MATH/STAT 341: PROBABILITY: SPRING 2015
COMMENTS ON HW PROBLEMS

STEVENJ. MILLER (SIM1@WILLIAMS.EDU): MATH/STAT 341, SPRIG 2015

ABSTRACT. A key part of any math course is doing the homework. This earfgom reading the material in the book so that you
can do the problems to thinking about the problem statenhemt,you might go about solving it, and why some approache aond
others don'’t. Another important part, which is often fotgat is how the problem fits into math. Is this a cookbook moblith made
up numbers and functions to test whether or not you've medtiire basic material, or does it have important applicattbroughout
math and industry? Below I'll try and provide some commeatplace the problems and their solutions in context.

Date November 6, 2018.
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1. HW #2: DUE SEPTEMBER14, 2018

1.1. Assignment. First assignment:

#1: Section 1.2: Modify the basketball game so that ther@@ig players, numbered 1, 2, ..., 2013. Playaways gets a
basket with probabilityl /2¢. What is the probability the first player wins?

#2: Section 1.2: Is the answer for Example 1.2.1 consistéhtwhat you would expect in the limit astends to minus
infinity? (Note there is a typo in the book.)

#3: Section 1.2: Compute the first 42 terms of 1/998999 andhoemh on what you find; you may use a computer (but
Mathematica or some program like that is probably better!).

#4: Section 2.2.1: Find sets and B such that A| = | B|, A is a subset of the real line ariglis a subset of the plane (i.e.,
R?) but is not a subset of any line.

#5: Section 2.2.1: Write at most a paragraph on the continupothesis.

#6: Section 2.2.2: Give an example of an open set, a closedrsth set that is neither open nor closed (you may not use
the examples in the book); say a few words justifying youmaars

#7: Section 2.3: Give another proof that the probabilityhaf émpty set is zero.

#8: Find the probability of rolling exactly sixes when we roll five fair die fork =0, 1, ..., 5. Compare therkvneeded
here to the complement approach in the book.

#9: If f andg are differentiable functions, prove the derivativefdf:)g(x) is f'(z)g(z) = f(z)g'(x). Emphasize where
you add zero.

1.2. Solutions. First assignment:

#1: Section 1.2: Modify the basketball game so that ther@i& players, numbered 1, 2, ..., 2013. Playaways gets a
basket with probabilityl /2¢. What is the probability the first player wins?
Solution: There is a very elegant way of solving this. We only care abimeiprobability of the first person winning. Thus, we
may group persons 2 through 2013 as a team. The probabiitfirdi person makes a basket is 1/2, and the probability the
first person misses is 1 - 1/2 = 1/2. What about the second p&rEhe probability they miss is— 1/22, and in general the
probability thek™ person misses is — 1/2*. Thus the probability thagveryonenisses their first shot . (1 — 1/2%); if
we call that product we findr ~ 0.288788.

We now argue as in the book. if is the probability the first person wins, then= % + rz (if everyone misses their
first shot, then the first player has the ball and it’s like theng has just begun; by definition the probability they winhis t

configuration is just). Solving we findr = % ~ .703025.

1
When solving a problem, it's always good to check and seecifafiswer is reasonable. Our answer is between 1/2 and 1.
Clearly the first person can’t have a greater than 100% chafne@ning; further, the odds must be at least 50%, as player 1

shoots first and hits half their shots. Thus our answer paksesnell test and is reasonable.

A major theme of the class is to write simple code to see if ymswer is reasonable. Here is an uncommented Mathematica
code. Try to figure out the logic (hopefully the comments Relp
hoops[num] := Modul e[{},
win = 0; (* keeps track of wins *)
For[n = 1, n <= num n++, (* loops fromgane 1 to gane num *)
{ (x starts the n | oop *)

basket = 0; (* set basket to 0O, stop gane when soneone gets one x)

Wi | e[ basket == 0, (* do stuff bel ow while no basket nade *)

{ (+» start the basket |oop, keep shooting till someone gets it =)
For[k =1, k <= 2013, k++, (* goes through all 2013 people *)
{

X = Randon{]; (* chooses a random nunber uniformy in [0, 1] *)

If[x <= 1/2"k, basket = 1]; (*player k shoots, if x < 1/2”k basket! *)

| f[basket == 1 & k == 1, win = win + 1]; (*if basket and k=1, 1st player wi nsx*)
| f[ basket == 1, k = 2222]; (* no matter what, if basket made stop gane *)

i (x end k )
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}1; (* end of while *)

}. (* end n *)

Print["We played ", num games."]; (*says how many ganes pl ayed)

Print["Percent player one won: ", 1.0 win/nun]; (*says percentage player 1 won=)
1
(* end nodul e *)
Typing Timing[hoops[100000]] (which plays the game 10®@,@ithes and records how long it takes to run), we observe the
first player winning with probability).70203 (it took 5.64 minutes to run), which supports our predictodn703025.

