ell),$$
Fourier transform $\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx.$

What is 'nice'?

- f Schwartz more than enough.
- *f* twice continuously differentiable & *f*, *f'*, *f''* decay like $x^{-(1+\eta)}$ for an $\eta > 0$ (*g* decays like x^{-a} if $\exists x_0, C$ st $|x| > x_0, |g(x)| \le C/|x|^a$).

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
	00000			

Modulo 1 Central Limit Theorem

The Modulo 1 Central Limit Theorem for Independent

Let $\{Y_m\}$ be independent continuous random variables on [0, 1), not necessarily identically distributed, with densities $\{g_m\}$. A necessary and sufficient condition for $Y_1 + \cdots + Y_M$ modulo 1 to converge to the uniform distribution as $M \to \infty$ (in $L_1([0, 1])$ is that for each $n \neq 0$ we have $\lim_{M\to\infty} \widehat{g_1}(n) \cdots \widehat{g_M}(n) = 0$.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
	00000			

Modulo 1 Central Limit Theorem

The Modulo 1 Central Limit Theorem for Independent

Let $\{Y_m\}$ be independent continuous random variables on [0, 1), not necessarily identically distributed, with densities $\{g_m\}$. A necessary and sufficient condition for $Y_1 + \cdots + Y_M$ modulo 1 to converge to the uniform distribution as $M \to \infty$ (in $L_1([0, 1])$ is that for each $n \neq 0$ we have $\lim_{M\to\infty} \widehat{g_1}(n) \cdots \widehat{g_M}(n) = 0$.

Application to Benford's law: If $X = X_1 \cdots X_M$ then

$$\log_{10} X = \log_{10} X_1 + \dots + \log_{10} X_M := Y_1 + \dots + Y_M.$$

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	○○●○○○		00000000	0000000
Needed inputs:	Decay			

 $\frac{2}{\sqrt{2\pi\sigma^2}}\int_{\sigma^{1+\delta}}^{\infty} e^{-x^2/2\sigma^2} dx \ \ll \ e^{-\sigma^{2\delta}/2}.$

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
	000000			

Needed inputs: Spreading

Lemma

As
$$N \to \infty$$
, $p_N(x) = \frac{e^{-\pi x^2/N}}{\sqrt{N}}$ becomes equidistributed modulo 1.

•
$$\int_{x \mod 1 \in [a,b]}^{\infty} p_N(x) dx = \frac{1}{\sqrt{N}} \sum_{n \in \mathbb{Z}} \int_{x=a}^{b} e^{-\pi (x+n)^2/N} dx.$$

• $e^{-\pi (x+n)^2/N} = e^{-\pi n^2/N} + O\left(\frac{\max(1,|n|)}{N} e^{-n^2/N}\right).$

• Can restrict sum to $|n| \leq N^{5/4}$.

•
$$\frac{1}{\sqrt{N}}\sum_{n\in\mathbb{Z}}\mathbf{e}^{-\pi n^2/N} = \sum_{n\in\mathbb{Z}}\mathbf{e}^{-\pi n^2 N}$$

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
	000000			

Needed inputs: Spreading (continued)

$$\begin{aligned} \frac{1}{\sqrt{N}} \sum_{|n| \le N^{5/4}} \int_{x=a}^{b} e^{-\pi (x+n)^2/N} dx \\ &= \frac{1}{\sqrt{N}} \sum_{|n| \le N^{5/4}} \int_{x=a}^{b} \left[e^{-\pi n^2/N} + O\left(\frac{\max(1,|n|)}{N}e^{-n^2/N}\right) \right] dx \\ &= \frac{b-a}{\sqrt{N}} \sum_{|n| \le N^{5/4}} e^{-\pi n^2/N} + O\left(\frac{1}{N} \sum_{n=0}^{N^{5/4}} \frac{n+1}{\sqrt{N}}e^{-\pi (n/\sqrt{N})^2}\right) \\ &= \frac{b-a}{\sqrt{N}} \sum_{|n| \le N^{5/4}} e^{-\pi n^2/N} + O\left(\frac{1}{N} \int_{w=0}^{N^{3/4}} (w+1)e^{-\pi w^2} \sqrt{N} dw\right) \\ &= \frac{b-a}{\sqrt{N}} \sum_{|n| \le N^{5/4}} e^{-\pi n^2/N} + O\left(N^{-1/2}\right). \end{aligned}$$

