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Summary for the day

@ Benford’s Law and the CLT Modulo 1:
< Poisson Summation.
o Estimates of Normal Probabilities.
o The Modulo 1 CLT

@ More Sum Than Difference Sets:
< Definition.
o Examples.
o Inputs (Chebyshev’s Theorem).
< Proofs.




Mod 1 CLT

The Modulo 1
Central Limit Theorem
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Mod 1 CLT
°

Needed Input: Poisson Summation Formula

Poisson Summation Formula
f nice: . .
df) = > (),

f=—00 ——00
Fourier transform f(¢) = / f(x)e 2™*¢dx.




Mod 1 CLT
°

Needed Input: Poisson Summation Formula

Poisson Summation Formula
f nice: . .
df) = > (),

f=—00 ——00
Fourier transform f(¢) = / f(x)e 2™*¢dx.

What is ‘nice’?
@ f Schwartz more than enough.

@ f twice continuously differentiable & f, f/, f” decay like
x~(+n) for an n > 0 (g decays like x 2 if Ixg, C st
[X| > Xo, |9(X)| < C/[X|).

¢




Mod 1 CLT
L]

Modulo 1 Central Limit Theorem

The Modulo 1 Central Limit Theorem for Independent

Let {Yn} be independent continuous random variables on
[0,1), not necessarily identically distributed, with densities
{gm}. A necessary and sufficient condition for

Y1+ -+ Yy modulo 1 to converge to the uniform
dlstrlbutlon as M — oo (in Ly([0, 1]) is that for each n # 0
we have limy_, g1(n) - --gw(n) = 0.
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Modulo 1 Central Limit Theorem

The Modulo 1 Central Limit Theorem for Independent

Let {Yn} be independent continuous random variables on
[0,1), not necessarily identically distributed, with densities
{gm}. A necessary and sufficient condition for

Y1+ -+ Yy modulo 1 to converge to the uniform
dlstrlbutlon as M — oo (in Ly([0, 1]) is that for each n # 0
we have limy_, g1(n) - --gw(n) = 0.

Application to Benford’s law: If X = X3 --- Xy then

log;o X = l0gyo X1+ +10g;0 XM = Y1+ + Yu.
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Needed inputs: Decay




Mod 1 CLT
L]

Needed inputs: Spreading

—7TX2 . g .
As N — oo, pn(X) = & m/N becomes equidistributed
modulo 1
O [ PO =y T [ T e

@ e—"(x+n?/N _ g-mn?/N +0 <—max$\ll,\n\) e,nZ/N> .

@ Can restrict sum to |n| < N5/4,
1 —m?/N  _ —7mn2N
° WZneZe TN = Zneze B




Mod 1 CLT
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Needed inputs: Spreading (continued)

b
1 3 / o=+ /N gy

\/WanNW x=a
_ Z / |: —7'rn +0 (max(17 |n|)e—n2/N):| dx
\n|<N5/4 x=a N
b_a _ n2/N 1 +1 \/NZ
_ S e N 1o _Z ~x(n/VN)
NS N & N C
3/4
b—a N <1/N o
= e™/N 10 (w + 1)e™™ vNdw
W 2 N oo




Mod 1 CLT
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Needed inputs: Spreading (continued)

Extend sums to n € Z, apply Poisson Summation:

1 /b —m(x+n)?/N —mn2N
—=> [ eT dx ~ (b—a)-) e ™M
\/FI nez v X=4a nez

For n = 0 the right hand side is b — a.
For all other n, we trivially estimate the sum:

e*ﬂ'nzN < 2 e*ﬂ'nN < 2e7ﬂ.N
Z - Z - 1 - e—ﬂ'N )
n=£0 n>1

which is less than 4e~"N for N sufficiently large.




MSTD: Introduction

More Sums Than Differences:
Introduction




MSTD: Introduction
°

Statement

A finite set of integers, |A| its size. Form
o Sumset: A+ A= {a +a;:a,a €A}
o Difference set: A— A= {a —a; : a,a € A}




MSTD: Introduction
°

Statement

A finite set of integers, |A| its size. Form
o Sumset: A+ A= {a +a;:a,a €A}
o Difference set: A— A= {a —a; : a,a € A}

Definition

We say A is difference dominated if |A — A| > |[A+ A,
balanced if |A — A| = |A + A| and sum dominated (or an
MSTD set) if A+ A] > |A—A|.




MSTD: Introduction
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Clicker Question

Binomial Model

Consider the 2N subsets of {1,2,...,N}. AsN — oo,
what can you say about the percentage that are MSTD?

O It tends to 1.
Q Ittends to 1/2.
@ It tends to a small positive constant.

Q Ittends to O.




MSTD: Introduction
°

Questions

Expect generic set to be difference dominated:
@ addition is commutative, subtraction isn’t:
@ Generic pair (x,y) gives 1 sum, 2 differences.

