
Appendix A

Proof Techniques

In this chapter we’ll discuss how to read a proof, some of the more common ways to

prove statements, and highlight a few ways that do not work and should be avoided

at all costs! Students are often frustrated when they transition from the more stan-

dard courses such as calculus, where there aren’t too many theorems and most of

the exercises are mechanical and straightforward (if the homework problem is from

the integration by parts section, it’s pretty clear what you’re going to need to do to

evaluate the integral!), to upper level classes, where frequently the proof of the main

theorem of a section is left as an exercise! Even if you happen to be lucky enough

to have a book which gives a proof, it’s easy to lose the forest in the trees. What

this means is that as you’re reading the proof you can understand each line in iso-

lation. You can understand how they go from one line to the next; however, it’s a

complete mystery how the author decided that it would be good to go from this line

to that line, and you’re rightly a bit terrified about your turn at proving something,

as then you’ll be responsible for directing the flow. Learning how to see these paths,

learning what’s a good next step, is hard, but doing so is essential for your growth in

mathematics. The aim below is to describe in detail many of the common methods,

in the hope that learning these will help you in following and creating proofs.

We cover the following proof techniques below.

1. Proof by Induction.

2. Proof by Grouping.

3. Proof by Exploiting Symmetry.

4. Proof by Brute Force.

5. Proof by Comparison or Story.

6. Proof by Contradiction.

7. Proof by Exhaustion (also known as Divide and Conquer).

8. Proof by Counterexample.
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9. Proof by Generalizing Example.

10. Proof by Pigeon-Hole Principle.

11. Proof by Adding Zero or Multiplying by One.

A.1 How to read a proof

Frequently in books you’ll find a square, such as 2, at the end of the proof. This is

meant to alert you that the argument is done, and the claim has been shown. This is

done because all too often we’re so caught up in following the arguments from line to

line that we don’t realize we’ve reached the end! Other people write qed or Q.E.D.,

which is an abbreviation of the Latin phrase quod erat demonstrandum,which means

that which was to be demonstrated. Sometimes authors also write ‘Proof ’ at the start

of the argument. These are done to help clue you in to what’s going on. This helps

prevent the proof from blending in with the rest of the text.

Before diving into proof techniques, here’s some general advice on reading proofs.

On a first pass through a proof don’t be too concerned with mastering all the details.

Rather, just look for a broad overview of what’s happening or being discussed, and

don’t worry if you’re unable to follow the argument from line to line.

Step one is to make sure you understand the conditions and the claim. If you

can, take a few examples of objects that satisfy the conditions, and see that the claim

is true for them. Sometimes it’s particularly good, or at least easy, to try extreme

examples. If you have a continuous function, try a constant function. Try a wildly

oscillating one like x2 sin(1/x), or perhaps one that isn’t differentiable at a point,
such as |x|. Also try a few examples that don’t satisfy the assumptions of the theo-

rem. In this case, the claim may or may not hold. Doing a few checks like this can

give you a feel for what’s going on, and as you do your checks you might start to see

what will be needed in the proof. This is especially true when you find examples that

don’t satisfy the claim, as somehow the assumptions of the theorem must prohibit

bad cases like this from happening.

After trying to get a feel of which examples work and which don’t, return and

think deeply about the assumptions. How are the assumptions used in the argu-

ment? When you read the assumptions, your first thoughts should be: okay, so what

theorems do I know that require these conditions? For example, if one of your as-

sumptions is that your function is differentiable, maybe you start to think about using

the Mean Value Theorem. Or perhaps you’ve assumed f is a polynomial of degree

n; in that case, the Fundamental Theorem of Algebra tells you that f has n complex

roots. The more you know, the easier this becomes. I do a lot of work in number

theory; if I’m told I have two relatively prime numbers x and y, my first thought is
the Euclidean algorithm, which says there are integers a and b such that ax+ by = 1
(for example, 17 and 11 are relatively prime, and 2 · 17 − 3 · 11 = 1). Why is this

my first thought? Experience – I’ve done so many problems that I know this is often

a great way to start. The more you do, the easier it becomes. Assumptions are sign-

posts, they’re markers to help direct the flow of the proof. Time spent thinking about

them and what they entail is time well spent.

What if the assumptions aren’t used? Well, something strange is happening, as

why would they be given if they’re not used? What’s more likely to happen is that
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sometimes the assumptions aren’t truly needed, but are given to allow you access

to powerful other theorems to simplify the proof. For example, the proof of the

Fundamental Theorem of Calculus only needs our function f to be continuous on a

finite interval [a, b]; however, whenever I teach calculus I always assume f ′ exists, is
continuous, and is bounded. This is not needed, but assuming it simplifies the proof.

If you continue deeper in mathematics, you’ll revisit old theorems in a quest to have

the weakest conditions possible and still get the same result.

Finally, when reading the proof don’t worry about understanding every justifica-

tion. First skim the argument, trying to get a sense of the main ideas. What results

were used in the proof? Roughly, why were we able to use these? Sometimes there

are lots of technical conditions that need to be met to invoke a theorem. In these

cases, a lot of the proof is devoted to showing these conditions are met. When read-

ing the proof for the first time, it’s fine to gloss over these parts. Think something

like: okay, we need to show the quotient is a finitely generated Abelian group, and

the next few lines do that, I’ll take their word on it for now. Later, of course, you

should go back and try to understand these justifications, but don’t obsess too much,

as that can lead you to losing the flow of the proof. Often books and papers remove

these mini-arguments and isolate them, either before or after the proof, calling them

lemmas. A lemma is a smaller result, a building block to the proof of the main

claim. Sometimes authors put these first so that by the time you get to the theorem

you’ve seen everything you’ll need. Other times these are placed afterwards, to avoid

interrupting the flow with technicalities. Each approach is fine.

One last remark about reading proofs. Eventually you’ll come across the phrase

without loss of generality. Typically, this is followed by the author doing one case

and saying the other cases follow similarly. If you’re new to doing proofs, you should

do all the cases in full glory (or is it gory?). These four words can be very dangerous,

as sometimes there are differences between the various cases, and the only way to

be sure is to do each case. If everything checks out and the arguments really are the

same, mathematicians will often just give the details for one to save space and time.

If you read a proof invoking this claim, it’s good practice to fill in the details for the

other cases.

Okay, we’re now ready to explore different proof method!

A.2 Proofs by Induction

This section is an expansion of an appendix from [MT-B] on Proofs by Induction.

This method is designed to handle the following situation: for each positive integer

n we have some statement P (n), and we desire to show that P (n) is true for all n.
For example, maybe P (n) is the statement that the sum of the first n odd numbers is

always a perfect square. One possibility is to start evaluating it for different choices

of n. In this case, we get 1, 4, 9 and 16 for the first four values, and we’re feeling
confident that the result is true. However, confidence is not the same as a proof, and

just because it worked for the first few values doesn’t mean it’ll continue to work. If

we eventually find an n such that P (n) fails, then we know the statement is false.

What if, however, it always holds for every value we check. Does this mean it must

be true? Sadly, it doesn’t. It may be we just haven’t checked far enough.

For an example of what can go wrong, let’s consider a famous polynomial,
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n f(n) Primality of f(n)
1 41 prime

2 43 prime

3 47 prime
...

...
...

37 1447 prime

38 1523 prime

Table A.1: Values of the polynomial f(x) = x2 + x+ 1.

n Sum of first n odd numbers Value of the sum

1 1 1

2 1+3 4

3 1+3+5 9

4 1 + 3 + 5 + 7 16
...

...
...

100 1 + 3 + · · ·+ 197 + 199 10000

Table A.2: Sums of odd integers.

f(x) = x2 + x+ 41. Euler was interested in this polynomial, and you’ll see why in
a moment. Let’s look at some of its values, which we record in Table A.1.

In the interest of space we only recorded a subset of the values of f(n); a little
work shows that f(n) is also prime for all n up to 38. Based on the data above, it’s
natural to conjecture that f(n) is always prime for any positive integer n. While the

data suggests this, testing some values isn’t a proof.

How should we proceed? We can take larger and larger values of n and see what

happens. In this case, we would find f(39) = 1601 is prime, but f(40) = 1681 =
412 is composite, as is f(49) = 2491 = 47 ·53. Here, we were able to go far enough
to see the pattern break down, and once we have one value that fails we know the

claim cannot always hold.

For another example, let’s revisit the sum of the first n odd integers. We can

make a similar table as before, which we do in Table A.2.

Do you see the pattern? It looks like the sum of the first n odd integers is just n2.

Unlike the previous example, this time our conjecture is true. No matter how far we

check, we’ll see the pattern hold; however, just observing this equality is not a proof.

We need a way to prove statements like this and others. We quickly describe a

powerful method, called Proofs by Induction, that works for a variety of problems.

The general framework is that we have some statement P (n) which we want to

determine whether or not it holds for all positive integers n.
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Proof Technique: Proofs by Induction: A statement P (n) is true for all positive
integers n if the following two conditions hold.

• Basis Step: P (1) is true;

• Inductive Step: whenever P (n) is true, P (n+ 1) is true.

Proof by Induction is a very useful method for proving results; we’ll see many

instances of this in this appendix. The reason the method works follows from basic

logic. We assume the following two sentences are true:

P (1) is true.

For all n ≥ 1, P (n) is true implies P (n+ 1) is true.

Set n = 1 in the second statement. As P (1) is true, and P (1) implies P (2), P (2)
must be true. Now set n = 2 in the second statement. As P (2) is true, and P (2)
impliesP (3), P (3)must be true. And so on, completing the proof. Verifying the first
statement is called basis step, and the second the inductive step. In verifying the

inductive step, note we assume P (n) is true; this is called the inductive assumption.
Sometimes instead of starting at n = 1 we start at n = 0, although in general we
could start at any n0 and then prove for all n ≥ n0, P (n) is true.

We give four of the more standard examples of proofs by induction in the next

subsections, and one false example; the first example is the most typical. When you

have mastered proofs by induction, you might want to return to the problem below.

It’s a fun problem involving the Fibonacci numbers.

Problem A.2.1 (Zeckendorf’s Theorem) Consider the set of distinct Fibonacci num-

bers: {1, 2, 3, 5, 8, 13, . . .}, where Fn+2 = Fn+1 + Fn. Show every positive integer

can be written uniquely as a sum of distinct Fibonacci numbers where we do not al-

low two consecutive Fibonacci numbers to occur in the decomposition. Equivalently,

for any n there are choices of ǫi(n) ∈ {0, 1} such that

n =

ℓ(n)
∑

i=1

ǫi(n)Fi, ǫi(n)ǫi+1(n) = 0 for i ∈ {1, . . . , ℓ(n)− 1}.

Does a similar result hold for all recurrence relations? If not, can you find another

recurrence relation where such a result holds?

A.2.1 Sums of Integers

Let P (n) be the statement
n
∑

k=1

k =
n(n+ 1)

2
.

Here we’re using summation notation, which is a very compact way of writing ex-

pressions. Unwinding, the left hand side is just

n
∑

k=1

k = 1 + 2 + · · ·+ k.
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More generally,
n
∑

k=1

ak = a1 + a2 + · · ·+ an.

This is probably the most famous of all examples for proofs by induction. The

great Gauss is said to have successfully evaluated this sum when he was five years

old. According to the story, his teacher was having a bad day (we all do), and wanted

some busywork to occupy the children; he did not count on having a budding master

mathematician in the room!

Anyway, let’s show that the statement is true by induction. We have two things

to check, the basis step (or the base case), and the inductive step (or induction case).

Let’s go!

Proof: We proceed by induction.

Basis Step: P (1) is clearly true, as both sides equal 1.

Inductive Step: Assuming P (n) is true, we must show P (n + 1) is true. By the

inductive assumption,
∑n

k=1 k = n(n+1)
2 . Thus

n+1
∑

k=1

k = 1 + 2 + · · ·+ n+ (n+ 1)

= (1 + 2 + · · ·+ n) + (n+ 1)

=

(

n
∑

k=1

k

)

+ (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

=
(n+ 1)(n+ 1 + 1)

2
.

Thus, given P (n) is true, then P (n+ 1) is true. 2

You might have seen the above example in a calculus class when studying area

under curves. This (and the sum in the exercise below) arise in computing the upper

and lower sums.