Needed input	s: Spreading	(continued)		
Daily Summary o	Mod 1 CLT ○○○○○●	MSTD: Introduction	Examples 00000000	Proofs

Extend sums to $n \in \mathbb{Z}$, apply Poisson Summation:

$$\frac{1}{\sqrt{N}}\sum_{n\in\mathbb{Z}}\int_{x=a}^{b}e^{-\pi(x+n)^{2}/N}dx \approx (b-a)\cdot\sum_{n\in\mathbb{Z}}e^{-\pi n^{2}N}.$$

For n = 0 the right hand side is b - a. For all other *n*, we trivially estimate the sum:

$$\sum_{n \neq 0} e^{-\pi n^2 N} \leq 2 \sum_{n \geq 1} e^{-\pi n N} \leq \frac{2 e^{-\pi N}}{1 - e^{-\pi N}},$$

which is less than $4e^{-\pi N}$ for *N* sufficiently large.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs

More Sums Than Differences: Introduction

A finite set of integers, |A| its size. Form

- Sumset: $A + A = \{a_i + a_j : a_j, a_j \in A\}.$
- Difference set: $A A = \{a_i a_j : a_j, a_j \in A\}$.

A finite set of integers, |A| its size. Form

- Sumset: $A + A = \{a_i + a_j : a_j, a_j \in A\}.$
- Difference set: $A A = \{a_i a_j : a_j, a_j \in A\}$.

Definition

We say *A* is difference dominated if |A - A| > |A + A|, balanced if |A - A| = |A + A| and sum dominated (or an MSTD set) if |A + A| > |A - A|.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000	○●○	00000000	0000000
Clicker Ques	tion			

Binomial Model

Consider the 2^{*N*} subsets of $\{1, 2, ..., N\}$. As $N \to \infty$, what can you say about the percentage that are MSTD?

- It tends to 1.
- It tends to 1/2.
- It tends to a small positive constant.
- It tends to 0.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000	○○●	00000000	0000000
Questions				

Expect generic set to be difference dominated:

- addition is commutative, subtraction isn't:
- Generic pair (x, y) gives 1 sum, 2 differences.

Questions

- Do there exist sum-dominated sets?
- If yes, how many?

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs

Examples

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		●○○○○○○○	0000000
Examples				

- Conway: {0, 2, 3, 4, 7, 11, 12, 14}.
- Marica (1969): {0, 1, 2, 4, 7, 8, 12, 14, 15}.
- Freiman and Pigarev (1973): {0, 1, 2, 4, 5, 9, 12, 13, 14, 16, 17, 21, 24, 25, 26, 28, 29}.
- Computer search of random subsets of {1,...,100}: {2,6,7,9,13,14,16,18,19,22,23,25,30,31,33,37,39, 41,42,45,46,47,48,49,51,52,54,57,58,59,61,64,65, 66,67,68,72,73,74,75,81,83,84,87,88,91,93,94,95, 98,100}.
- Recently infinite families (Hegarty, Nathanson).

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		○●○○○○○○	000000
Probability Rev	iew			

X random variable with density f(x) means

•
$$f(x) \geq 0;$$

•
$$\int_{-\infty}^{\infty} f(\mathbf{x}) = 1;$$

•
$$\operatorname{Prob}(X \in [a, b]) = \int_a^b f(x) dx.$$

Key quantities:

- Expected (Average) Value: $\mathbb{E}[X] = \int xf(x)dx$.
- Variance: $\sigma^2 = \int (x \mathbb{E}[X])^2 f(x) dx$.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		○○●○○○○○	0000000
Rinomial mode				

Binomial model, parameter p(n)

Each $k \in \{0, \ldots, n\}$ is in *A* with probability p(n).

