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Summary for the Day
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Summary for the day

Benford’s Law and the CLT Modulo 1:
⋄ Poisson Summation.
⋄ Estimates of Normal Probabilities.
⋄ The Modulo 1 CLT

More Sum Than Difference Sets:
⋄ Definition.
⋄ Examples.
⋄ Inputs (Chebyshev’s Theorem).
⋄ Proofs.

3



Daily Summary Mod 1 CLT MSTD: Introduction Examples Proofs

The Modulo 1
Central Limit Theorem
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Needed Input: Poisson Summation Formula

Poisson Summation Formula
f nice: ∞∑

ℓ=−∞
f (ℓ) =

∞∑

ℓ=−∞
f̂ (ℓ),

Fourier transform f̂ (�) =

∫ ∞

−∞
f (x)e−2�ix�dx .
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Needed Input: Poisson Summation Formula

Poisson Summation Formula
f nice: ∞∑

ℓ=−∞
f (ℓ) =

∞∑

ℓ=−∞
f̂ (ℓ),

Fourier transform f̂ (�) =

∫ ∞

−∞
f (x)e−2�ix�dx .

What is ‘nice’?
f Schwartz more than enough.

f twice continuously differentiable & f , f ′, f ′′ decay like
x−(1+�) for an � > 0 (g decays like x−a if ∃x0,C st
∣x ∣ > x0, ∣g(x)∣ ≤ C/∣x ∣a).
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Modulo 1 Central Limit Theorem

The Modulo 1 Central Limit Theorem for Independent

Let {Ym} be independent continuous random variables on
[0, 1), not necessarily identically distributed, with densities
{gm}. A necessary and sufficient condition for
Y1 + ⋅ ⋅ ⋅+ YM modulo 1 to converge to the uniform
distribution as M → ∞ (in L1([0, 1]) is that for each n ∕= 0
we have limM→∞ ĝ1(n) ⋅ ⋅ ⋅ ĝM(n) = 0.
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Modulo 1 Central Limit Theorem

The Modulo 1 Central Limit Theorem for Independent

Let {Ym} be independent continuous random variables on
[0, 1), not necessarily identically distributed, with densities
{gm}. A necessary and sufficient condition for
Y1 + ⋅ ⋅ ⋅+ YM modulo 1 to converge to the uniform
distribution as M → ∞ (in L1([0, 1]) is that for each n ∕= 0
we have limM→∞ ĝ1(n) ⋅ ⋅ ⋅ ĝM(n) = 0.

Application to Benford’s law: If X = X1 ⋅ ⋅ ⋅XM then

log10 X = log10 X1 + ⋅ ⋅ ⋅+ log10 XM := Y1 + ⋅ ⋅ ⋅+ YM .
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Needed inputs: Decay

Lemma
2√

2��2

∫∞
�1+� e−x2/2�2

dx ≪ e−�2�/2.
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Needed inputs: Spreading

Lemma

As N → ∞, pN(x) = e−�x2/N
√

N
becomes equidistributed

modulo 1.

∫∞
x=−∞

x mod 1∈[a,b]
pN(x)dx = 1√

N

∑
n∈ℤ
∫ b

x=a e−�(x+n)2/Ndx .

e−�(x+n)2/N = e−�n2/N + O
(

max(1,∣n∣)
N e−n2/N

)
.

Can restrict sum to ∣n∣ ≤ N5/4.
1√
N

∑
n∈ℤ e−�n2/N =

∑
n∈ℤ e−�n2N .
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Needed inputs: Spreading (continued)

1√
N

∑

∣n∣≤N5/4

∫ b

x=a
e−�(x+n)2/Ndx

=
1√
N

∑

∣n∣≤N5/4

∫ b

x=a

[
e−�n2/N + O

(
max(1, ∣n∣)

N
e−n2/N

)]
dx

=
b − a√

N

∑

∣n∣≤N5/4

e−�n2/N + O

⎛
⎝ 1

N

N5/4∑

n=0

n + 1√
N

e−�(n/
√

N)2

⎞
⎠

=
b − a√

N

∑

∣n∣≤N5/4

e−�n2/N + O

(
1
N

∫ N3/4

w=0
(w + 1)e−�w2√

Ndw

)

=
b − a√

N

∑

∣n∣≤N5/4

e−�n2/N + O
(

N−1/2
)
.
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Needed inputs: Spreading (continued)

Extend sums to n ∈ ℤ, apply Poisson Summation:

1√
N

∑

n∈ℤ

∫ b

x=a
e−�(x+n)2/Ndx ≈ (b − a) ⋅

∑

n∈ℤ
e−�n2N .