Note how the argument proceeded above. The hard part was showing that if P (n)
held then P (n + 1) holds too. The way we did this was to look at our expression
for P (n+ 1) and note that there was a P (n) hiding inside it. We then used the fact

that P (n) was assumed true to rewrite P (n+ 1), and then did some simple algebra.
Many, many inductions proceed like this. The trick is finding out how to easily work

in the induction assumption; however, if you’re attempting a proof by induction then

you should be on the watch for such an opportunity. The whole point of induction is

to build on results for smaller n, so you should try to find the P (n) case lurking in
the P (n+ 1) expression.

Problem A.2.2 Prove

n
∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
.
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Find a similar formula for the sum of k3. For the brave, find a similar formula for

the sum of k4. Hint: the sum of the dth powers of integers up to n is a polynomial in

n of degree d+ 1.

Problem A.2.3 Show the sum of the first n odd numbers is n2, i.e.,

n
∑

k=1

(2k − 1) = n2.

In the last exercise above, there are two ways to write an odd number. We chose

to write the odd numbers as 2k − 1, as this allowed our index k to range from 1 to
n (if we want the first n odd numbers). If instead we write odd numbers as 2m+ 1,
then m would range from 0 to n− 1 to give the first n odd integers. Either method

is fine; the only difference is whether or not you want the index of summation to be

nice (from 1 to n) or if you want to avoid the minus sign in the summands.

A.2.2 Divisibility

We now consider a divisibility problem. This is another example of a proof by in-

duction, but the algebra and analysis is a little different, which is why we want to

give these arguments too.

Let P (n) be the statement 133 divides 11n+1 + 122n−1. We prove this claim by

induction.

Proof: We proceed by induction.

Basis Step: A straightforward calculation shows P (1) is true: 111+1 + 122−1 =
121 + 12 = 133.

Inductive Step: Assume P (n) is true, i.e., 133 divides 11n+1 + 122n−1. We must

show P (n+ 1) is true, or that 133 divides 11(n+1)+1 + 122(n+1)−1. But

11(n+1)+1 + 122(n+1)−1 = 11n+1+1 + 122n−1+2

= 11 · 11n+1 + 122 · 122n−1

= 11 · 11n+1 + (133 + 11)122n−1

= 11
(

11n+1 + 122n−1
)

+ 133 · 122n−1.

By the inductive assumption 133 divides 11n+1 + 122n−1; therefore, 133 divides

11(n+1)+1 + 122(n+1)−1, completing the proof. 2

The difficulty in this proof was noting that 133 and 11 were lurking together in

144. Specifically, we could write 144 as 133 plus 11. The reason this helps is that

the other term is multiplied by 11, and by cleverly re-grouping we saw 11n+1 +
122n−1. It was a very good idea to rewrite 11n+2 as 11 · 11n+1 (and similarly for
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the expression involving 12), and it was reasonable to try this as we wanted to ‘see’

P (n). In fact, staring at this and thinking back to the sum of integers, we see that

both proofs had us finding P (n) somewhere in P (n+ 1). Many induction problems

require you to find P (n) lurking in P (n+1); it’s not surprising that this happens, as
the whole point of induction arguments is to assume P (n) is true and then show this

implies P (n+ 1) holds.

Problem A.2.4 Prove 4 divides 1 + 32n+1.

Problem A.2.5 Find a positive integer a such that 5 divides 1 + 4an for all n, and
prove your claim.

A.2.3 The Binomial Theorem

We end with one more example of a proof by induction, the proof of the Binomial

Theorem. This time the result is clearly of importance for a probability class. The

Binomial Theorem is used all the time; in fact, we even have binomial random vari-

ables!

Before stating and proving the result, we first recall the definition and some prop-

erties of binomial coefficients.

Definition A.2.6 (Binomial Coefficients) Let n and k be integers with 0 ≤ k ≤ n.
We set

(

n

k

)

=
n!

k!(n− k)!
.

Note that 0! = 1. We set
(

n
k

)

= 0 if k > n.

The combinatorial interpretation of
(

n
k

)

is that this is the number of ways of

choosing k people from n when order doesn’t matter, andm! is the number of ways
of orderingm. It may seem strange to say 0! = 1, but if we use these interpretations
we could read this as saying there are no ways to order an empty set of people. If

you don’t remember the proofs of these statements, they’re given below in §A.5 and

§A.6.

We’re now ready to state the Binomial Theorem.

Theorem A.2.7 (The Binomial Theorem) For all positive integers n we have

(x+ y)n =

n
∑

k=0

(

n

k

)

xn−kyk.

Proof of the Binomial Theorem: We proceed by induction.

Basis Step: For n = 1 we have

1
∑

k=0

(

1

k

)

x1−kyk =

(

1

0

)

x+

(

1

1

)

y = (x + y)1.
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Inductive Step: Suppose

(x+ y)n =

n
∑

k=0

(

n

k

)

xn−kyk. (A.1)

Then using Lemma A.5.1 we find that

(x+ y)n+1 = (x+ y)(x + y)n

= (x+ y)
n
∑

k=0

(

n

k

)

xn−kyk

=

n
∑

k=0

(

n

k

)[

xn+1−kyk +

(

n

k

)

xn−kyk+1

]

= xn+1 +
n
∑

k=1

[(

n

k

)

+

(

n

k − 1

)]

xn+1−kyk + yn+1

=

n+1
∑

k=0

(

n+ 1

k

)

xn+1−kyk,

as xn+1 =
(

n+1
0

)

xn+1 and yn+1 =
(

n+1
n+1

)

yn+1. This establishes the induction step,

and hence the theorem. 2

As always, the hardest part of the proof is figuring out how to use the inductive

assumption. The main idea here was to write (x+ y)n+1 as (x+ y)(x+ y)n; this is
a ‘natural’ thing to do, as we now have a factor of (x + y)n, which by the inductive
assumption we know how to handle. Of course, we could also have written it as

(x + y)n(x + y), and the proof would have similar. This is almost always the goal:
find a way to rewrite the expression so you can exploit the inductive assumption. The

most troublesome part of this problem is having to adjust the index of summation (if

you continue to differential equations, you’ll get a lot of practice with this when you

do series expansions). A good guideline is to try to make all terms look the same.

We thus want the powers of x and y to look the same in each expression, and this

helps us figure out how to shift. Typically it’s preferable to have the powers of x and
y the same and the index of the coefficients different than the other way around.

There are other ways to prove the Binomial Theorem; we’ll see one in §A.6

where we do proofs by comparison.

A.2.4 Fibonacci numbers modulo 2

If it’s 10 o’clock now, most people would have no difficulty saying that in 5 hours

it’ll be 3 o’clock. If we look at what we’ve just said, are we saying 10 plus 5 is 3?

On a clock with twelve hours: yes! The idea of clock ormodulo arithmetic plays a

central role in much of number theory, and generalizes nicely. We say x is congruent
to y modulo n if x−y is divisible by n. Thus, 15 is congruent to 3 modulo 12, as 12
divides 15-3. Similarly we find 67 is equivalent to 7 modulo 12, as 60 = 5 · 12 + 7.
We write 67 modulo 12 = 7 or 67 = 7 mod 12.
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Let’s look at a fun problem involving the Fibonacci numbers. Recall these are

defined by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn. The first few are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Let’s look at these numbers modulo 2. A little inspection shows us that x modulo 2

is 0 if x is even (and thus a multiple of 2) and 1 if x is odd. The Fibonacci numbers

modulo 2 are

0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, . . . .

Looking at this, we see the beginning of a pattern. It seems to be repeating blocks

of 0, 1, 1. Does this always continue? It does, and one nice way to prove this is by

induction.

Proof that the Fibonacci numbers modulo 2 are the repeating sequence 0, 1, 1, 0, 1,

1, . . . . We proceed by induction.

Base Step: Just calculating the first few terms verifies that it does start 0, 1, 1, 0, 1,

1.

Inductive Step: The defining property of the Fibonacci numbers is that the two pre-

vious terms are added to get the next. It’s thus natural to investigate whether or not

this holds modulo 2. In other words, is Fn+2 modulo 2 the same as Fn+1 modulo 2

plus Fn modulo 2, all of this modulo 2? Unwinding, there are four cases:

• If Fn is even and Fn−1 is even, is Fn+2 even?

• If Fn is even and Fn−1 is odd, is Fn+2 odd?

• If Fn is odd and Fn−1 is even, is Fn+2 odd?

• If Fn is odd and Fn−1 is odd, is Fn+2 even?

The four statements are true, and can be verified with a little bit of algebra (at the

level of odd plus odd is even, odd plus even is even, even plus even is even). Armed

with this, we can now complete the proof. Assume the first k blocks of three are 0,

1, 1; we’ll denote this by

0, 1, 1, . . . , 0, 1, 1.

Let’s look at the next three terms of the Fibonacci numbers modulo 2. The next

number is the sum of the two previous modulo 2, so the next number is 1+1modulo
2, which is zero. Thus our sequence is now

0, 1, 1, . . . , 0, 1, 1, 0.

The next term is just 1+0 modulo 2, which is one, implying our sequence is

0, 1, 1, . . . , 0, 1, 1, 0, 1.

The next term is just 1 modulo 2, which is 1 again, giving us

0, 1, 1, . . . , 0, 1, 1, 0, 1, 1.
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This is exactly what we wanted to prove – we just showed that if the first k blocks of
three are 0, 1, 1 then the next block is also 0, 1, 1. This completes the proof. 2

There are lots of wonderful patterns that emerge when looking at interesting se-

quences modulo primes (2 is the smallest prime). We urge you to google the pattern

for Pascal’s triangle modulo 2 – the resulting pattern is quite surprising!

A.2.5 False Proofs by Induction

After seeing how powerful proofs by induction can be, it’s a good idea to be aware

of the pitfalls. If you’re not careful, you can convince yourself that you’ve proven

many statements that are, in fact, false! Below is a favorite of mine.

Consider the following: let P (n) be the statement that in any group of n people,

everyone has the same name. We give a (false!) proof by induction that P (n) is true
for all n!

Proof: We proceed by induction.

Basis Step: Clearly, in any group with just 1 person, every person in the group has
the same name.

Inductive Step: Assume P (n) is true, namely, in any group of n people, everyone

has the same name. We now prove P (n+ 1). Consider a group of n+ 1 people:

{1, 2, 3, . . . , n− 1, n, n+ 1}.

The first n people form a group of n people; by the inductive assumption, they all

have the same name. So, the name of 1 is the same as the name of 2 is the same as
the name of 3 . . . is the same as the name of n.

Similarly, the last n people form a group of n people; by the inductive assumption
they all have the same name. So, the name of 2 is the same as the name of 3 . . .
is the same as the name of n is the same as the name of n + 1. Combining yields
everyone has the same name! 2

Where is the error? Even Borg drones have different designations; it’s unlikely

that everyone reading this book shares my name! Clearly we’ve done something

terribly wrong, but where? Let’s go through the above argument slowly and carefully.

Rather than trying to follow the proof for an arbitrary n, let’s run through it with

specific values of n and see what happens.

If n = 4, we would have the set {1, 2, 3, 4, 5}, and the two sets of 4 people

would be {1, 2, 3, 4} and {2, 3, 4, 5}. We see that persons 2, 3 and 4 are in both sets,
providing the necessary link. If n = 3 our set would be {1, 2, 3, 4}, and the two

sets of 3 people would be {1, 2, 3} and {2, 3, 4}. Again we find people in common,
providing the necessary link.

What about smaller n? Eventually we reach n = 1. Then our set would be

{1, 2}, and the two sets of 1 person would be {1} and {2}; there is no overlap! The
error was that we assumed n was “large” in our proof of P (n) ⇒ P (n + 1). Yes,
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in this problem, 2 is large. Terms like large and small are relative. The problem was

we accidentally used some facts that only hold for n ≥ 2. It’s very easy to fall into
this trap.

Problem A.2.8 Similar to the above, give a false proof that any sum of integer

squares is an integer square, i.e., x2
1 + · · · + x2

n = x2. In particular, this would

prove all positive integers are squares asm = 12 + · · ·+ 12.

A.3 Proof by Grouping

Our next technique is close to induction. I call it proof by grouping. A great exam-

ple is the rule from calculus that the derivative of a sum is the sum of the derivatives.

