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A world record at an Atlantic City casino

and the distribution of the length

of the crapshooter’s hand

S. N. Ethier∗ and Fred M. Hoppe†

It was widely reported in the media that, on 23
May 2009, at the Borgata Hotel Casino & Spa in At-
lantic City, Patricia DeMauro1, playing craps for only
the second time, rolled the dice for four hours and 18
minutes, finally sevening out at the 154th roll. Ini-
tial estimates of the probability of this event ranged
from one chance in 3.5 billion [3] to one chance in
1.56 trillion [6]. Consensus was reached within days:
one chance in 5.6 billion [1, 5].

According to various sources, this established a
new world record, previously held by Stanley Fujitake
(118 rolls, May 1989, Las Vegas) and more recently
by a gentleman known only as The Captain (148 rolls,
July 2005, Atlantic City) [4], though the latter event
is not as well documented and was unknown to Bor-
gata officials. Presumably, such events have also oc-
curred in situations where no precise count of the
number of rolls was kept.

Background

Craps is played by rolling a pair of dice repeatedly.
For most bets, only the sum of the numbers appearing
on the two dice matters, and this sum has distribution

πj :=
6 − |j − 7|

36
, j = 2, 3, . . . , 12. (1)
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The basic bet at craps is the pass-line bet, which is
defined as follows. The first roll is the come-out roll.
If 7 or 11 appears (a natural), the bettor wins. If 2,
3, or 12 appears (a craps number), the bettor loses.
If a number belonging to

P := {4, 5, 6, 8, 9, 10}

appears, that number becomes the point. The dice
continue to be rolled until the point is repeated (or
made), in which case the bettor wins, or 7 appears, in
which case the bettor loses. The latter event is called
a seven out. A win pays even money. The first roll
following a decision is a new come-out roll, beginning
the process again.

A shooter is permitted to roll the dice until he or
she sevens out. The sequence of rolls by the shooter is
called the shooter’s hand. The length of the shooter’s
hand (i.e., the number of rolls) is a random variable
we will denote by L. Our concern here is with

t(n) := P(L ≥ n), n ≥ 1, (2)

the tail of the distribution of L. For example,
t(154) ≈ 0.178882×10−9 is the probability of achiev-
ing a hand at least as long as that of Ms. DeMauro;
to state it in the way preferred by the media, this
amounts to one chance in 5.59 billion, approximately.
The 1 in 3.5 billion figure came from a simulation that
was not extensive enough. The 1 in 1.56 trillion fig-
ure came from (5/6)154, which is the right answer to
the wrong question.
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Two methods

We know of two methods for evaluating the tail prob-
abilities (2). The first is by recursion. As pointed out
in [2], t(1) = t(2) = 1 and

t(n)

=

(

1 −
∑

j∈P

πj

)

t(n − 1) +
∑

j∈P

πj(1 − πj − π7)
n−2

+
∑

j∈P

πj

n−1
∑

l=2

(1 − πj − π7)
l−2πj t(n − l) (3)

for each n ≥ 3. Indeed, for the event that the shooter
sevens out in no fewer than n rolls to occur, consider
the result of the initial come-out roll. If a natural or
a craps number occurs, then, beginning with the next
roll, the shooter must seven out in no fewer than n−1
rolls. If a point number occurs, then there are two
possibilities. Either the point is still unresolved after
n− 2 additional rolls, or it is made at roll l for some
l ∈ {2, 3, . . . , n − 1} and the shooter subsequently
sevens out in no fewer than n − l rolls.

The second method, first suggested, to the best
of our knowledge, by Peter A. Griffin in 1987 and
rediscovered several times since, is based on a Markov
chain. The state space is

S := {co, p4-10, p5-9, p6-8, 7o},

whose five states represent the events that the shooter
is coming out, has established the point 4 or 10, has
established the point 5 or 9, has established the point
6 or 8, and has sevened out. The one-step transition
matrix, which can be inferred from (1), is

P :=
1

36













12 6 8 10 0
3 27 0 0 6
4 0 26 0 6
5 0 0 25 6
0 0 0 0 36













.

The probability of sevening out in n − 1 rolls or less
is then just the probability that absorption in state
7o occurs by the (n− 1)th step of the Markov chain,
starting in state co. Thus, we have

t(n) = 1 − (P n−1)1,5, (4)

where (P n−1)1,5 denotes the (1, 5) entry [or the
(co, 7o) entry] of the matrix P

n−1.
Clearly, (3) is not a closed-form expression, and

we do not regard (4) as being in closed form either.
Is there a closed-form expression, simple enough to
be used by a journalist the next time the record is
broken?

A closed-form expression

We apply the spectral representation to (4). The
eigenvalues of P include 1 and the four roots of the
quartic equation

23328z4 − 58320z3 + 51534z2 − 18321z + 1975 = 0.