Consider uniform model (p(n) = 1/2):

• Let $A \in \{0, ..., n\}$. Most elements in $\{0, ..., 2n\}$ in A + A and in $\{-n, ..., n\}$ in A - A.

•
$$\mathbb{E}[|A+A|] = 2n - 11$$
, $\mathbb{E}[|A-A|] = 2n - 7$.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples ○○○●○○○○	Proofs

Martin and O'Bryant '06

Theorem

Let A be chosen from $\{0, ..., N\}$ according to the binomial model with constant parameter p (thus $k \in A$ with probability p). At least $k_{SD;p}2^{N+1}$ subsets are sum dominated.

Daily Summary o	Mod 1 CLT 000000	MSTD: Introduction	Examples ○○○●○○○○	Proofs

Martin and O'Bryant '06

Theorem

Let A be chosen from $\{0, ..., N\}$ according to the binomial model with constant parameter p (thus $k \in A$ with probability p). At least $k_{SD;p}2^{N+1}$ subsets are sum dominated.

•
$$k_{\text{SD};1/2} \ge 10^{-7}$$
, expect about 10^{-3} .

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples ○○○●○○○○	Proofs

Martin and O'Bryant '06

Theorem

Let A be chosen from $\{0, ..., N\}$ according to the binomial model with constant parameter p (thus $k \in A$ with probability p). At least $k_{SD;p}2^{N+1}$ subsets are sum dominated.

•
$$k_{\text{SD};1/2} \ge 10^{-7}$$
, expect about 10^{-3} .

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		○○○○●○○○	0000000
Notation				

•
$$X \sim f(N)$$
 means $\forall \epsilon_1, \epsilon_2 > 0$, $\exists N_{\epsilon_1, \epsilon_2}$ st $\forall N \ge N_{\epsilon_1, \epsilon_2}$
 $\operatorname{Prob} (X \notin [(1 - \epsilon_1)f(N), (1 + \epsilon_1)f(N)]) < \epsilon_2.$

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		○○○○●○○○	0000000
Notation				

•
$$X \sim f(N)$$
 means $\forall \epsilon_1, \epsilon_2 > 0$, $\exists N_{\epsilon_1, \epsilon_2}$ st $\forall N \ge N_{\epsilon_1, \epsilon_2}$
 $\operatorname{Prob} (X \notin [(1 - \epsilon_1)f(N), (1 + \epsilon_1)f(N)]) < \epsilon_2.$

•
$$S = |A + A|, D = |A - A|,$$

 $S^{c} = 2N + 1 - S, D^{c} = 2N + 1 - D.$

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		○○○○●○○○	000000
Notation				

•
$$X \sim f(N)$$
 means $\forall \epsilon_1, \epsilon_2 > 0$, $\exists N_{\epsilon_1, \epsilon_2}$ st $\forall N \ge N_{\epsilon_1, \epsilon_2}$

$$\operatorname{Prob}\left(X \notin \left[(1-\epsilon_1)f(N), (1+\epsilon_1)f(N)\right]\right) < \epsilon_2.$$

•
$$S = |A + A|, D = |A - A|,$$

 $S^{c} = 2N + 1 - S, D^{c} = 2N + 1 - D.$

New model: Binomial with parameter p(N):

•
$$1/N = o(p(N))$$
 and $p(N) = o(1)$;

•
$$\operatorname{Prob}(k \in A) = p(N).$$

Conjecture (Martin-O'Bryant)

As $N \rightarrow \infty$, A is a.s. difference dominated.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		○○○○○●○○	0000000
Main Result				