For n = 0 the right hand side is b − a.
For all other n, we trivially estimate the sum:

∑

n ∕=0

e−�n2N ≤ 2
∑

n≥1

e−�nN ≤ 2e−�N

1 − e−�N
,

which is less than 4e−�N for N sufficiently large.
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More Sums Than Differences:
Introduction
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Statement

A finite set of integers, ∣A∣ its size. Form

Sumset: A + A = {ai + aj : aj , aj ∈ A}.
Difference set: A − A = {ai − aj : aj , aj ∈ A}.
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Statement

A finite set of integers, ∣A∣ its size. Form

Sumset: A + A = {ai + aj : aj , aj ∈ A}.
Difference set: A − A = {ai − aj : aj , aj ∈ A}.

Definition
We say A is difference dominated if ∣A − A∣ > ∣A + A∣,
balanced if ∣A − A∣ = ∣A + A∣ and sum dominated (or an
MSTD set) if ∣A + A∣ > ∣A − A∣.
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Clicker Question

Binomial Model

Consider the 2N subsets of {1, 2, . . . ,N}. As N → ∞,
what can you say about the percentage that are MSTD?

1 It tends to 1.

2 It tends to 1/2.

3 It tends to a small positive constant.

4 It tends to 0.
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Questions

Expect generic set to be difference dominated:
addition is commutative, subtraction isn’t:
Generic pair (x , y) gives 1 sum, 2 differences.

Questions
Do there exist sum-dominated sets?
If yes, how many?
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Examples
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Examples

Conway: {0, 2, 3, 4, 7, 11, 12, 14}.

Marica (1969): {0, 1, 2, 4, 7, 8, 12, 14, 15}.

Freiman and Pigarev (1973): {0, 1, 2, 4, 5, 9, 12, 13,
14, 16, 17, 21, 24, 25, 26, 28, 29}.

Computer search of random subsets of {1, . . . , 100}:
{2, 6, 7, 9, 13, 14, 16, 18, 19, 22, 23, 25, 30, 31, 33, 37, 39,
41, 42, 45, 46, 47, 48, 49, 51, 52, 54, 57, 58, 59, 61, 64, 65,
66, 67, 68, 72, 73, 74, 75, 81, 83, 84, 87, 88, 91, 93, 94, 95,
98, 100}.

Recently infinite families (Hegarty, Nathanson).
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Probability Review

X random variable with density f (x) means

f (x) ≥ 0;∫∞
−∞ f (x) = 1;

Prob(X ∈ [a, b]) =
∫ b

a f (x)dx .

Key quantities:
Expected (Average) Value: E[X ] =

∫
xf (x)dx .

Variance: �2 =
∫
(x − E[X ])2f (x)dx .
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Binomial model

Binomial model, parameter p(n)

Each k ∈ {0, . . . , n} is in A with probability p(n).

Consider uniform model (p(n) = 1/2):

Let A ∈ {0, . . . , n}. Most elements in {0, . . . , 2n} in
A + A and in {−n, . . . , n} in A − A.

E[∣A + A∣] = 2n − 11, E[∣A − A∣] = 2n − 7.
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Martin and O’Bryant ’06

Theorem
Let A be chosen from {0, . . . ,N} according to the
binomial model with constant parameter p (thus k ∈ A
with probability p). At least kSD;p2N+1 subsets are sum
dominated.
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Martin and O’Bryant ’06

Theorem
Let A be chosen from {0, . . . ,N} according to the
binomial model with constant parameter p (thus k ∈ A
with probability p). At least kSD;p2N+1 subsets are sum
dominated.

kSD;1/2 ≥ 10−7, expect about 10−3.
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Martin and O’Bryant ’06

Theorem
Let A be chosen from {0, . . . ,N} according to the
binomial model with constant parameter p (thus k ∈ A
with probability p). At least kSD;p2N+1 subsets are sum
dominated.

kSD;1/2 ≥ 10−7, expect about 10−3.

Proof (p = 1/2): Generically ∣A∣ = N
2 + O(

√
N).

⋄ about N
4 − ∣N−k ∣

4 ways write k ∈ A + A.
⋄ about N

4 − ∣k ∣
4 ways write k ∈ A − A.