@ Do there exist sum-dominated sets?

o If yes, how many?
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°

Examples
@ Conway: {0,2,3,4,7,11,12 14}.
@ Marica (1969): {0,1,2,4,7,8,12,14,15}.

@ Freiman and Pigarev (1973): {0,1,2,4,5, 9,12 13,
14,16,17, 21,24,25,26, 28, 29}.

@ Computer search of random subsets of {1, ...,100}:
{2,6,7,9,13,14,16, 18,19, 22, 23, 25, 30, 31, 33, 37, 39,
41,42, 45 46,47,48,49,51, 52,54,57,58,59,61, 64, 65,
66,67,68,72,73,74,75,81,83,84,87,88,91, 93,94, 95,
98, 100}.

@ Recently infinite families (Hegarty, Nathanson).




[SYEE
°

Probability Review

X random variable with density f(x) means
o f(x) >0;
o [T f(x)=1,
@ Prob(X € [a,b]) = [ f(x)dx.

Key quantities:
@ Expected (Average) Value: E[X] = [ xf(x)dx.
@ Variance: o2 = [(x — E[X])?f(x)dx.




[SYEE
°

Binomial model

Binomial model, parameter p(n)
Each k € {0,...,n} isin A with probability p(n).

Consider uniform model (p(n) = 1/2):

o LetAc {0,...,n}. Most elementsin {0,...,2n} in
A+Aandin{—n,....n}in A—A.

o E[[A+A]]=2n—11,E[|A—A[] =2n—7.




[SYEE
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Martin and O’Bryant '06

Let A be chosen from {0, ..., N} according to the
binomial model with constant parameter p (thus k € A
with probability p). At least ksp,,2V+* subsets are sum
dominated.
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Martin and O’Bryant '06

Let A be chosen from {0, ..., N} according to the
binomial model with constant parameter p (thus k € A
with probability p). At least ksp,,2V+* subsets are sum
dominated.

@ kgp;1/2 > 1077, expect about 1073.
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°

Martin and O’Bryant '06

Let A be chosen from {0, ..., N} according to the
binomial model with constant parameter p (thus k € A
with probability p). At least ksp,,2V+* subsets are sum
dominated.

@ kgp;1/2 > 1077, expect about 1073.

@ Proof (p = 1/2): Generically |A| = ¥ + O(VN).
o about ¥ — K ways write k € A + A,
o about ¥ — K ways write k € A — A.
¢ Almost all numbers that can be in A + A are.

© Win by controlling fringes.
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Notation

@ X ~ f(N) means Ve, e; > 0, IN stVN > N

€1,€2 €1,€2

Prob (X ¢ [(1 — e1)f(N), (1 + e1)f(N)]) < eo.
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Notation

@ X ~ f(N) means Ve, e; > 0, IN stVN > N

€1,€2 €1,€2

Prob (X ¢ [(1 — e1)f(N), (1 + e1)f(N)]) < eo.

—A+A,D=|A-A|
50 2N +1-8,D°=2N+1—D.
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Notation

@ X ~ f(N) means Ve, e; > 0, IN stVN > N

€1,€2 €1,€2

Prob (X ¢ [(1 — e1)f(N), (1 + e1)f(N)]) < eo.

—A+A,D=|A-A|
50 2N +1-8,D°=2N+1—D.

New model: Binomial with parameter p(N ):

° 1/N = o(p(N)) and p(N) = o(1);
@ Prob(k € A) = p(N).

Conjecture (Martin-O’Bryant)
As N — oo, A is a.s. difference dominated.
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Main Result

Theorem (Hegarty-Miller)

p(N) as above, g(x) = 28—=10=X),

@ p(N) = o(N~%2): D ~ 28 ~ (Np(N))?;

@ p(N)=cN~¥2: D ~g(c?)N,S~g (%) N
(c—0,D/S—2;c—o00,D/S— 1)

@ N2 = o(p(N)): 8¢ ~ 2D° ~ 4/p(N)2,
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Critical Thresholds

Critical point

liquid

solid

1 atm
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Critical Thresholds

Critical point

liquid

solid

/_/ gas

T

1 atm

Can generalize Hegarty-Miller to binary linear forms, still
have critical threshold.
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Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).
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Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Example (Chernoff): t; iid binary random variables,
Y =" t, then

YA >0: Prob (|Y ~E[Y]| > \//\n) < 2e72,
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Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Example (Chernoff): t; iid binary random variables,
Y =" t, then

YA >0: Prob (|Y ~E[Y]| > \//\n) < 2e72,

Need to allow dependent random variables.




[SYEE

Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Example (Chernoff): t; iid binary random variables,
Y =" t, then

YA >0: Prob (|Y ~E[Y]| > \//\n) < 2e72,

Need to allow dependent random variables.
Sketch of proofs: X € {S, D, S¢, D°}.