Most books prove this carefully for a sum of two functions, but then ignore the proof

in general. Some care is needed; sadly, the derivative of an infinite sum need not

equal the sum of the derivatives; however, if we have a finite sum of differentiable

functions, then the derivative of the sum is the sum of the derivative.

We’ll give the proof, assuming we know that whenever we have two differen-

tiable functions then the derivative of their sum is the sum of their derivatives. What

follows is essentially an induction argument, but I think it’s nice to see how we win

by cleverly adding parentheses and grouping terms.

Proof: Let

g(x) = f1(x) + f2(x) + f3(x) = (f1(x) + f2(x)) + f3(x)

be a sum of three differentiable functions; note we’ve grouped the first two functions

together, and written g as a sum of two functions (the first is f1 + f2 and the second
is f3). Taking the derivative, we find

dg

dx
(x) =

d

dx
[f1(x) + f2(x) + f3(x)]

=
d

dx
[(f1(x) + f2(x)) + f3(x)] .

We now have the derivative of the sum of two functions, which we know is the sum

of the two derivatives. We thus obtain

dg

dx
(x) =

d

dx
(f1(x) + f2(x)) +

df3
dx

(x).

We now use the derivative of the sum of two functions is the sum of the derivatives

again. We thus obtain

dg

dx
(x) =

df1
dx

(x) +
df2
dx

(x) +
df3
dx

(x),

completing the proof. 2
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More generally, this type of argument shows the derivative of any finite sum is

the sum of the derivatives, extending the common sum rule from calculus. Sadly,

most calculus classes gloss over this point, and never remark that you need to be a

bit careful as technically we only proved the derivative of a sum of two functions is

the sum of the derivatives.

We’ll see this method again in §6.2.2, where we meet the multinomial coeffi-

cients (a generalization of binomial coefficients), and in §14.3 (when we show sums

of normal random variables are normal).

A.4 Proof by Exploiting Symmetries

There are infinitely many similar integrals that calculus professors love to give stu-

dents. Here’s on version: find
∫ 2

−2

(x8 − 1701x6 + 24601) cos3 x sin(x3 + 2x) log(x2 + 4)dx.

Good luck finding an anti-derivative for that! Class problems have a huge advantage

over the real world: you know there has to be a solution using just the methods you

know. Thus, this has to be doable using just Calculus I and II knowledge. The ‘trick’

is to notice that we are not being asked to find the anti-derivative. Yes, if we let f(x)
be the integrand and F (x) an anti-derivative, then the answer is just F (2)− F (−2).
If we know an anti-derivative then we can evaluate the integral; however, maybe it’s

possible to evaluate the integral without finding F . It’s helpful to know F , but it’s
not always essential. Sometimes all it does is help with the algebra (If you’ve done

multivariable calculus, this is similar to Lagrange multipliers; often we can find the

maximum / minimum values without finding the multipliers.).

The key observation is to note that it’s not an arbitrary integral, but an integral

from -2 to 2. Note that this is a symmetric region about 0. Further, the integrand

is an odd function about 0. Recall that f(x) is an even function (about the point

a) if f(a + x) = f(a − x), while it is an odd function (about the point a) if
f(a + x) = −f(a − x). The integral of an odd function about a over a symmetric
interval centered at a is zero: this is because the contribution on one side is negated
by the contribution on the other side. See Figure A.1 (left) for an example.

Another nice application of exploiting symmetries is to simplify integrations.

The arguments above show that the integral of an odd function over a symmetric

region is zero. What if we have an even function about a and we integrate over the
interval [a − b, a + b]? In that case, the integral is double that of the integral over

[a, a + b], as the first half has the same contribution as the second half. See Figure
A.1 (right) for an example.

We record our results.

Exploiting Symmetries: Integration of odd and even functions. Let f(x) be an
odd function about a, and g(x) an even function about a. Then

∫ a+b

a−b

f(x)dx = 0,

∫ a+b

a−b

g(x)dx = 2

∫ a+b

a

g(x)dx.
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Figure A.1: Let f(x) = (x8 − 1701x6 + 24601) cos3 x sin(x3 + 2x) log(x2 + 4).
(Left) Area under f(x) (an odd function about 0) from −2 to 2. (Right) Area under
f(x)2 (an even function about 0) from −2 to 2. Note the region is symmetric about
0.

These are two of the most common symmetries worth exploiting, but there are

many others, and you should keep your eyes open for them. We’ll do one more,

which is useful when we prove the cosecant identity of the Gamma function. The

following is a gem of mathematics:

∞
∑

n=1

1

n2
=

π2

6
.

There are lots of proofs of this, and it has probabilistic interpretations (for example,

it’s the reciprocal of the probability two random numbers are relatively prime). It’s

often proved in a Fourier Analysis or Complex Analysis course (see [SS1, SS2]).

Let’s take this result as a given, and deduce the sum of the reciprocals of the odd

squares. We find

∞
∑

n=1

1

n2
=

∑

n=1

n even

1

n2
+
∑

n=1

n odd

1

n2

=

∞
∑

n=1

1

(2n)2
+

∞
∑

n=1

1

(2n− 1)2

=
1

4

∞
∑

n=1

1

n2
+

∞
∑

n=1

1

(2n− 1)2

3

4

∞
∑

n=1

1

n2
=

∞
∑

n=1

1

(2n− 1)2
,

which means
∞
∑

n=1

1

(2n− 1)2
=

3

4

∞
∑

n=1

1

n2
=

3

4

π2

6
=

π2

8
.
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This is another great example of the powerful consequences if you can exploit sym-

metry properly. The key observation is that the sum over the even terms is just one-

fourth of the total sum. We then brought it over (we’ll see more of this technique in

the calculus review problems, especially Question F.2.40).

A.5 Proof by Brute Force

There are several ways to attack problems by brute force. They all share a common

feature: rolling up your sleeves and diving into the algebra. Sometimes we’re lucky

and there are only a few items to check, but often there are so many cases that it just

isn’t feasible. Below we’ll give an example to give a flavor of this method.

Recall the lemma on binomial coefficients.

Lemma A.5.1 We have

(

n

k

)

=

(

n

n− k

)

,

(

n

k

)

+

(

n

k − 1

)

=

(

n+ 1

k

)

.

Proof of Lemma A.5.1: First Part: The first claim is just the fact that multiplication

is commutative:
(

n

k

)

=
n!

k!(n− k)!
=

n!

(n− k)!k!
=

(

n

k

)

.

2

The second claim is more interesting. Here’s a ‘brute force’ proof:

Proof of Lemma A.5.1: Second Part: We have

(

n

k

)

+

(

n

k − 1

)

=
n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
n!

(k − 1)!(n− k)!

[

1

k
+

1

n− k + 1

]

=
n!

(k − 1)!(n− k)!

[

n− k + 1+ k

k(n− k + 1)

]

=
n!

(k − 1)!(n− k)!

n+ 1

k(n− k + 1)

=
(n+ 1)!

k!(n− k + 1)!
=

(

n+ 1

k

)

.

2

While the above argument is a proof, in some sense it’s a terrible one. Yes, it’s

logically sound, yes, all the steps are correct, yes, it does give us the result; however,

after reading it do you have any sense of why the result is true? It’s just a long list

of algebraic manipulations. It’s great to be able to do this, but for many problems

the algebra will be significantly worse, and it won’t be clear at all how to proceed.

For this problem, we were lucky. The algebra wasn’t too bad, and it was pretty clear
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what to do: collect common factors and simplify. An alternative algebraic approach

to this problemwould have been to clear the denominators and then simplify. Is there

another way to approach this problem, one which is more enlightening? Fortunately,

the answer is a resounding yes, and we give it in the next section.

A.6 Proof by Comparison or Story

We return to the problem from the previous section, where we want to prove
(

n
k

)

+
(

n
k−1

)

=
(

n+1
k

)

. We’ve seen an unenlightening proof; now we’ll see a better one that

highlights what’s really happening. The idea of this method, Proof by Comparison,

is to compute the desired quantity two different ways. As we’re calculating the same

thing, these two expressions must be equal. Though the idea is easy to state, in

practice it’s often very hard to find a viewpoint that leads to an easy calculation.

Combinatorial problems are some of the hardest you’ll find (both in probability and

in mathematics), and you often need a flash of insight (or a lot of experience) to

suggest a good way to look at a problem.

Another way to say what we’re going to do is that we’ll count the same quantity

two different ways. If we’re counting the same quantity two different ways, then

the two answers must agree; many identities are derived this way. We’re essentially

telling a story, with the exciting conclusion that the two main characters are actually

one and the same. Proof by Story doesn’t sound as academic as Proof by Compari-

son, but that’s really what we’re doing.

Let’s do a simple warm-up example, inspired by the Dr. Seuss story The Sneetches.

Proof that
(

n
k

)

=
(

n
n−k

)

: Imagine we have a group of n Sneetches, and we want to

give some of them stars on their bellies. If exactly k are going to get stars, there are
(

n
k

)

ways to choose k of the n Sneetches to be starred. Alternatively, we could look

at this as excluding n − k of the Sneetches from getting stars, and there are
(

n
n−k

)

ways to choose n−k Sneetches not to be starred. We’ve counted the same thing two

different ways, so
(

n
k

)

=
(

n
n−k

)

.

I prefer this proof to the algebra one, as it illustrates what’s really going on and

why there’s an equivalence.

Proof that
(

n
k

)

+
(

n
k−1

)

=
(

n+1
k

)

: We find a combinatorial interpretation for all these

quantities. Imagine we have n+ 1 marbles; n of these marbles are red and 1 marble

is blue. This is the hardest part of the proof, figuring out what story to tell. While

this gets easier with practice, there’s at least a reason for doing this. We have n+ 1
objects, so perhaps n of them are of one type, and 1 is of another.

One half of our story isn’t too bad. There are
(

n+1
k

)

ways to choose k marbles

from the n+ 1 marbles when we do not care about order of choice.
How else could we count the number of ways of choosing k marbles from n+1?

Well, we could look at how many ways there are to choose k marbles from our n+1
marbles when order doesn’t matter, keeping track of whether or not we choose the

blue marble. If we don’t have the blue marble, then we must choose k marbles from
the n red ones; there are

(

n
k

)

ways to do this. If we do have the blue marble (and there

is
(

1
1

)

way to do this as we only have one blue marble) then we must choose k − 1
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red marbles from n red marbles, and there are
(

n
k−1

)

ways of doing this. Collecting,

we find our two counts must be equal, so
(

n

k

)

+

(

n

k − 1

)

=

(

n+ 1

k

)

.

2

This is a much better proof; it highlights what is going on, and gives a reason for

the algebraic miracle.

There’s a better way to view the calculation. We should really write it as
(

1

0

)(

n

k

)

+

(

1

1

)(

n

k − 1

)

=

(

n+ 1

k

)

.

Looking at it this way, the first factor on the left is the story: we choose 0 of the 1

blue marbles and then k of the n red marbles; the second factor represents choosing

1 of the 1 blue marbles and k − 1 of the n red marbles. These two expressions are

equal as
(

1
0

)

=
(

1
1

)

= 1, but I prefer the second. What’s nice now is that a certain

symmetry has been restored to both sides of the equation. On both the left and the

right hand side, the sum of the ‘top’ parts of the terms add up to n+1, and the sum of

the ‘bottom’ parts of the terms add up to k. To me, it’s a little clearer how we’re par-

titioning, and anything that can highlight what’s going on is good! It also decreases

the chance that we’ll forget a factor, as in other problems these terms won’t always

be 1.

At the risk of beating the problem to death, it’s worth chatting about why we’re

adding the two terms and not multiplying them. Often in probability we multiply the

probabilities of events. Here, what we’re doing is partitioning our event, which is

choosing k of n + 1, into disjoint possibilities (having 0 blue, having 1 blue). For
finite sets, the probability of a disjoint union is the sum of the probabilities. This

forces us to add the two probabilities together.