Theorem (Hegarty-Miller)

$$p(N)$$
 as above, $g(x) = 2\frac{e^{-x} - (1-x)}{x}$.
• $p(N) = o(N^{-1/2})$: $\mathcal{D} \sim 2S \sim (Np(N))^2$;
• $p(N) = cN^{-1/2}$: $\mathcal{D} \sim g(c^2)N$, $S \sim g\left(\frac{c^2}{2}\right)N$
 $(c \to 0, \mathcal{D}/S \to 2; c \to \infty, \mathcal{D}/S \to 1)$;
• $N^{-1/2} = o(p(N))$: $S^c \sim 2\mathcal{D}^c \sim 4/p(N)^2$.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		○○○○○●○	000000
Critical Thres	holds			

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		○○○○○●○	0000000
Critical Three				

Can generalize Hegarty-Miller to binary linear forms, still have critical threshold.

Daily Summary o	Mod 1 CLT 000000	MSTD: Introduction	Examples ○○○○○○●	Proofs
Inputs				

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		○○○○○○●	0000000
Innuts				

Example (Chernoff): t_i iid binary random variables, $Y = \sum_{i=1}^{n} t_i$, then

$$\forall \lambda > \mathbf{0}: \operatorname{Prob}\left(|\mathbf{Y} - \mathbb{E}[\mathbf{Y}]| \geq \sqrt{\lambda n}
ight) \leq 2e^{-\lambda/2}$$

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		○○○○○○●	0000000
Innuts				

Example (Chernoff): t_i iid binary random variables, $Y = \sum_{i=1}^{n} t_i$, then

$$\forall \lambda > \mathbf{0}: \operatorname{Prob}\left(|\mathbf{Y} - \mathbb{E}[\mathbf{Y}]| \ge \sqrt{\lambda n}
ight) \le 2e^{-\lambda/2}$$

Need to allow dependent random variables.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		○○○○○○●	0000000
Innuts				

Example (Chernoff): t_i iid binary random variables, $Y = \sum_{i=1}^{n} t_i$, then

$$\forall \lambda > \mathbf{0}: \ \operatorname{Prob}\left(|\mathbf{Y} - \mathbb{E}[\mathbf{Y}]| \geq \sqrt{\lambda n}\right) \ \leq \ \mathbf{2} e^{-\lambda/2}$$

Need to allow dependent random variables. Sketch of proofs: $\mathcal{X} \in \{\mathcal{S}, \mathcal{D}, \mathcal{S}^c, \mathcal{D}^c\}$.

• Prove $\mathbb{E}[\mathcal{X}]$ behaves asymptotically as claimed;

Prove \mathcal{X} is strongly concentrated about mean.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
	000000	000	00000000	0000000

Proofs

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		00000000	●○○○○○
Setup				

Note: only need strong concentration for $N^{-1/2} = o(p(N))$.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		00000000	●○○○○○
Setup				

Note: only need strong concentration for $N^{-1/2} = o(p(N))$.

Will assume $p(N) = o(N^{-1/2})$ as proofs are elementary (i.e., Chebyshev: Prob($|Y - \mathbb{E}[Y]| \ge k\sigma_Y \le 1/k^2$)).

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		00000000	●○○○○○
Setup				

Note: only need strong concentration for $N^{-1/2} = o(p(N))$.

Will assume $p(N) = o(N^{-1/2})$ as proofs are elementary (i.e., Chebyshev: $Prob(|Y - \mathbb{E}[Y]| \ge k\sigma_Y) \le 1/k^2)$).

For convenience let $p(N) = N^{-\delta}$, $\delta \in (1/2, 1)$.