#2: Section 1.2: Is the answer for Example 1.2.1 consistéhtwhat you would expect in the limit astends to minus
infinity? (Note there is a typo in the book.)
Solution: Yes. The claimed answer is

c2+1
As ¢ — —oo the integral tends to zero because the cosine factor is leolimat the exponential function rapidly approaches
zero. The right hand side looks likec/(c* + 1) for ¢ large and negative, which also tends to zero.

m e
ce"" +c
/ e“Ccosxdr = ———.
0

#3: Section 1.2: Compute the first 42 terms of 1/998999 andhoamh on what you find; you may use a computer (but
Mathematica or some program like that is probably better!).
Solution: TypeSet Accur acy[ 1/ 998999, 50] in Mathematica or online at WolframAlpha (go to
htt p: // ww. wol franal pha. con). This yields

.000001001002003005008013021034055089144233377610. . ..

Notice the Fibonacci numbers! This is not a coincidencejlvgee why this is true when we get to generating functions.
For more on this seAn Unanticipated Decimal Expansiday Allen Schwenk in Math Horizons (September 2012), avédlab
online (you may need to move forward a few pages) at

http://digital editions.wal sworthprintgroup.com publication/?i =123630&p=3.

#4: Section 2.2.1: Find sets and B such that A| = |B|, A is a subset of the real line arfglis a subset of the plane (i.e.,
R?) but is not a subset of any line.
Solution: There are many solutions. An easy one is taet {(a, a?) : a € A} for any setA with at least 3 points (if4 had
just two points then we would get a line).

#5: Section 2.2.1: Write at most a paragraph on the continugpothesis.

Solution: The continuum hypothesis concerns whether or not there eandet of cardinality strictly larger than that of the
integers and strictly smaller than that of the reals. As tadsrare essentially the powerset of the integers, theiqodst
whether or not there is a set of size strictly betw&andP(N). Work of Kurt Gédel and Paul Cohen proved the contin-
uum hypothesis is independent of the other standard axidrastdheory. Seétt p:// en. wi ki pedi a. or g/ wi ki /
Cont i nuum hypot hesi s.

It's interesting to think about whether or nosiouldbe true. For example, il is a finite set witn elements, thepA| = n
but|P(A)] = 2. Note that/A| < |P(A)[; in fact, asn increases there araanysets of size strictly betweeA andP(A).
Should something similar hold f¢N| and|P(N)|? NoteN is the smallest infinity, whilé®(N) has the same cardinality as the
real numbers (to see this, consider binary expansions obetsrin|0, 1], and this is essentially the same7agN), as taking
integerk corresponds to having a 1 in the* digit of a base 2 expansion). This is a nice example wherenfivéte case may
have a very different behavior than the finite case — can yaldimther such example?


http://www.wolframalpha.com/
http://digitaleditions.walsworthprintgroup.com/publication/?i=123630&p=3
http://en.wikipedia.org/wiki/Continuum_hypothesis
http://en.wikipedia.org/wiki/Continuum_hypothesis
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#6: Section 2.2.2: Give an example of an open set, a closedrsth set that is neither open nor closed (you may not use
the examples in the book); say a few words justifying youmsars
Solution: An open set in the plane would Béz, y) : 0 < x < 1}; this is a vertical strip. Given any poifitg, yo) in the set,
the ball of radius: = % min(zg, 1 — ) is entirely contained in the strip. The set becomes closee iinclude both vertical
lines, and is neither open nor closed if we include only onthefvertical lines.

#7: Section 2.3: Give another proof that the probabilityhaf émpty set is zero.
Solution: As ) U () = (), we have

Prob(@) = Prob(Ud) = Prob(d) + Prob(f) = 2Prob(f).
HenceProb(0) = 0.

#8: Find the probability of rolling exactly sixes when we roll five fair die fork =0, 1, ..., 5. Compare therkvneeded
here to the complement approach in the book.

Solution: Somek are straightforward: it: = 0 then the answer i§5/6)°> as we must get a non-six each time. Similarly if
k = 5 the answer i$1/6)® as we need to get a six each time.

This leaves us wittt: = 1,2 and 3. There are only five ‘ways’ to roll five die and get exaothe six; letting« denote a roll
that isn’t a six, the possibilities afiex * * *, %6 * **, * * 6 * *, * * *6%, andx* * * x 6. Each of these events has probability
(1/6)(5/6)* (there is a one in six chance of rolling a six, which must hapfoe one of the five rolls, and there is a five
out of six chance of rolling a non-six and that must happem fioes). Thus the probability of rolling exactly one 6 istjus
5-(1/6)(5/6)* = 3125/7776. Similarly the probability of exactly four 6s is- (1/6)*(5/6) = 25/7776.