Let’s do another example. We’ll prove
∑n

k=0

(

n
k

)(

n
n−k

)

=
(

2n
n

)

. We’ll do this by

calculating the same quantity two different ways. This essentially means we need to

make up a story, where the expressions above are the quantities involved. Imagine

we have nmen and n women who want to take a probability class; unfortunately, the
classroom is small and only n people can enroll in the class. There are

(

2n
n

)

ways

to choose a class of n people from our 2n people (n men and n women). That’s the

right hand side – what about the left hand side? Note in any class of n people there

must be some number of men and some number of women. If there are k men, there
must be n− k women. The number of ways of choosing k men from n men is just
(

n
k

)

; similarly there are
(

n
n−k

)

ways to choose n − k women from n women. Thus,

the number of ways to have a class of n people with exactly k men is
(

n
k

)(

n
n−k

)

.

There must be some number of men in the class; that number ranges from 0 to n.
Thus the total number of possible classes is just

∑n
k=0

(

n
k

)(

n
n−k

)

, which must equal
(

2n
n

)

. 2
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As an aside, since
(

n
n−k

)

=
(

n
k

)

, the above implies
∑n

k=0

(

n
k

)2
=
(

2n
n

)

.

For a nice challenge, try to find a simple formula involving a triple product of

binomial coefficients. You’ll have to think a bit and find a good story. Hint: it isn’t
(

n
k

)3
.

We end with one last example. Let’s see how the Binomial Theorem can be

proved in this manner. We want to show

(x+ y)n =

n
∑

k=0

(

n

k

)

xn−kyk.

We have n factors of x + y. For each factor, we choose either x or y. We see that

(x + y)n will be a polynomial in x and y, involving terms like xjyk. What are the

possible pairs of (i, j) that work, and what are the coefficients of these terms?
Well, we have n factors and for each factor we choose either an x or a y. Thus

j + k must equal n, so j must be n − k. What about the coefficient of xn−kyk?
Every time we choose y from exactly k of the factors (which then forces us to have
exactly n − k factors of x), we get a xn−kyk. How many ways are there to choose

k of the n factors to be y? Why, this is just the definition of the binomial coefficient,
(

n
k

)

, which completes the proof. 2

It’s worthwhile to see different proofs of the same result, especially if it’s an

important result. Each of these proofs highlights a different feature. These different

approaches will help you not only in understanding the theorem, but in attacking

future problems. What can make many math problems seem exceptionally difficult

is that it isn’t always clear how to start. The more methods you see, the more ideas

you have for tackling future problems.

A.7 Proof by Contradiction

Proof by Contradiction is one of my favorite ways of proving statements. Some-

times, instead of trying to directly show that something is true, it’s easier to assume it

fails, and go for a contradiction. Let’s look at an example. Remember that a number

is rational if we can write it as a ratio of two integers (with the denominator non-

zero); if we cannot do this, the number is irrational.

The square-root of 2 is irrational.

We proceed by assuming it is not irrational, and look for a contradiction; see

[MilMo] for a more geometric proof by contradiction. If it isn’t irrational then it’s

rational, and we have
√
2 = p/q, and we may assume p and q are relatively prime

(this means that no integer 2 or more divides both). If there were a common divisor,

we could remove it and get a new fraction p′/q′, with p′ < p and q′ < q.
Since we’re assuming

√
2 = p/q, then 2q2 = p2. We claim that 2 divides p2.

While this appears obvious, this must be proved. It’s clearly true if p is even, as an
even times any integer is still even. If p is odd, we may write p = 2m + 1. Then



Section A.7: Proof by Contradiction • 659

p2 = 4m2 + 4m+ 1 = 2(2m2 + 2m) + 1, which is clearly not divisible by 2. Thus
p is even, say p = 2p1. Then 2q

2 = p2 becomes 2q2 = 4p21. We now have 2p21 = q2,
and a similar argument yields q is even. Hence p and q have a common factor, which
contradicts p and q are relatively prime. We were led to this falsehood by assuming√
2 is rational. Thus that assumption must be false, and

√
2 must be irrational. 2

As proofs by counterexample occur so frequently, it’s worth doing another ex-

ample. This one is more involved, and uses some results from analysis and calculus.

Let f(x) be a continuous function on the real line. If the integral of f(x) van-
ishes for every interval [a, b] with a < b then f(x) is identically zero.

If we try to prove this directly we might run into some trouble, for we’re given

information on f(x) over intervals, but must prove something over a point. What if,

perhaps, we try to prove by contradiction? We assume for the sake of argument that

the result is false: all the hypotheses hold, but there’s a counterexample, say f , that
is not zero everywhere. Now we have something to work with, and we try to show

that if such a function existed, then it couldn’t possibly satisfy all of our hypotheses.

This contradiction means that our initial assumption that there was a counterexample

is false, and thus the theorem does hold.

Let’s try this here. So let’s assume we have a continuous function which inte-

grates to zero over any interval, but isn’t identically zero. So there’s some point,

say x0, where the function isn’t zero. Without loss of generality, let’s assume our

function is positive at the point x0 (a similar proof works for f(x0) < 0).
Well, let’s glean all the information we can out of our hypotheses on f . We

assumed f is continuous. So, if we choose any ǫ > 0 then we know there is a δ such
that, if |x− x0| < δ then |f(x)− f(x0)| < ǫ.

But, we have freedom in choosing ǫ! We know that our f must integrate to zero

over any interval, so we have
∫ x0+δ

x0−δ
f(x)dx = 0. But we have f(x0) is positive! If

ǫ is sufficiently small, by continuity f(x) will be positive around x0. For example:

taking ǫ < f(x0)/20, we get there is a δ such that f(x) > 19f(x0)/20 > 0.
Now we can get a contradiction. As f(x) > 19f(x0)/20 on this interval but

we’ve assumed the integral on this interval vanishes, standard results from calculus

give us

0 =

∫ x0+δ

x0−δ

f(x)dx <

∫ x0+δ

x0−δ

19f(x)

20
dx =

19f(x0) · 2δ
20

,

where the first equality follows from our assumption that f integrates to zero over

any interval. But f(x0)δ > 0, and we’ve reached a contradiction! Basically the

above is just a rigorous way of saying that if a continuous function is positive at

some point, it’s positive in a neighborhood of the point and thus cannot integrate to

zero there. 2

When you were reading this proof, you probably raised your eyebrows or won-

dered a bit when numbers like 19/20 entered the proof. Quantities like this are com-

mon in analysis. The idea is we want enough control to show that our function

is positive in a small interval. We didn’t need to take 19/20; many other numbers

would’ve worked too.
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A.8 Proof by Exhaustion (or Divide and Conquer)

The more assumptions and hypotheses we have on objects, the more (detailed) theo-

rems and results we should know about them. Often it helps in proving theorems to

break the proof up into several cases, covering all possibilities. We call this method

Divide and Conquer. It’s essential in using this method that you cover all cases:

make sure you consider all possibilities. For example, you might do: Case 1: the

function is continuous. Now you have all the theorems about continuity at your

disposal. And then: Case 2: the function is not continuous. Now you have a spe-

cial point where the function is discontinuous, and theorems and results about such

points. The advantage is that, before, you couldn’t use either set of results. The dis-

advantage is that you now have to give two proofs. Often, it’s worthwhile having to

prove more claims because for each claim you have more at your disposal. Let’s do

an example.

For f, g real valued functions, |f(x) + g(x)| ≤ |f(x)|+ |g(x)|.

If we can show this holds for an arbitrary point x, then we’re done. Let’s fix an x
and investigate.

Case 1: Assume f(x), g(x) ≥ 0.
Under this assumption, we have

|f(x) + g(x)| = f(x) + g(x) = |f(x)|+ |g(x)|,

which is what we needed to show.

Case 2: Assume f(x) ≥ 0, g(x) < 0.
We want to somehow get f(x) + g(x). We can add them together, and get

f(x) + g(x) < 0 + f(x) = |f(x)|,

but when we take absolute values of both sides, the inequality could change (−5 < 4
but | − 5| > |4|). So, a standard trick is to break this case into subcases!

• SubcaseA: Assume 0 ≤ f(x)+g(x). Then as g(x) < 0, f(x)+g(x) < f(x).
So 0 ≤ |f(x) + g(x)| < f(x) ≤ |f(x)|+ |g(x)|, which is what we needed to
show.

• Subcase B: Assume f(x) + g(x) < 0. Then 0 < −1 (f(x) + g(x)) ≤ −g(x)
as f(x) ≥ 0. So 0 < |f(x) + g(x)| ≤ |g(x)| ≤ |f(x)|+ |g(x)|, which is what
we needed to show.

This completes the analysis of Case 2. Unfortunately, we are not done as Cases

1 and 2 do not exhaust all possibilities.

Case 3: Assume f(x) < 0, g(x) ≥ 0.
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This is proved similarly as in Case 2; essentially we just switch the roles of f and
g.

Case 4: Assume f(x) < 0, g(x) < 0. This is proved almost identically as in Case 1.
2

Frequently in proofs by exhaustion many of the cases are essentially the same.

For example, in the problem above it doesn’t really matter if f(x) ≥ g(x) or g(x) ≥
f(x), as we can always change the label names of the functions. Because of this,
you’ll often see proofs using the phrase without loss of generality, which means

that as it makes no difference in the proof, for definiteness we’ll assume a certain

ordering or certain values. Be careful, though, as sometimes the different names are

important. For example, if we’re studying the function f(x, y) = x2y4 + x4y2, then
once we compute ∂f/∂x we know ∂f/∂y by interchanging the roles of x and y.
This is not the case for the function g(x, y) = x2y4 + x3y3; here there is a real
difference between the x-behavior and the y-behavior.

A.9 Proof by Counterexample

One of the most common mistakes students make is to assume that Proof by Ex-

ample is a valid way to prove a relation. This isn’t true; just because something

sometimes works doesn’t mean it will always work. We saw a great example in

§A.2 when we looked at Euler’s polynomial x2 + x + 41; it was always prime for
n ∈ {0, 1, . . . , 39} but failed to be prime for many n afterwards.

While it’s often useful to check a special case and build intuition on how to

tackle the general case, checking a few examples isn’t a proof. For another example,

because 16/64 = 1/4 and 19/95 = 1/5, one might think that in dividing two digit
numbers if two numbers on a diagonal are the same one just cancels them. Skeptical?

Let’s test it again. If we look at 49/98, canceling the 9’s gives 4/8, which simplifies
to 1/2. Convinced? Probably not. A little experimentation brings us to 12/24. If we
really could just cancel the 2’s we’d get this equals 1/4, but it’s 1/2. Of course this is

not how one divides two digit numbers, but it is interesting to see how many times it

works!

However, if we are trying to disprove some statement, this means that if we are

able to find just one example where the statement fails under the necessary assump-

tions of the statement, then we have in fact disproved it, as we have shown that it

does not hold for all cases. This is the essence of Proof by Counterexample.

Problem A.9.1 How many pairs of three digit numbers with the same middle are

there such that the ratio of these two numbers is the same as the ratio with the middle

digit removed? For example, one pair is (561, 462), as 561/462 = 51/42 = 17/14.

A.10 Proof by Generalizing Example

Another great way to prove a result is to look at a special case, detect a pattern,

and try to generalize what you see. Let’s look at an example you may have seen

years ago when learning how to multiply and divide. You may remember the rule for
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divisibility by 3: if the sum of the digits of your number is divisible by three, then

so is your number. We check this with 231 (yes, as 2+3+1 = 6 which is divisible

by 3, as is 231 = 3 · 77), 9444 (yes, as 9+4+4+4 = 21 which is divisible by 3, as

is 9444 = 3 · 3148), and 1717 (no, as 1 + 7 + 1 + 7 = 16 which is not divisible
by 3, nor is 1717). Now, while the rule is true, checking a few examples doesn’t

constitute a proof. We haven’t checked every number, only three specific numbers.

We would have to show that, given an arbitrary number with digits an . . . a3a2a1a0,
then if a0 + a1 + · · ·+ an is divisible by 3, so is an . . . a3a2a1a0.