⋄ Almost all numbers that can be in A ± A are.
⋄ Win by controlling fringes.
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Notation

X ∼ f (N) means ∀�1, �2 > 0, ∃N�1,�2 st ∀N ≥ N�1,�2

Prob (X ∕∈ [(1 − �1)f (N), (1 + �1)f (N)]) < �2.
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Notation

X ∼ f (N) means ∀�1, �2 > 0, ∃N�1,�2 st ∀N ≥ N�1,�2

Prob (X ∕∈ [(1 − �1)f (N), (1 + �1)f (N)]) < �2.

S = ∣A + A∣, D = ∣A − A∣,
Sc = 2N + 1 − S, Dc = 2N + 1 −D.
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Notation

X ∼ f (N) means ∀�1, �2 > 0, ∃N�1,�2 st ∀N ≥ N�1,�2

Prob (X ∕∈ [(1 − �1)f (N), (1 + �1)f (N)]) < �2.

S = ∣A + A∣, D = ∣A − A∣,
Sc = 2N + 1 − S, Dc = 2N + 1 −D.

New model: Binomial with parameter p(N):
1/N = o(p(N)) and p(N) = o(1);
Prob(k ∈ A) = p(N).

Conjecture (Martin-O’Bryant)
As N → ∞, A is a.s. difference dominated.
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Main Result

Theorem (Hegarty-Miller)

p(N) as above, g(x) = 2e−x−(1−x)
x .

p(N) = o(N−1/2): D ∼ 2S ∼ (Np(N))2;

p(N) = cN−1/2: D ∼ g(c2)N, S ∼ g
(

c2

2

)
N

(c → 0, D/S → 2; c → ∞, D/S → 1);
N−1/2 = o(p(N)): Sc ∼ 2Dc ∼ 4/p(N)2.
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Critical Thresholds
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Critical Thresholds

Can generalize Hegarty-Miller to binary linear forms, still
have critical threshold.

30



Daily Summary Mod 1 CLT MSTD: Introduction Examples Proofs

Inputs

Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).
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Inputs

Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Example (Chernoff): ti iid binary random variables,
Y =

∑n
i=1 ti , then

∀� > 0 : Prob
(
∣Y − E[Y ]∣ ≥

√
�n
)

≤ 2e−�/2.
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Inputs

Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Example (Chernoff): ti iid binary random variables,
Y =

∑n
i=1 ti , then

∀� > 0 : Prob
(
∣Y − E[Y ]∣ ≥

√
�n
)

≤ 2e−�/2.

Need to allow dependent random variables.
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Inputs

Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Example (Chernoff): ti iid binary random variables,
Y =

∑n
i=1 ti , then

∀� > 0 : Prob
(
∣Y − E[Y ]∣ ≥

√
�n
)

≤ 2e−�/2.

Need to allow dependent random variables.
Sketch of proofs: X ∈ {S,D,Sc,Dc}.

1 Prove E[X ] behaves asymptotically as claimed;
2 Prove X is strongly concentrated about mean.
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Proofs
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Setup

Note: only need strong concentration for N−1/2 = o(p(N)).
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Setup

Note: only need strong concentration for N−1/2 = o(p(N)).

Will assume p(N) = o(N−1/2) as proofs are elementary
(i.e., Chebyshev: Prob(∣Y − E[Y ]∣ ≥ k�Y ) ≤ 1/k2)).
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Setup

Note: only need strong concentration for N−1/2 = o(p(N)).

Will assume p(N) = o(N−1/2) as proofs are elementary
(i.e., Chebyshev: Prob(∣Y − E[Y ]∣ ≥ k�Y ) ≤ 1/k2)).

For convenience let p(N) = N−�, � ∈ (1/2, 1).

IID binary indicator variables:

Xn;N =

{
1 with probability N−�

0 with probability 1 − N−�.

X =
∑N

i=1 Xn;N , E[X ] = N1−�.
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Proof

Lemma

P1(N) = 4N−(1−�),
O = #{(m, n) : m < n ∈ {1, . . . ,N}

∩
A}.

With probability at least 1 − P1(N) have
1 X ∈

[
1
2N1−�, 3

2N1−�
]
.

2
1
2 N1−�( 1

2 N1−�−1)
2 ≤ O ≤

3
2 N1−�( 3

2 N1−�−1)
2 .
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Proof

Lemma

P1(N) = 4N−(1−�),
O = #{(m, n) : m < n ∈ {1, . . . ,N}

∩
A}.