We can use the quartic formula (or Mathematica) to
find these eigenvalues. We notice that the complex
number

α :=
9829

ζ1/3
+ ζ1/3,

where

ζ := −710369 + 18i
√

1373296647,

appears three times in each eigenvalue. Fortunately,
α is positive, as we see by writing ζ in polar form,
i.e., ζ = reiθ . We obtain

α = 2
√

9829cos

[

1

3
cos−1

(

− 710369

9829
√

9829

)]

,

The four nonunit eigenvalues can be expressed as

e1 := e(1, 1),

e2 := e(1,−1),

e3 := e(−1, 1),

e4 := e(−1,−1),

where

e(u, v) :=
5

8
+

u

72

√

349 + α

3

+
v

72

√

698 − α

3
− u 2136

√

3

349 + α
.
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Next we need to find right eigenvectors correspond-
ing to the five eigenvalues. Fortunately, these eigen-
vectors can be expressed in terms of the eigenvalues.
Indeed, with r(x) defined to be the vector-valued
function













−5 + (1/5)x
−175 + (581/15)x− (21/10)x2 + (1/30)x3

275/2− (1199/40)x + (8/5)x2 − (1/40)x3

1
0













we find that right eigenvectors corresponding to
eigenvalues 1, e1, e2, e3, e4 are

(1, 1, 1, 1, 1)T, r(36e1), r(36e2), r(36e3), r(36e4),

respectively. Letting R denote the matrix whose
columns are these right eigenvectors and putting
L := R

−1, the rows of which are left eigenvectors,
we know by (4) and the spectral representation that

t(n) = 1 − {Rdiag(1, en−1

1
, en−1

2
, en−1

3
, en−1

4
)L}1,5.

After much algebra (and with some help from Math-

ematica), we obtain

t(n) = c1e
n−1

1
+ c2e

n−1

2
+ c3e

n−1

3
+ c4e

n−1

4
, (5)

where the coefficients are defined in terms of the
eigenvalues and the function

f(w, x, y, z) := (−25 + 36w)[4835 − 5580(x + y + z)

+ 6480(xy + xz + yz)− 7776xyz]

/[38880(w − x)(w − y)(w − z)]

as follows:

c1 := f(e1, e2, e3, e4),

c2 := f(e2, e3, e4, e1),

c3 := f(e3, e4, e1, e2),

c4 := f(e4, e1, e2, e3).

Of course, (5) is our closed-form expression. We find
it a surprisingly elegant solution to what might be
considered a rather prosaic problem. Incidentally, the
fact that t(1) = t(2) = 1 implies that

c1 + c2 + c3 + c4 = 1 (6)

and
c1e1 + c2e2 + c3e3 + c4e4 = 1.

As we will see, 1 > e1 > e2 > e3 > e4 > 0 and
c1 > 0, c2 < 0, c3 < 0, and c4 < 0. In particular, we
have the inequality

t(n) < c1e
n−1

1
, n ≥ 1, (7)

as well as the asymptotic formula

t(n) ∼ c1e
n−1

1
as n → ∞. (8)

The latter may be adequate for large n; it can be
shown to give three significant digits for n ≥ 24, six
for n ≥ 55, nine for n ≥ 104, and 12 for n ≥ 156.

Numerical approximations

Rounding to 18 decimal places, the nonunit eigenval-
ues are

e1 ≈ 0.862473751659322030,

e2 ≈ 0.741708271459795977,

e3 ≈ 0.709206775794379015,

e4 ≈ 0.186611201086502979,

and the constants in (5) are

c1 ≈ 1.211844812464518572,

c2 ≈ −0.006375542263784777,

c3 ≈ −0.004042671248651503,

c4 ≈ −0.201426598952082292.

These approximations will give very accurate results
over a wide range of values of n.

But we would like something still simpler, usable
on a handheld calculator. We use the approximation

t̄(n) := c̄1(ē1)
n−1, (9)

where

c̄1 := 1.211844813 and ē1 := 0.862473752,

which are the nine-decimal-place upper bounds.
Then

1 < t̄(n)/t(n) < 1 + 10−6, 59 ≤ n ≤ 2531,

so, for most users, (9) should suffice.
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Applications

We can use our formula (5) to obtain other properties
of L. First, the distribution of L is

P(L = n) = t(n) − t(n + 1) =

4
∑

j=1

cje
n−1

j (1 − ej),

which is a linear combination [not a convex combina-
tion: (6) holds but three of the coefficients are neg-
ative] of four geometric distributions. In particular,
the probability generating function is the same linear
combination of the geometric pgfs:

h(z) := E[zL] =
4

∑

j=1

cj
(1 − ej)z

1 − ejz
.

It also follows that

E[L] =
4

∑

j=1

cj
1

1 − ej
≈ 8.525510204

and

Var(L) =

4
∑

j=1

cj
1 + ej

(1 − ej)2
−

( 4
∑

j=1

cj
1

1 − ej

)2

≈ 46.040738234.

Different expressions were obtained for these quan-
tities in [2], namely

E[L] =
1671

196
and Var(L) =

1768701

38416
.

Of course, the results are consistent.
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