This leads us to proving claims by generalizing an example or known case. Often

the way the theorem is stated, it tries to guide you as to what to do. For instance, in

the theorem we’re trying to prove on divisibility by three, it tells us that divisibility

by three is related to the sum of the digits of our number. So, we ask ourselves: how

can we get the sum of the digits, given the number an . . . a3a2a1a0?
For example, 314 would be a2a1a0, with a2 = 3, a1 = 1, a0 = 4, and the sum

of digits would be 3+1+4. Well, we might try looking at other ways of writing our

number. Often there are different forms that are equivalent, but bring out different

properties. For digits, we recall this comes from powers of 10: our number 314 can

be written as 314 = 3 · 100 + 1 · 10 + 4 · 1.
So, notice what happens if we subtract from 314 the sum of its digits:

314− (3 + 1 + 4) = 3 · 100 + 1 · 10 + 4 · 1− (3 + 1 + 4)

314− (3 + 1 + 4) = (3 · 100− 3) + (1 · 10− 1) + (4 · 1− 4)

314− (3 + 1 + 4) = (3) · 99 + (1) · 9 + (4) · 0.

Ah. Notice that the right hand side is clearly divisibly by 3, as each term is

multiplied by 0 or 9 or 99. If 3 + 1 + 4 is divisible by 3, when we bring it over to
the right hand side we find 314 equals number divisible by three! If 3 + 1 + 4 is not
divisible by three, when we bring it over we get 314 equals a number not divisible

by three!

Now we’ve done this proof in the special case when our number is 314. There’s

nothing wrong with first proving something for a specific case or number of function,

as long as we then generalize. We see that the exact same proof would carry through

if instead we considered the number: an . . . a3a2a1a0 = an · 10n + · · ·+ a1 · 101 +
a0 · 100.

A.11 Dirichlet’s Pigeon-Hole Principle

The following seemingly trivial observation appears in a variety of problems, and is

a very powerful way to prove many claims.

Dirichlet’s Pigeon-Hole Principle Let A1, A2, . . . , An be a collection of sets with

the property that A1 ∪ · · · ∪An has at least n+ 1 elements. Then at least one of the
sets Ai has at least two elements.

This is called the Pigeon-Hole Principle for the following reason. Imagine we

have n + 1 pigeons and n boxes, and we put each pigeon in exactly one box. Then

at least one box must have two pigeons. If not, then each box has at most 1 pigeon,

and as there are n boxes, this can account for at most n pigeons – at least one pigeon
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is missing! In a more mathematical prose, if we distribute k objects in n boxes and

k > n, one of the boxes contains at least two objects. The Pigeon-Hole Principle
is also known as the Box Principle. While there are many applications in number

theory, there are a few in probability as well. For example, it’s used in the Birthday

Problem in Chapter 1 to see that once we have 366 people then we must have at least

two sharing a birthday (we assumed no one was born on February 29th). Let’s do one

more example. We’ll first give the slick proof, then talk a bit about how to find such

arguments.

Let S be any subset of {1, 2, . . . , 2n} with n + 1 elements. Then S contains at

least two elements a, b with a dividing b.

To see this, we write each element s ∈ S as s = 2σs0 with s0 odd. There are
n odd numbers in the set {1, 2, . . . , 2n}, and as the set S has n + 1 elements, the
Pigeon-Hole Principle implies that there are at least two elements a, b with the same
odd part. Without loss of generality, we might as well assume a < b, and write the
numbers as a = 2i(2m+1) and b = 2j(2m+1). As a < b, i < j, we see b = 2j−ia,
proving a does indeed divide b.

The hard part of this problem is figuring out how to use the Pigeon-Hole Princi-

ple. The phrasing gives us some clues that we should use it. We have a collection

of objects and we want to show that if we take a large enough subset, then at least

two of those have a special relation. The Pigeon-Hole Principle is all about forced

relations when we have enough item, so this is a natural approach.

The trick or difficulty is realizing that we should write our numbers as a power

of two times an odd number, and then there must be two odd components that are

equal. How can we figure out that this is what we should try? One way is to take

special values of n and look at some sets, and see which elements have things in

common. Related to this, try to take sets with just n numbers and see whether or not

you can make the claim fail (since we’re not taking n + 1 objects, it’s fine to have
the conclusion fail). After some experimentation, you might hit upon looking at the

n odd numbers less than 2n. If 2n = 8 then this is a good choice, as {1, 3, 5, 7}
is such that no number divides another in this list; however, if 2n = 10 we’d have
{1, 3, 5, 7, 9}, and 3 divides 9. This illustrates the dangers of looking at small cases;
we might see something that doesn’t persist.

Returning to the drawing board, what other good sets are there of {1, 2, . . . , 2n}
with n items? Perhaps a good choice is {n+ 1, n+ 2, . . . , 2n}. This set always has
n elements, and for all n we never have one element in the list dividing another. This
is a great example, and we now know that we can’t replace the n+ 1 in the theorem
with n. If the theorem is true, any element x added to {n+ 1, n+ 2, . . . , 2n} gives
two numbers where one divides another. Further, as x ≤ n, it must be the case that
x divides something already in our list. It’s not immediately clear, though, what it

should divide. If x is large, say n/2 < x ≤ n, then 2x is in our list {n + 1, n +
2, . . . , 2n}. If n/4 < x ≤ n/2, then 4x is in our list. This is probably the hardest

jump to make, seeing the powers of two come into play. What we’re trying to do is

gather data and use that to guide us. From here, we somehow have to make the leap

to noticing that our special pair differ by a power of 2.
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A.12 Proof by Adding Zero or Multiplying by One

I’ve saved my personal favorite for last: adding zero and multiplying by one. At

first glance, neither of these seem capable of being that useful. After all, if we

multiply by one, we’re back where we started. The same goes for adding zero.

Neither of these operations changes our expression.

Exactly! These are powerful methods because they don’t change anything. We

can’t modify one side of an equality and not the other. We can’t discriminate math-

ematically: whatever we do to one side, we must do to the other. The reason these

are useful methods is that we can write 1 or 0 in many different ways, and we don’t

have to use the same representation on both sides. The point of this is to arrange the

algebra in a more illuminating manner, to extract out sub-expressions that we know.

Let’s do a few examples. I chose these examples from calculus, but all we really

need is the definition of the derivative, which states

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

x′→x

f(x′)− f(x)

x′ − x

(both variants are used below), and that the derivative of xn is nxn−1. For an exam-

ple in probability, go to §2.5.2.

Our first example is the proof of the product rule in calculus. Imagine f and g
are differentiable functions, and set A(x) = f(x)g(x). It’s not unreasonable to hope
that there’s a nice formula for the derivative of A in terms of f, f ′, g and g′. A great

way to guess this relationship is to take some special examples. If we try

f(x) = x3 and g(x) = x4,

then

A(x) = x7 so A′(x) = 7x6.

At the same time,

f ′(x) = 3x2 and g′(x) = 4x3.

There’s only two ways to combine f(x), f ′(x), g(x) and g′(x) and get x6: f ′(x)g(x)
and f(x)g′(x). (Okay, there are more ways if we allow divisions; there’s only two

ways if we restrict ourselves to addition and multiplication.) Interestingly, if we add

these together we get 3x2 · x4 + x3 · 4x3 = 7x6, which is just A′(x). This suggests
that A′(x) = f ′(x)g(x) + f(x)g′(x). If we try more and more examples, we’ll see
this formula keeps working. While this is strong evidence, it’s not a proof; however,

it will suggest the key step in our proof.

From the definition of the derivative and substitution,

A′(x) = lim
h→0

A(x+ h)−A(x)

h
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h
.

From our investigations above, we think the answer should be f ′(x)g(x)+f(x)g′(x).
We can begin to see an f ′(x) and a g′(x) lurking above. Imagine the last term were

f(x)g(x + h) instead of f(x)g(x). If this were the case, the limit would equal

f ′(x)g(x) (we pull out the g(x+ h), which tends to g(x), and what’s left is the def-
inition of f ′(x)). Similarly, if the first piece were instead f(x)g(x + h), then we’d
get f(x)g′(x). What we see is that our expression is trying to look like the right
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things, but we’re missing pieces. This can be remedied by adding zero, in the form

f(x)g(x+h)− f(x)g(x+h). Let’s see what this does. In the algebra below we use

the limit of a sum is the sum of the limits and the limit of a product is the product of

the limits; we can use these results as all these limits exist. We find

A′(x) = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x + h) + f(x)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)− f(x)

h
g(x+ h) + lim

h→0
f(x)

g(x + h)− g(x)

h

= lim
h→0

f(x+ h)− f(x)

h
lim
h→0

g(x+ h) + lim
h→0

f(x) lim
h→0

g(x+ h)− g(x)

h

= f ′(x)g(x) + f(x)g′(x).

2

The above proof has a lot of nice features. First off, it’s the proof of a result

you should know (at least if you’ve taken a calculus class). Second, we were able

to guess the form of the answer by exploring some special cases. Finally, the proof

was a natural outgrowth of these cases. We saw terms like f ′(x)g(x) and f(x)g′(x)
appearing, and thus asked ourselves: So, what can we do to bring out these terms

from what we have? This led to adding zero in a clever way. It’s fine to add zero,

as it doesn’t change the value. The advantage is we ended up with a new expression

where we could now do some great simplifications.

For our second example, we’ll look at the chain rule, one of the most dreaded

rules from calculus. Now we take B(x) = f(g(x)). We assume f and g are differ-
entiable, that f(g(x)) is defined, and for convenience we assume g′(x) is continuous
and never zero. This assumption isn’t needed, but it’ll simplify the argument so we

make it as our point here is not to prove your old calculus results but rather to high-

light the power of multiplying by 1. Since it worked so well last time, let’s try to

build some intuition from looking at

f(x) = x3 and g(x) = x4.

Again we have

f ′(x) = 3x2 and g′(x) = 4x3;

however, we need to remember that we’re supposed to evaluate f and f ′ not at x but
at g(x), so the relevant quantities are

B(x) = f(g(x)) = (x4)3 = x12

f ′(g(x)) = 3(x4)2 = 3x8

g′(x) = 4x3.

Since B′(x) = 12x11, looking at out building blocks we see that 12x11 = 3x8 · 4x3,

or in this case we have B′(x) = f ′(g(x)) · g′(x). So, just like the product rule, we
have a candidate for the derivative. Knowing our goal is a great aid in suggesting the

right way to manipulate expressions.
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From the definition of the derivative, we have

B′(x) = lim
h→0

B(x+ h)−B(x)

h
= lim

h→0

f(g(x+ h))− f(g(x))

h
.

We’re searching for f ′(g(x)) and g′(x). Note the numerator almost looks like the
derivative of f at the point g(x); the reason it isn’t is that we evaluate f at g(x+ h)
rather than g(x) + h. What if we use the second variant for the definition of the

derivative? In that case, x′ = g(x+ h) tends to x, but the denominator isn’t right. It
should be x′− g(x) = g(x+ h)− g(x), but it’s only h. To remedy this, we multiply

by 1 in the form of
g(x+h)−g(x)
g(x+h)−g(x) , and find

B′(x) = lim
h→0

f(g(x+ h))− f(g(x))

h

g(x+ h)− g(x)

g(x+ h)− g(x)

= lim
h→0

f(g(x+ h))− f(g(x))

g(x+ h)− g(x)

g(x+ h)− g(x)

h

= lim
h→0

f(g(x+ h))− f(g(x))

g(x+ h)− g(x)
lim
h→0

g(x+ h)− g(x)

h

= f ′(g(x)) · g′(x).

The last few lines deserve some justification. We’re using the second variant of the

definition of the derivative. Since the derivative of f exists, limx′→x
f(x′)−f(g(x))

x′−g(x)

equals f ′(g(x)) for any sequence of x′ tending to g(x), and thus for the particular
sequence where x′ = g(x+ h).

Where did we use our assumption that g′(x) is continuous and never zero? That
assumption implies g(x) = g(y) if and only if x = y. It’s essential that g(y) 6= g(x)

for x and y distinct as otherwise g(x+h)−g(x)
g(x+h)−g(x) could be 0/0.

We end with one last remark on these techniques. It’s kind of like drawing aux-

iliary lines in geometry or trigonometry to highlight relationships. Drawing these

lines doesn’t change anything, but it often draws our attention to certain aspects of

the problem.



Appendix B

Analysis Results

Not surprisingly, the tools from calculus (andmore generally, real analysis) play a big

role in probability. The reason, of course, is that to each random variable we attach a

probability distribution. Often that distribution is continuous and even differentiable,

and the quantities we want to study can be expressed in terms of our density and its

integrals and derivatives.

We quickly review some of the key results from analysis below, and give some

idea of how these are used.