IID binary indicator variables:

$$X_{n;N} = \begin{cases} 1 & \text{with probability } N^{-\delta} \\ 0 & \text{with probability } 1 - N^{-\delta} \end{cases}$$

$$X = \sum_{i=1}^{N} X_{n;N}, \mathbb{E}[X] = N^{1-\delta}.$$

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		oooooooo	○●○○○○
Proof				

$$P_{1}(N) = 4N^{-(1-\delta)},$$

$$\mathcal{O} = \#\{(m,n) : m < n \in \{1, ..., N\} \cap A\}.$$

With probability at least $1 - P_{1}(N)$ have

$$X \in \left[\frac{1}{2}N^{1-\delta}, \frac{3}{2}N^{1-\delta}\right].$$

$$\frac{\frac{1}{2}N^{1-\delta}(\frac{1}{2}N^{1-\delta}-1)}{2} \le \mathcal{O} \le \frac{\frac{3}{2}N^{1-\delta}(\frac{3}{2}N^{1-\delta}-1)}{2}.$$

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		00000000	○●○○○○○
Proof				

$$P_{1}(N) = 4N^{-(1-\delta)},$$

$$\mathcal{O} = \#\{(m, n) : m < n \in \{1, ..., N\} \cap A\}$$

With probability at least $1 - P_{1}(N)$ have

$$X \in \left[\frac{1}{2}N^{1-\delta}, \frac{3}{2}N^{1-\delta}\right].$$

$$2 \frac{\frac{1}{2}N^{1-\delta}(\frac{1}{2}N^{1-\delta}-1)}{2} \le \mathcal{O} \le \frac{\frac{3}{2}N^{1-\delta}(\frac{3}{2}N^{1-\delta}-1)}{2}.$$

Proof:

- (1) is Chebyshev: $\operatorname{Var}(X) = N\operatorname{Var}(X_{n;N}) \leq N^{1-\delta}$.
- (2) follows from (1) and $\binom{r}{2}$ ways to choose 2 from *r*.

Daily Summary o	Mod 1 CLT 000000	MSTD: Introduction	Examples	Proofs
Concentration				

•
$$f(\delta) = \min\left(\frac{1}{2}, \frac{3\delta-1}{2}\right)$$
, $g(\delta)$ any function st $0 < g(\delta) < f(\delta)$.

•
$$p(N) = N^{-\delta}, \, \delta \in (1/2, 1), \, P_1(N) = 4N^{-(1-\delta)}, \ P_2(N) = CN^{-(f(\delta)-g(\delta))}.$$

With probability at least $1 - P_1(N) - P_2(N)$ have $\mathcal{D}/\mathcal{S} = 2 + O(N^{-g(\delta)})$.

Daily Summary o	Mod 1 CLT 000000	MSTD: Introduction	Examples	Proofs
Concentration				

•
$$f(\delta) = \min\left(\frac{1}{2}, \frac{3\delta-1}{2}\right)$$
, $g(\delta)$ any function st $0 < g(\delta) < f(\delta)$.

•
$$p(N) = N^{-\delta}, \, \delta \in (1/2, 1), \, P_1(N) = 4N^{-(1-\delta)}, \ P_2(N) = CN^{-(f(\delta)-g(\delta))}.$$

With probability at least $1 - P_1(N) - P_2(N)$ have $\mathcal{D}/\mathcal{S} = 2 + O(N^{-g(\delta)})$.

Proof: Show
$$\mathcal{D} \sim 2\mathcal{O} + O(N^{3-4\delta})$$
, $\mathcal{S} \sim \mathcal{O} + O(N^{3-4\delta})$.

As \mathcal{O} is of size $N^{2-2\delta}$ with high probability, need $2-2\delta > 3-4\delta$ or $\delta > 1/2$.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		00000000	○○○●○○○
Analysis of ${\cal D}$				

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		00000000	○○○●○○○
Analysis of \mathcal{D}				

Difficulty: (m, n) and (m', n') could yield same differences.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		oooooooo	○○○●○○○
Analysis of \mathcal{D}				

Difficulty: (m, n) and (m', n') could yield same differences.

Notation: $m < n, m' < n', m \le m'$,

$$Y_{m,n,m',n'} = \begin{cases} 1 & \text{if } n-m=n'-m' \\ 0 & \text{otherwise.} \end{cases}$$

Difficulty: (m, n) and (m', n') could yield same differences.