With probability at least 1 − P1(N) have
1 X ∈

[
1
2N1−�, 3

2N1−�
]
.

2
1
2 N1−�( 1

2 N1−�−1)
2 ≤ O ≤

3
2 N1−�( 3

2 N1−�−1)
2 .

Proof:

(1) is Chebyshev: Var(X ) = NVar(Xn;N) ≤ N1−�.
(2) follows from (1) and

(r
2

)
ways to choose 2 from r .
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Concentration

Lemma

f (�) = min
(

1
2 ,

3�−1
2

)
, g(�) any function st

0 < g(�) < f (�).
p(N) = N−�, � ∈ (1/2, 1), P1(N) = 4N−(1−�),
P2(N) = CN−(f (�)−g(�)).

With probability at least 1 − P1(N)− P2(N) have
D/S = 2 + O(N−g(�)).
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Concentration

Lemma

f (�) = min
(

1
2 ,

3�−1
2

)
, g(�) any function st

0 < g(�) < f (�).
p(N) = N−�, � ∈ (1/2, 1), P1(N) = 4N−(1−�),
P2(N) = CN−(f (�)−g(�)).

With probability at least 1 − P1(N)− P2(N) have
D/S = 2 + O(N−g(�)).

Proof: Show D ∼ 2O + O(N3−4�), S ∼ O + O(N3−4�).

As O is of size N2−2� with high probability, need
2 − 2� > 3 − 4� or � > 1/2.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.

Difficulty: (m, n) and (m′, n′) could yield same differences.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.

Difficulty: (m, n) and (m′, n′) could yield same differences.

Notation: m < n, m′ < n′, m ≤ m′,

Ym,n,m′,n′ =

{
1 if n − m = n′ − m′

0 otherwise.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.

Difficulty: (m, n) and (m′, n′) could yield same differences.

Notation: m < n, m′ < n′, m ≤ m′,

Ym,n,m′,n′ =

{
1 if n − m = n′ − m′

0 otherwise.

E[Y ] ≤ N3 ⋅ N−4� + N2 ⋅ N−3� ≤ 2N3−4�. As � > 1/2,
Expected number bad pairs ⋘ ∣O∣.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.

Difficulty: (m, n) and (m′, n′) could yield same differences.

Notation: m < n, m′ < n′, m ≤ m′,

Ym,n,m′,n′ =

{
1 if n − m = n′ − m′

0 otherwise.

E[Y ] ≤ N3 ⋅ N−4� + N2 ⋅ N−3� ≤ 2N3−4�. As � > 1/2,
Expected number bad pairs ⋘ ∣O∣.

Claim: �Y ≤ N r(�)with r(�) = 1
2 max(3 − 4�, 5 − 7�). This

and Chebyshev conclude proof of theorem.
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Proof of claim

Cannot use CLT as Ym,n,m′,n′ are not independent.
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Proof of claim

Cannot use CLT as Ym,n,m′,n′ are not independent.

Use Var(U + V ) ≤ 2Var(U) + 2Var(V ).
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Proof of claim

Cannot use CLT as Ym,n,m′,n′ are not independent.

Use Var(U + V ) ≤ 2Var(U) + 2Var(V ).

Write
∑

Ym,n,m′,n′ =
∑

Um,n,m′,n′ +
∑

Vm,n,n′

with all indices distinct (at most one in common, if so must
be n = m′).

Var(U) =
∑

Var(Um,n,m′,n′)+2
∑

(m,n,m′,n′) ∕=
(m̃,ñ,m̃′,ñ′)

CoVar(Um,n,m′,n′,Um̃,ñ,m̃′,ñ′).
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Analyzing Var(Um,n,m′,n′)

At most N3 tuples.

Each has variance N−4� − N−8� ≤ N−4�.

Thus
∑

Var(Um,n,m′,n′) ≤ N3−4�.

51



Daily Summary Mod 1 CLT MSTD: Introduction Examples Proofs

Analyzing CoVar(Um,n,m′,n′ ,Um̃,ñ,m̃′,ñ′)

All 8 indices distinct: independent, covariance of 0.

7 indices distinct: At most N3 choices for first tuple, at
most N2 for second, get

E[U(1)U(2)]−E[U(1)]E[U(2)] = N−7�−N−4�N−4� ≤ N−7�.

Argue similarly for rest, get ≪ N5−7� + N3−4�.
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