@ Prove E[X] behaves asymptotically as claimed;
@ Prove X is strongly concentrated about mean.
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Note: only need strong concentration for N=1/2 = o(p(N)).




Note: only need strong concentration for N=1/2 = o(p(N)).

Will assume p(N) = o(N~%/?) as proofs are elementary
(i.e., Chebyshev: Prob(|Y — E[Y]| > koy) < 1/k?)).




Note: only need strong concentration for N=1/2 = o(p(N)).

Will assume p(N) = o(N~%/?) as proofs are elementary
(i.e., Chebyshev: Prob(|Y — E[Y]| > koy) < 1/k?)).

For convenience let p(N) = N9, € (1/2,1).
lID binary indicator variables:

5 1 with probability N—°
"N 7 10 with probability 1 — N~°.

X =S X, E[X] = N9,




Proof

Lemma

P1(N) = 4N~(-9),
O=#{(m,n):m<ne{l,....,N}A}L
With probability at least 1 — P;(N) have
Q X e [N 3N,

1N1—6(1N1—6_
e 2N (2N 1) SOS

BNTTOENIT0)
. :
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Proof

Lemma

P1(N) = 4N~(-9),
O=#{(m,n):m<ne{l,....,N}A}L
With probability at least 1 — P;(N) have
Q X e [N 3N,

lNl—é(;Nl—é_l) §N1—6(§N1—6_1)
2 2 2 2

Proof:
@ (1) is Chebyshev: Var(X) = NVar(Xnn) < N2,
@ (2) follows from (1) and (3,) ways to choose 2 fromr.




Concentration

Lemma

@ f(4) = min (2 3-1), g(8) any function st

0 < g(9) <f(9).
o p(N)=N"°,d5€e(1 (/2, 1), Py(N) = 4N—-(1-9),

Po(N) = CN (f(5)-9(9))

With probability at least 1 — P;(N) — P»(N) have
D/S =2+ O(N-9@),

A




A

Concentration

o f(d) = mlrl(2 3-1) g(s) any function st
0 < g(d) <f(9).
o p(N)=N"°,d5€e(1 (/2, 1), Py(N) = 4N—-(1-9),

Po(N) = N s,

With probability at least 1 — P;(N) — P»(N) have
D/S =2+ O(N-9@),

Proof: Show D ~ 20 + O(N3%), § ~ O + O(N3~%),

As O is of size N?=2% with high probability, need
2—-2>3—46o0ro6>1/2.
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Contribution from ‘diagonal’ terms lower order, ignore.
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Difficulty: (m,n) and (m’,n’) could yield same differences.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.
Difficulty: (m,n) and (m’,n’) could yield same differences.

Notation: m<n,m' <n’,m<m/,

v )1 fn—m=n"—-m’
m.n.men 0 otherwise.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.
Difficulty: (m,n) and (m’,n’) could yield same differences.

Notation: m<n,m' <n’,m<m/,

v )1 fn—m=n"—-m’
m.n.men 0 otherwise.

E[Y] < N3.N~% 4+ N2.N-3 < 2N34 As§ > 1/2,
Expected number bad pairs << |O.




Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.
Difficulty: (m,n) and (m’,n’) could yield same differences.

Notation: m<n,m' <n’,m<m/,

v )1 fn—m=n"—-m’
m.n.men 0 otherwise.

E[Y] < N3.N~% 4+ N2.N-3 < 2N34 As§ > 1/2,
Expected number bad pairs << |O.

Claim: oy < N"@with r(§) = 1 max(3 — 44,5 — 75). This
and Chebyshev conclude proof of theorem.

A




Proof of claim

Cannot use CLT as Ymnm o are not independent.

AR




Proof of claim

Cannot use CLT as Ymnm o are not independent.

Use Var(U + V) < 2Var(U) + 2Var(V).

AQ




Proof of claim

Cannot use CLT as Ymnm o are not independent.
Use Var(U + V) < 2Var(U) + 2Var(V).
Write

E Ym,n,m’,n’ - E Um,n,m’,n"f‘g Vm,n,n’

with all indices distinct (at most one in common, if so must
be n =m’).

Var(U) = > Var(Unnmwa)+2 Y CoVar(Um . U i)

(m~,n~,m~’ ,nj)#
(Mm,n,m’,n’)




Analyzing Var(Um nm n)

At most N3 tuples.
Each has variance N=% — N—80 < N—49,

ThUS ZVar(Um7n7m/7n/) S N3_46.




Analyzing COV&F(Umjnjm/’n/, Uﬁ\,ﬁ,rﬁ’,ﬁ’)

@ All 8 indices distinct: independent, covariance of 0.

@ 7 indices distinct: At most N2 choices for first tuple, at
most N2 for second, get

EUnU)] —E[UnEU@z] =N —N"*N"% <N~

@ Argue similarly for rest, get < N°=70 4 N3-49,
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