B.1 The Intermediate and Mean Value Theorems

This section involves two of the biggest theorems from calculus, the Intermediate

and the Mean Value Theorem. We’ll use the Intermediate Value Theorem to prove

the Mean Value Theorem, which can then be used to approximate numerous prob-

abilities. First, we quickly review some notation. We write (a, b) for the interval
{x : a < x < b}, and call this an open interval; by [a, b] we mean {x : a ≤ x ≤ b},
and we call this a closed interval. We could of course have a half-open interval [a, b)
(which is also a half-closed interval!).

Theorem B.1.1 (Intermediate Value Theorem (IVT)) Let f be a continuous func-

tion on [a, b]. For all C between f(a) and f(b) there exists c ∈ [a, b] such that

f(c) = C. In other words, all intermediate values of a continuous function are

obtained.

If we convert from mathspeak to English, the theorem is a lot clearer, and quite

reasonable. One way to do this is with the following example. Imagine we’re driving

our car. We start off traveling at 20 mph (about 32 kph), and later in the trip we’re

cruising at 100 mph (about 161 kph). As this example is for math, the police will

kindly look the other way this one time. The Intermediate Value Theorem asserts

that, at some time in our trip, we must’ve been traveling 50 mph (about 80 kph).

This should be reasonable; we’re assuming our speed is given by a nice, continuous

function, and thus we can’t get from the slow starting speed to the fast final speed
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without passing through all intermediate speeds.

Sketch of the proof: We proceed byDivide and Conquer. Without loss of generality,

we can assume f(a) < C < f(b), as the proof is trivial if f(a) = C or f(b) = C.
Many proofs start like this – first get rid of the straightforward cases, and then move

on to the heart of the argument.

Let x1 be the midpoint of [a, b]. If f(x1) = C we’re done. If not, there are two

cases: either f(x1) < C or f(x1) > C. If f(x1) < C, we look at the interval [x1, b].
If f(x1) > C we look at the interval [a, x1].

In either case, we have a new interval, call it [a1, b1], such that f(a1) < C <
f(b1) and the interval has half the size of [a, b]. We continue in this manner, repeat-

edly taking the midpoint and looking at the appropriate half-interval.

For example, imagine that our function is f(x) = x2 + x + 1, a = 0, b = 1
and C = 2. We have f(0) = 1 and f(1) = 3. We look at the midpoint and find

f(1/2) = 1.75, thus our next interval is [a1, b1] = [1/2, 1]. We continue; we have

f(1/2) = 1.75, f(1) = 3 and at the midpoint 3/4 we find f(3/4) = 37/16 =
2.3125. This means that our next interval is [a2, b2] = [1/2, 3/4].

To recap, we have a sequence of intervals

[a, b] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ · · ·

such that f(an) ≤ C ≤ f(bn), and each an and bn is either an endpoint from the

previous interval, or the midpoint of the previous interval. If any of these satisfy

f(xn) = C, we’re done. If no midpoint works, we divide infinitely often and obtain
a sequence of points xn in intervals [an, bn]. This is where rigorous mathematical
analysis is required (see for example [Rud] for details). In a real analysis class you’ll

show that
∞
⋂

n=1

[an, bn] = [a1, b1] ∩ [a2, b2] ∩ [a3, b3] ∩ · · ·

is just a point, say {x0}. This is intuitively plausible; at each stage we have an open
interval, and we cut its length in half when we go to the next level. Thus the final

result cannot have any positive length. It should be nonempty as we have the chain

a1 ≤ a2 ≤ a3 ≤ · · · ≤ b3 ≤ b2 ≤ b1.

Let’s assume there’s a unique point in the intersection. Since f is continuous and

an → x0 and bn → x0,

lim
n→∞

f(an) = f(x0) = lim
n→∞

f(bn);

this is just a restatement of what it means for f to be continuous at x0. But

f(an) ≤ C ≤ f(bn) and f(an) ≤ f(x0) ≤ f(bn).

This implies that f(x0) = C. Why? They are both ‘squeezed’ to the same thing.

Specifically, as limn→∞ f(an) = limn→∞ f(bn), we see that both of these limits
equal C as well as f(x0). Thus, we have found our point! (For the example f(x) =

x2 + x+ 1 on [0, 1] with C = 2, we would find x0 =
√
5−1
2 ≈ 0.618034.) 2
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Theorem B.1.2 (The Mean Value Theorem (MVT)) Let f(x) be differentiable on
[a, b]. Then there exists c ∈ (a, b) such that

f(b)− f(a) = f ′(c) · (b− a).

Let’s give an interpretation of the Mean Value Theorem. Let f(x) represent the
distance our car has traveled from the starting point at time x. The average speed
from a to b is the distance traveled, f(b)− f(a), divided by the elapsed time, b− a.
As f ′(x) represents the speed at time x, the Mean Value Theorem says that there’s

some intermediate time at which we’re traveling at the average speed.

For example, imagine that our average speed is 50 mph (about 80 kph). If our

speed is always below 50 mph, there’s no way that our average speed could be 50

mph; similarly if our speed is always above 50 mph there’s no way our average

speed could be 50 mph. Thus either our speed is always 50 mph (in which case the

conclusion is trivial), or we can deduce that at some point in time we were traveling

slower than 50 mph and at another point in time we were traveling faster. We can

now use the Intermediate Value Theorem to prove that at some point we must be

traveling at 50 mph, as that is an intermediate speed. This is essentially the proof;

the only difference is that usually in a math book one sees impressive looking math

symbols rather than text about cars!

To prove the Mean Value Theorem in familiar math language, it suffices to con-

sider the special case when f(a) = f(b) = 0; this case is known as Rolle’s Theorem.

Theorem B.1.3 (Rolle’s Theorem) Let f be differentiable on [a, b], and assume

f(a) = f(b) = 0. Then there exists c ∈ (a, b) such that f ′(c) = 0.

Show the Mean Value Theorem follows from Rolle’s Theorem. Hint: Consider

h(x) = f(x)− f(b)− f(a)

b− a
(x− a)− f(a).

Note h(a) = f(a)− f(a) = 0 and h(b) = f(b)− (f(b) − f(a)) − f(a) = 0. The
conditions of Rolle’s Theorem are satisfied for h(x), and

h′(c) = f ′(c)− f(b)− f(a)

b− a
.

Proof of Rolle’s Theorem: Step one is to handle some special cases. We’ll assume

that f ′(a) and f ′(b) are non-zero. If one of these is zero we sadly aren’t quite done,
as the theorem asserts there is a c strictly between a and b; however, as a similar
proof to what we give below handles this case, we leave that case as an exercise to

the reader.

Multiplying f(x) by −1 if needed, we may assume f ′(a) > 0. For convenience,
we assume f ′(x) is continuous. This assumption simplifies the proof, but isn’t nec-
essary. As you read the proof below, try to see where we use f ′ is continuous.
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Case 1: f ′(b) < 0: As f ′(a) > 0 and f ′(b) < 0, the Intermediate Value The-
orem applied to f ′(x) asserts that all intermediate values are attained. As f ′(b) <
0 < f ′(a), this implies the existence of a c ∈ (a, b) such that f ′(c) = 0.

Case 2: f ′(b) > 0: f(a) = f(b) = 0, and the function f is increasing at a and
b. If x is real close to a then f(x) > 0 if x > a. This follows from the fact that

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

As f ′(a) > 0, the limit is positive. As the denominator is positive for x > a,
the numerator must be positive. Thus f(x) must be greater than f(a) for such x.
Similarly f ′(b) > 0 implies f(x) < f(b) = 0 for x slightly less than b.

Therefore the function f(x) is positive for x slightly greater than a and negative
for x slightly less than b. If the first derivative were always positive then f(x) could
never be negative as it starts at 0 at a. This can be seen by again using the limit

definition of the first derivative to show that if f ′(x) > 0 then the function is increas-
ing near x. Thus the first derivative cannot always be positive. Either there must be
some point y ∈ (a, b) such that f ′(y) = 0 (and we’re then done) or f ′(y) < 0. By
the Intermediate Value Theorem, as 0 is between f ′(a) (which is positive) and f ′(y)
(which is negative), there’s some c ∈ (a, y) ⊂ [a, b] such that f ′(c) = 0. 2

Did you see where we used f ′ was continuous? It happened when we invoked

the Intermediate Value Theorem. Whenever you use a theorem, you need to make

sure all the conditions are satisfied. To use the IVT, we need our function to be

continuous.

B.2 Interchanging Limits, Derivatives and Integrals

B.2.1 Interchanging Orders: Theorems

For the convenience of the reader we record exact statements of several standard

results from advanced calculus that are used at various points of the text. As the

Change of Variable Theorem is so important, it gets its own chapter (Appendix C).

Theorem B.2.1 (Fubini’s Theorem) Assume f is continuous and

∫ b

a

∫ d

c

|f(x, y)|dxdy < ∞.

Then
∫ b

a

[

∫ d

c

f(x, y)dy

]

dx =

∫ d

c

[

∫ b

a

f(x, y)dx

]

dy.

Similar statements hold if we instead have

N1
∑

n=N0

∫ d

c

f(xn, y)dy,

N1
∑

n=N0

M1
∑

m=M0

f(xn, ym).
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For a proof in special cases, see [BL, VG]; an advanced, complete proof is given

in [Fol]. See Exercise B.7.2 for an example where the orders of integration cannot

be changed.

Theorem B.2.2 (Interchanging Differentiation and Integration) Let f(x, t) be a
continuous function whose partial derivatives with respect to x and with respect to t
are continuous in the region {(x, t) : x ∈ [a, b], t ∈ [c, d]} with a, b, c, d finite. Then

d

dx

∫ b

a

f(x, t)dt =

∫ b

a

∂f

∂x
(x, t)dt.

The above theorem holds in greater generality. We can allow the regions to be

infinite, at the cost of requiring additional decay in the functions. For a proof and

generalizations, see [La2].

Our last result is on interchanging limits and integrals. We state one of the most

useful below, though not in its most general form (see [Fol] for the more general

phrasing and a proof).

Theorem B.2.3 (Dominated Convergence Theorem) Let {fn} be a sequence of

piecewise continuous real-valued functions onR, and assume there is a non-negative,

piecewise continuous function g with |fn(x)| ≤ g(x) for all n. Assume limn→∞ fn(x)
converges pointwise to a piecewise continuous function f . Then

lim
n→∞

∫ ∞

−∞
fn(x)dx =

∫ ∞

−∞
lim
n→∞

fn(x)dx;

in other words, we may interchange the limit and the integral.

B.2.2 Interchanging Orders: Examples

The purpose of this section is to give a quick crash course in using analysis to jus-

tify certain statements. What follows is essentially independent of the rest of the

book. As it’s important to know how to justify statements (this lessens the chance

of accidentally using results that can’t be justified!), it’s fine to skim or skip what

follows.

In general, we need to appeal to some advanced theorems in analysis to inter-

change the order of operations, such as switching the order of integration or inter-

changing a sum and a derivative. In the case of the geometric series, however, we

can justify interchanging the sum and the derivative without appealing to advanced

machinery. The reason is that if we truncate the geometric series

∞
∑

n=0

= 1 + x + x2 + x3 + x4 + · · · = 1

(1− x)2
(B.1)

at any N , the geometric series formula gives us an explicit formula for the sum of

the tail:

∞
∑

n=0

=
(

1 + x + x2 + · · · + xN
)

+
(

xN+1 + xN+2 + · · ·
)

= 1 + x + x2 + · · · + xN +
xN+1

1− x
=

1

(1− x)2
.
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We show that we may interchange differentiation and summation for the geomet-

ric series (assuming, of course, that |x| < 1). The derivative of the right hand side
(with respect to x) of (B.1) is just (1 − x)−2. We want to say the derivative of the

left hand side of (B.1) is
∞
∑

n=0

nxn−1,

but do to so requires us to justify

d

dx

∞
∑

n=0

xn =

∞
∑

n=0

d

dx
xn.

A standardway to justify statements like this is as follows. We note that
∑∞

n=0 nx
n−1

converges for |x| < 1; if we can show that for any ǫ > 0 that this is within ǫ of
(1− x)−2, then we will have justified the interchange.