Notation: $m < n, m' < n', m \le m'$,

$$Y_{m,n,m',n'} = \begin{cases} 1 & \text{if } n-m=n'-m' \\ 0 & \text{otherwise.} \end{cases}$$

 $\mathbb{E}[Y] \le N^3 \cdot N^{-4\delta} + N^2 \cdot N^{-3\delta} \le 2N^{3-4\delta}. \text{ As } \delta > 1/2,$ Expected number bad pairs $\ll |\mathcal{O}|.$

Difficulty: (m, n) and (m', n') could yield same differences.

Notation: $m < n, m' < n', m \le m'$,

$$Y_{m,n,m',n'} = \begin{cases} 1 & \text{if } n-m=n'-m' \\ 0 & \text{otherwise.} \end{cases}$$

 $\mathbb{E}[Y] \leq N^3 \cdot N^{-4\delta} + N^2 \cdot N^{-3\delta} \leq 2N^{3-4\delta}. \text{ As } \delta > 1/2,$ Expected number bad pairs $\ll |\mathcal{O}|.$

Claim: $\sigma_Y \leq N^{r(\delta)}$ with $r(\delta) = \frac{1}{2} \max(3 - 4\delta, 5 - 7\delta)$. This and Chebyshev conclude proof of theorem.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		00000000	○○○○●○○
Proof of claim				

Cannot use CLT as $Y_{m,n,m',n'}$ are not independent.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		00000000	○○○○●○○
Proof of claim				

Cannot use CLT as $Y_{m,n,m',n'}$ are not independent.

Use $\operatorname{Var}(U + V) \leq 2\operatorname{Var}(U) + 2\operatorname{Var}(V)$.

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		00000000	○○○○●○○
Proof of claim				

Cannot use CLT as $Y_{m,n,m',n'}$ are not independent.

Use $\operatorname{Var}(U + V) \leq 2\operatorname{Var}(U) + 2\operatorname{Var}(V)$.

Write

$$\sum Y_{m,n,m',n'} = \sum U_{m,n,m',n'} + \sum V_{m,n,n'}$$

with all indices distinct (at most one in common, if so must be n = m').

$$\operatorname{Var}(U) = \sum \operatorname{Var}(U_{m,n,m',n'}) + 2 \sum_{\substack{(m,n,m',n')\neq\\(\widetilde{m},\widetilde{n},\widetilde{m'},\widetilde{n'})}} \operatorname{CoVar}(U_{m,n,m',n'}, U_{\widetilde{m},\widetilde{n},\widetilde{m'},\widetilde{n'}})$$

Daily Summary	Mod 1 CLT	MSTD: Introduction	Examples	Proofs
o	000000		oooooooo	○○○○○●○
Analyzing Var	$t(U_{m,n,m',n'})$			

At most N^3 tuples.

Each has variance $N^{-4\delta} - N^{-8\delta} \leq N^{-4\delta}$.

Thus $\sum \operatorname{Var}(U_{m,n,m',n'}) \leq N^{3-4\delta}$.

Daily Summary o	Mod 1 CLT 000000	MSTD: Introduction	Examples oooooooo	Proofs
Analyzing CoVa	$r(U_{m,n,m',n'},U_{\widetilde{m},\widetilde{m}})$	$\widetilde{n},\widetilde{m}',\widetilde{n}'$)		

- All 8 indices distinct: independent, covariance of 0.
- 7 indices distinct: At most N³ choices for first tuple, at most N² for second, get

$$\mathbb{E}[U_{(1)}U_{(2)}] - \mathbb{E}[U_{(1)}]\mathbb{E}[U_{(2)}] = N^{-7\delta} - N^{-4\delta}N^{-4\delta} \le N^{-7\delta}$$

• Argue similarly for rest, get $\ll N^{5-7\delta} + N^{3-4\delta}$.