To see this, fix an ǫ > 0. For each N , as discussed above we may write

∞
∑

n=0

xn =

N
∑

n=0

xn +

∞
∑

n=N+1

xn

=

N
∑

n=0

xn +
xN+1

1− x
=

1

1− x
.

We can differentiate each side, and we can justify interchanging the differentiation

and the summation because we have finitely many sums. Specifically, there are only

N + 2 terms (N + 1 from the sum and then one more, xN+1

1−x ). Therefore we have

d

dx

N
∑

n=0

xn +
d

dx

xN+1

1− x
=

d

dx

1

1− x

N
∑

n=0

nxn−1 +
(N + 1)xN (1− x)− xN+1(−1)

(1− x)2
=

1

(1− x)2

N
∑

n=0

nxn−1 +
(N + 1)(1− x) + x

(1− x)2
xN =

1

(1− x)2
.

As |x| < 1, given any ǫ > 0 we can find an N0 such that for all N ≥ N0,

∣

∣

∣

∣

(N + 1)(1− x) + x

(1− x)2
xN

∣

∣

∣

∣

≤ ǫ

2
.

Similarly we can find an N1 such that for all N ≥ N1 we have

∣

∣

∣

∣

∣

∞
∑

n=N+1

nxn−1

∣

∣

∣

∣

∣

≤ ǫ

2
.

Therefore we have shown that for every ǫ > 0 we have
∣

∣

∣

∣

∣

1

(1− x)2
−

∞
∑

n=0

nxn−1

∣

∣

∣

∣

∣

≤ ǫ,
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proving the claim. Instead of studying these sums for a specific x, we can consider
x ∈ [a, b] with −1 < a ≤ b < 1, and N0, N1 will just depend on a, b and ǫ.

One situation where we cannot interchange differentiation and summation is

when we have series that are conditionally convergent but not absolutely conver-

gent. This means
∑

an converges but
∑ |an| does not. For example, consider
∞
∑

n=0

xn

n
. (B.2)

If x = −1 this series conditionally converges but not absolutely; in fact, as

− log(1− x) = x+
x2

2
+

x3

3
+ · · · =

∞
∑

n=1

xn

n
,

then (B.2) with x = −1 is just − log 2. What happens if we try to differentiate? We

have

d

dx
[− log(1− x)] =

d

dx

[ ∞
∑

n=1

xn

n

]

.

The left hand side is easy to differentiate for x ∈ [−1, 0], giving 1
1−x . But if we

interchange the differentiation and summation we would have

d

dx

[ ∞
∑

n=1

xn

n

]

=

∞
∑

n=1

xn−1,

and this does not converge when x = −1 (aside: the sum oscillates between 1 and 0;
in some sense it can be interpreted as 1

2 , which is what
1

1−x equals when x = −1!).
Sometimes, however, conditionally convergent but absolutely divergent series

can be managed. Consider
∞
∑

n=1

xn

n logn
.

This series converges conditionally when x = −1 but diverges upon inserting abso-
lute values. If we interchange differentiation and summation we get

∞
∑

n=1

xn−1

logn
,

and this sum does converge (conditionally, not absolutely) when x = −1.

B.3 Convergence Tests for Series

In calculus classes we learn various tests to determine whether or not a series con-

verges or diverges. There are many reasons for all those hours you spent mastering

these, as you’re now perfectly prepared to actually use these for problems you might

care about. In Chapter 19 we’ll meet generating functions. These are series that

encode a wealth of information about a probability distribution. If these sums con-

verge and are differentiable, then simple differentiation gives us nice formulas for
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many properties; however, it’s sadly not the case that these infinite series always

converge. We thus (finally!) see applications of the various series convergence tests

from calculus.

As with any result from an earlier course, if you haven’t used it in awhile it’s

easy to be rusty. For completeness we quickly state some of the more popular and

powerful tests, and give a few examples illustrating their use. Before doing so, we

quickly recall some standard results and notation about series. First, the summation

notation:
N
∑

n=0

an = a0 + a1 + · · ·+ aN ;

if instead ofN we had∞ as the upper bound the sum would be a0 + a1 + a2 + · · · .
For finite N , we have

N
∑

n=0

(an + bn) =
N
∑

n=0

an +
N
∑

n=0

bn;

if the two sums on the right are finite then this result also holds if N = ∞. If these

two sums are infinite, however, things are trickier. The problem is one sum could

be ∞ and the other −∞, and ∞−∞ is undefined. (Imagine the examples where

an = 2n and bn = −4n, and an = 2n and bn = −n.) If c is any real number,
N
∑

n=0

can = c

N
∑

n=0

an.

Root Test: Assume limn→∞
n
√

|an| exists, and denote this limit by ρ. Then the

series
∑∞

n=0 ans
n converges for |s| < 1/ρ and diverges for |s| > 1/ρ; if ρ = 0 we

interpret 1/ρ as infinity, meaning the series converges for all s. If ρ = 1 then there’s
no information on whether or not it converges or diverges.

Ratio Test: Assume limn→∞ |an+1/an| exists, and denote this limit by ρ. Then the
series

∑∞
n=0 ans

n converges for |s| < 1/ρ and diverges for |s| > 1/ρ; if ρ = 0 we
interpret 1/ρ as infinity, meaning the series converges for all s. If ρ = 1 then there’s
no information on whether or not it converges or diverges.

For example, let an = n2/4n. By the ratio test, we have

lim
n→∞

an+1

an
= lim

n→∞
(n+ 1)2/4n+1

n2/4n
= lim

n→∞

(

n+ 1

n

)2
1

4
=

1

4
.

Thus

G(s) =

∞
∑

n=0

n2

4n
sn
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converges for |s| < 4.

Two other tests that are frequently used are the comparison test and the integral

test. These can be a little harder to use, as you need to choose a comparison sequence

or function, while the ratio and root tests are automatic (simply compute the limit).

That said, with experience these become easier to apply.

Comparison Test: Let {bn}∞n=1 be a sequence of non-negative terms (so bn ≥ 0).
Assume the series

∑∞
n=0 bn converges, and {an}∞n=1 is another sequence such that

|an| ≤ bn for all n. Then the series
∑∞

n=0 an also converges. If instead
∑∞

n=0 bn
diverges and an ≥ bn, then the series

∑∞
n=0 an also diverges.

Integral Test: Consider a sequence {an}∞n=1 of non-negative terms. Assume there’s

some function f such that f(n) = an and f is non-increasing. Then the series

∞
∑

n=1

an

converges if and only if the integral

∫ ∞

1

f(x)dx

converges; thus if the integral diverges the series diverges.

Note: in both these tests, if instead of starting the sums at n = 0 we start at n = N ,

the conclusions still hold; this is because the convergence of series depend only on

the tails, and we can add or remove finitely many terms without harm.

Let’s determine if the series
∑∞

n=1
1

2n+
√
n
converges or diverges. We use the

comparison test. The hardest part about using this test is figuring out what to compare

our sequence to. If we think it converges we should find a series that converges that

is always greater, while if it diverges we should look for a series that is always small

and diverges. When n is large, 2n is larger than
√
n, and thus the denominator

essentially looks like 2n. We thus expect our series to converge by a comparison

with the geometric series bn = 1/2n. Writing down the algebra formally, we would

argue that since 2n +
√
n ≥ 2n, we have

0 ≤ 1

2n +
√
n
≤ 1

2n
.

Thus the series converges by the comparison test. We can easily modify this to a

problem in generating functions. Consider

G(s) =

∞
∑

n=1

1

2n +
√
n
sn.
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A similar argument shows that we can compare this to
∑∞

n=1(s/2)
n, which is a ge-

ometric series converging for |s| < 2. ThusG(s) converges for |s| < 2.

Now let’s consider an = 1
n lnp n for some p > 0. For which p does it converge?

Diverge? We know
∑∞

n=1
1
n diverges; unfortunately, this is useless for the compar-

ison test as 1
n lnp n ≤ 1

n for n large. If we want to show a series diverges by the

comparison test, we must compare it to something smaller that diverges, not some-

thing larger. It’s hard to find a good series to compare this to, and unfortunately the

ratio and root tests don’t provide any useful information (as the limit in both cases is

1). We are left with trying the integral test.

The first step is to find a strictly decreasing function f(x) that equals 1
n lnp n

when x = n for n large. Looking at what we’ve written, you should be able to hear

the integral test screaming which function to use: f(x) = 1
x lnp x ; it’s very common

in these problems to just replace n with x. Thus the series converges or diverges

depending on whether or not

∫ ∞

x=BIG

1

x lnp x
dx

converges or diverges; we write ‘BIG’ to indicate that the lower bound doesn’t really

matter – what matters is the behavior at infinity. We use a u-substitution. This is
a very natural thing to do. The reason is the derivative of lnx is 1/x; looking at
our integrand, we see it’s begging us to change variables as we have 1/x. We try

u = lnx. This gives du = dx/x, and thus our integral becomes

∫ ∞

u=ln(BIG)

u−pdu.

The integral of u−p is u1−p

p if p 6= 1 and lnu if p = 1. Thus the integral converges
if p > 1 and diverges p ≤ 1.

We can turn this into a statement about the generating function

G(s) =

∞
∑

n=1

1

n lnp n
sn.

For any choice of p, with some work you can show the sum converges for |s| ≤ 1
and diverges for |s| > 1.

B.4 Big-Oh Notation

The purpose of this section is to introduce some notation to make it easy for us to

compare two quantities as some parameter tends to infinity. If the definition seems

technical, there’s a natural reason: it is! The entire point of this definition is to allow

us to carefully discuss and compare two expressions in some limit situation. The

point is to bypass handwaving arguments, to avoid using phrases such as “clearly”

and “of course”. This notation is used throughout analysis whenever one needs to

make rigorous comparisons.
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As a motivating example, think of the standard normal and the standard expo-

nential. As the first has density function 1√
2π

exp(−x2/2) while the second has

the density function exp(−x), “clearly” the standard normal is decaying faster as
x→∞ than the standard exponential. What we want to do now is clarify how much

faster the standard normal decays, as well as avoid using the word “clearly”.

Definition B.4.1 (Big-Oh Notation) A(x) = O(B(x)), read “A(x) is of order (or
big-Oh)B(x)”, means there’s a C > 0 and an x0 such that for all x ≥ x0, |A(x)| ≤
C B(x). This is also written A(x)≪ B(x) or B(x)≫ A(x).

Let’s unwind this. The part about C is no problem; it’s just saying there’s some

positive constant which will surface later. The purpose of the x0 constant is to de-

fine our universe of discourse. We’re saying what happens from some point onward;

we’re making no claims about the behavior for ‘small’ x; all we’re saying is that we
know what happens as x → ∞. Specifically, for all large x we have |A(x)| is at
most CB(x). Frequently the actual value of C doesn’t matter; what’s important is

the growth (or decay) in x. Additionally, in many problems the inequality holds for
each and every x, and thus we don’t need to worry about x0.

Sometimes we use big-Oh notation for x → 0 instead of x → ∞; in that case we

modify the definition to there’s an x0 such that for all x with |x| ≤ x0 we have

|A(x)| ≤ CB(x).

In Figure B.1 we plot A(x) = 2010 logx versus B(x) = x2. For small values

of x, we see that A(x) is larger; however, as x increases we see eventually B(x) is
greater. The reason is that x2 is growing faster than log x, so in the limit x2 dominates

log x. We can’t, however, say that 2010 logx ≤ x2, though, as this inequality fails

for small x. It’s only true for x large (x ≥ 100 suffices). In many problems, we’re
only interested in making comparisons as our input parameter tends to infinity, and

thus such restrictions are fine.

Big-Oh notation is a convenient way to handle lower order terms. For example,

if we write F (x) = x5 +O(x2), this means that as x tends to infinity, the main term
of F (x) grows like x5, and the correction (or error) terms are at most some constant

times x2.

Not surprisingly, this is used all the time in Taylor series expansions. Consider

the Taylor series expansion for cosx:

cosx =

∞
∑

n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+

x4

4!
− · · · .
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Figure B.1: Plot of 2010 logx versus x2.

Let’s take x ∈ [−π, π] near 0, and see how good of a job the various partial Taylor

series expansions do of approximating cosx. We have, for instance,

cosx = 1− x2

2
+O(x4),

and we claim this works for all x. The reason is the error in the approximation is

−x4

4!
+

x6

6!
− x8

8!
+ · · · .

We can trivially bound this by dropping all the minus signs, and thus the error is at

most
x4

4!
+

x6

6!
+

x8

8!
+ · · · .

How big is this sum? Remember we plan on taking x near 0, so the higher the power
of x, the smaller the contribution. Thus the ‘main’ term in the error comes from the

x4/4! piece. Pulling that out, we find the error is at most

x4

4!

(

1 + x2 + x4 + · · ·
)

.

For x close to zero, we clearly have |x| ≤ 1/2 and thus we may use the geometric
series formula to evaluate the sum (the ratio is just x2); note the sum is largest when

|x| = 1/2 (that’s the worst case). We finally see that the error is at most

x4

4!

1

1− x2
;

if we assume |x| ≤ 1/2 then we finally obtain

∣

∣

∣

∣

cosx−
(

1− x2

2

)
∣

∣

∣

∣

≤ 4

3

x4

4!
=

x4

18
.

In other words, if |x| ≤ 1/2 the error in using the second order Taylor series to ap-
proximate cosx is quite small, as it’s at most x4/18. For example, if we take x = .1
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then we would say cos(.1) is approximately 1 − .12

2 = .995, with an error that is at
most .14/18 ≈ 5.5556 · 10−6. The actual value of cos(.1) (to ten decimal places) is
0.995004165,which means the true error is about 4.16528 ·10−6. Note the true error

is less than our theoretical bound, so it’s likely we have done the algebra correctly!

Two very important relations are that xr grows slower than ex for any fixed r as
x → ∞, and log x grows slower than xc for any c > 0 as x → ∞. There are many

ways to prove these relations. We prove the first one now to highlight the method,

and leave the second one for you. Let’s consider xr versus ex as x → ∞. We want

to show xr = O(ex). Clearly this is true if r is negative, so we need only look at
r ≥ 0. If r happened to be an integer, we can use L’Hopital’s rule:

lim
x→∞

xr

ex
= lim

x→∞
rxr−1

ex
= lim

x→∞
r(r − 1)xr−2

ex
= · · · = lim

x→∞
r!

ex
= 0.

Why did we assume r was an integer? This is just to make applying L’Hopital a

little cleaner; if r is an integer then after applying L’Hopital r times the numerator is
just r!. As this limit is zero, by definition there’s some x0 such that for x ≥ x0 we

have xr/ex ≤ 1/2, which gives xr = O(ex) if r is a positive integer. For general r,
we can either use L’Hopital (ending up with a power of x in the denominator of the

fraction), or note that xr ≤ x⌈r⌉, where ⌈r⌉ represents the smallest integer at least r.

As xr = O(ex) is used in numerous problems, we give one more proof. For

convenience, let’s assume r is an integer. From the Taylor series expansion of ex,
we know ex > xr+1/(r + 1)! (this is because we’re keeping just one term). If

x > (r + 1)!, then

xr <
xr+1

(r + 1)!
< ex.

B.5 The exponential function

In this section we study some of the basic properties of the number e. There are

many ways to define the number e, the base of the natural logarithm. From the point

of view of calculus, the most convenient is through an infinite series:

e =

∞
∑

n=0

1

n!
.

If we denote the partial sums of the above series by

sm =

m
∑

n=0

1

n!
,

we see e is the limit of the convergent sequence sm. This representation is one of the
main tool in analyzing the nature of e.

We generalize the above and write
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The exponential function. Let x be any real (or complex) number. The exponential
function ex (which for typographical purposes is sometimes written exp(x) when
the argument is complicated) is defined at

ex =

∞
∑

n=0

xn

n!
.

Further, ex+y = exey .

We call the above the exponential function. As remarked, we frequently use the

exp notation for typographic purposes; for example, exp(−x2/2) is a little easier to

read than e−x2/2 or, even worse, e−
x2

2 !

The series defining the exponential function converges so rapidly that almost any

test works. Let’s use the Ratio Test, as it’s easy to apply. We have

ρ = lim
n→∞

|an+1|
|an|

= lim
n→∞

|x|n+1/(n+ 1)!

|x|n/n!

= lim
n→∞

|x|
n+ 1

= 0.

Thus, the series converges for all x.

This notation is meant to be highly suggestive, and is designed to make you think

about raising numbers to powers. We read ex as e raised to the x power. If asked

what is exey , you should immediately answer ex+y; however, it’s very important to

note that this is not obvious and this needs to be proved! Technically ex, ey and

ex+y are three different infinite sums, and we must show the product of the first two

equals the third. Of course, if this were not true then our notation would suck (no

other word feels right for how horrible our notation would be); unfortunately, math

does occasionally have bad notation. I’ve always hated that cosecant is one over sine

and not one over cosine.

The proof that exey = ex+y is a nice application of the binomial theorem. We

have

exey =

∞
∑

m=0

xm

m!

∞
∑

n=0

yn

n!
.

Note that we used two different letters for our summations. It’s a very common

mistake to use the same letter twice; we can’t and shouldn’t do this. The reason it’s

wrong to use the same letter is that we have two sums, and each sum has a dummy

variable for summation (similar to the dummy variables of integration). Consider for

example

(1 + 2 + 3) · (12 + 22 + 32) = 84.
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If we use the same dummy variable, we might be led to the following flawed calcu-

lation:
3

∑

n=1

n

3
∑

n=1

n2 =

3
∑

n=1

n3 = 13 + 23 + 33 = 36.

Using a different letter for each summinimizes our chance of making such a mistake.

Returning to our analysis of exey , we see we have a sum over terms of the form
xmyn

m!n! , withm,n ≥ 0. What we will do now is collect all terms where the sum of the

power of x plus the power of y is constant. In other words, for a given k ≥ 0 let’s
look at all pairs (m,n) with m + n = k. We need to introduce one more dummy

variable. Let’s let ℓ equal the power of x. If the power of x plus the power of y is k,
this means that the power of y is k − ℓ whenever the power of x is ℓ; furthermore, ℓ
ranges from 0 to k (as the powers of x and y are non-negative integers). Collecting,
we find

exey =

∞
∑

k=0

k
∑

ℓ=0

xℓyk−ℓ

ℓ!(k − ℓ)!
.

We now need to do some pattern recognition. Note the denominator looks a lot

like a binomial coefficient; it’s the bottom of
(

k
ℓ

)

. This suggestsmultiplying by one

(see §A.12 for more examples), in this case k!/k!.
Note that the denominator invokes thoughts of binomial coefficients. Specifi-

cally,
(

k
ℓ

)

= k!
ℓ!(k−ℓ)! . If we multiply by 1 in the form k!/k!, we’ll see the binomial

coefficient emerge:

exey =
∞
∑

k=0

k
∑

ℓ=0

1

k!

k!

ℓ!(k − ℓ)!
xℓyk−ℓ

=

∞
∑

k=0

1

k!

k
∑

ℓ=0

(

k

ℓ

)

xℓyk−ℓ

=

∞
∑

k=0

1

k!
(x+ y)k

=

∞
∑

k=0

(x+ y)k

k!
= ex+y,

where we used the binomial theorem to replace the ℓ sum with (x+ y)ℓ and we used
the series expansion to replace the k sum with ex+y. 2

All that matters from the above discussion is that our intuition is correct, and our

notation is good. It’s also worth noting the power of multiplying by 1. This is one

of the hardest math skills to learn, but one of the most important. We can always

multiply by 1 (or do something similar, add zero); the trick is finding good ways to

do this which lead to simpler expressions.

There is another definition of ex, which also arises in probability. You might

remember it from compound interest problems where the money is compounded in-

stantaneously. This definition is very useful in proving the Central Limit Theorem

for certain sums of independent random variables.
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An alternative definition of ex is

ex = lim
n→∞

(

1 +
x

n

)n

.

A nice exercise is to show that this definition agrees with the series expansion.

No introduction to ex would be complete without a few words about its deriva-

tive. Using the series expansion, the natural temptation is to differentiate term by

term, which gives

d

dx
ex =

d

dx

(

1 + x+
x2

2!
+

x3

3!
+ · · ·

)

= 1 +
2x

2!
+

3x2

3!
+

4x3

4!
+ · · ·

= 1 + x+
x2

2!
+

x3

3!
+ · · · = ex.

Of course, we need to justify interchanging a sum and a derivative. This is typically

done in an advanced analysis course.

Without using a calculator or computer, determine which is larger: eπ or πe.

Hint: One approach is to study the function x1/x (take the eπ root of both sides to

reduce the problem to comparing e1/e and π1/π. Use calculus to find the maximum

value. One could also study f(x) = ex − xe and try to show f(x) > 0 when

x > e; however, it’s hard to analyze all the critical points. It’s easier to study g(x) =
ex/e − x, and show g(x) > 0 for x > e.

B.6 Proof of the Cauchy-Schwarz Inequality

Our last analysis result is the Cauchy-Schwarz inequality, which is very useful in

bounding certain integrals.

Lemma B.6.1 (Cauchy-Schwarz Inequality) For complex-valued functions f and

g,

∫ ∞

−∞
|f(x)g(x)|dx ≤

(
∫ ∞

−∞
|f(x)|2dx

)1/2

·
(
∫ ∞

−∞
|g(x)|2dx

)1/2

. (B.3)

Proof of the Cauchy-Schwarz inequality: For notational simplicity, assume f and

g are non-negative functions. Working with |f | and |g| we see there’s no harm in

the above assumption. As the proof is immediate if either of the integrals on the

right hand side of (B.3) is zero or infinity, we assume both integrals are non-zero and

finite. Let

h(x) = f(x)− λg(x), λ =

∫∞
−∞ f(x)g(x)dx
∫∞
−∞ g(x)2dx

.
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As
∫∞
−∞ h(x)2dx ≥ 0 we have

0 ≤
∫ ∞

−∞
(f(x)− λg(x))

2
dx

=

∫ ∞

−∞
f(x)2dx − 2λ

∫ ∞

−∞
f(x)g(x)dx + λ2

∫ ∞

−∞
g(x)2dx

=

∫ ∞

−∞
f(x)2dx − 2

(

∫∞
−∞ f(x)g(x)dx

)2

∫∞
−∞ g(x)2dx

+

(

∫∞
−∞ f(x)g(x)dx

)2

∫∞
−∞ g(x)2dx

=

∫ ∞

−∞
f(x)2dx −

(

∫∞
−∞ f(x)g(x)dx

)2

∫∞
−∞ g(x)2dx

.

This implies

(

∫∞
−∞ f(x)g(x)dx

)2

∫∞
−∞ g(x)2dx

≤
∫ ∞

−∞
f(x)2dx,

or equivalently

(
∫ ∞

−∞
f(x)g(x)dx

)2

≤
∫ ∞

−∞
f(x)2dx ·

∫ ∞

−∞
g(x)2dx.

Taking square roots completes the proof. 2

This proof uses one of the most important identities in all of mathematics: if u
is a real number then u2 ≥ 0. The clever part is in choosing u. For those loving a
challenge, think why this works. Why is this a good choice? A good starting point

is to determine when the Cauchy-Schwarz inequality is an equality.

B.7 Exercises

Problem B.7.1 In our proof of Rolle’s Theorem we assumed f ′(a) and f ′(b) were
non-zero; handle the case when one of these vanish.

Problem B.7.2 One cannot always interchange orders of integration. For simplicity,

we give a sequence amn such that
∑

m(
∑

n am,n) 6=
∑

n(
∑

m am,n). Form,n ≥ 0
let

am,n =











1 if n = m

−1 if n = m+ 1

0 otherwise.

Show that the two different orders of summation yield different answers (the reason

for this is that the sum of the absolute value of the terms diverges).

Problem B.7.3 In justifying interchanging a derivative and a sum we needed the

existence of anN0 such that for all N ≥ N0,
∣

∣

∣

∣

(N + 1)(1− x) + x

(1− x)2
xN

∣

∣

∣

∣

≤ ǫ

2
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(where ǫ is a fixed positive number). Find an N0 that works (your answer should

depend on ǫ).

Problem B.7.4 Consider the dominated convergence theorem. Show that its conclu-

sion need not hold if there is no non-negative, piecewise continuous function g such

that |fn(x)| ≤ g(x) for all n.