What about: = 2? There are now 10 ways to roll exactly two 6s. It's importanéhumerate them in a good way so we
don’t miss anything. We start with all the ways where fingt six rolled is from the first die. After we exhaust all those, we
then turn to all the ways where tffiest six rolled is from the second die, and so on. Again lettirdgnote a non-6, we find

606 * %, 6 % 6 % %, 6 % %6k, 6 * * x 6,
%606 * *, x0 * 6%, x6 * %0,

* % 66%, x % 6 % 6,

* % %060.

Each of these occurs with probability/6)?(5/6)*, and thus the total probability i) - (1/6)%(5/6) = 625/3888.

We are left withk = 3. One way to do this would be to exhaustively list the posiied again. This i lot more painful,
though, as we now have three 6s to move around. Fortundtelg’s an easier way! There’s a wonderful duality between
k = 2 andk = 3 when we have five rolls. Notice that there is a one-to-oneespondence between rolling exactly two 6s in
five rolls and rolling exactly three 6s in five rolls! To seesthtake a set of five rolls that has exactly two 6s; change theGso
to 6s and the 6s to non-6s! Thus, to enumerate our possbjlitie just have to take our list frokln= 2 and change each 6 to
a non-6 and each non-6 to a 6! This gives

* x 660, %6 * 66, x66 * 6, x666%,
6 * %66, 6 * 6 % 6, 6 * 66,
66 * %6, 66 * G,
666 * .
Each of these possibilities happens with probability6)?(5/6)2; as there are 10 of these the total probability of rolling
exactly three 6si30 - (1/6)3(5/6)% = 125/3888.
If we sum our five probabilities we get

O e O (O

If you know binomial coefficients, you can do this problem mdaster; it’s fine to have done it this way. The probability
of getting exactlyk of the five choices to be 6 is juéf) (1/6)"(5/6)°* if k € {0,...,5}.
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#9: If f andg are differentiable functions, prove the derivativefdf:)g(x) is f'(x)g(x) = f(z)¢'(x). Emphasize where
you add zero.
Solution: Let f andg be differentiable functions, and sdi{z) = f(x)g(z). It's not unreasonable to hope that there's a
nice formula for the derivative ofl in terms of f, f/, g andg’. A great way to guess this relationship is to take some specia
examples. If we tryf(z) = 2® andg(z) = %, thenA(z) = 27 so A’(z) = 725. At the same timef’(z) = 3z% and
g'(z) = 423. There’s only two ways to combing(z), f’(z), g(x) andg’(x) and getz®: f'(x)g(z) and f(x)g’'(z). (Okay,
there are more ways if we allow divisions; there’s only twoys/df we restrict ourselves to addition and multiplicatipn.
Interestingly, if we add these together we get - 2* + 2% - 423 = 725, which is justA’(z). Thissuggestshat A’(z) =
f(@)g(z)+f(z)g' (). If we try more and more examples, we'll see this formula lsagprking. While this is strong evidence,
it's not a proof; however, itvill suggest the key step in our proof.

From the definition of the derivative and substitution,

Aw) — 1 ACER =A@ L Jt gl + )~ f(@)gla)

h—0 h h—0 h

(1.1)

From our investigations above, we think the answer should’be)g(x) + f(z)¢'(x). We can begin to see afi(x) and a
¢'(z) lurking above. Imagine the last term wefer)g(z + h) instead off (x)g(x). If this were the case, the limit would equal
1'(x)g(x) (we pull out theg(z + h), which tends tg(z), and what’s left is the definition of’(x)). Similarly, if the first piece
were instead (z)g(x + h), then we'd getf (z)¢’(x). What we see is that our expressiorrigng to look like the right things,
but we're missing pieces. This can be remedied by adding retoe formf(z)g(x + h) — f(x)g(x + h). Let's see what this
does. In the algebra below we use the limit of a sum is the sutheolimits and the limit of a product is the product of the
limits; we can use these results as all these limits existfiide

/ _ o flathgl@+h) - f@)g(@+h) + f@)g(@+h) = fz)g(z)
Al@) = Jim h

= i LEEN T i 0 ) 4 i pa) i LI )40 4 p(a)g (o),

O
The above proof has a lot of nice features. First off, it's pheof of a result you should know (at least if you've taken a
calculus class). Second, we were able to guess the form @rtheer by exploring some special cases. Finally, the proof
was a natural outgrowth of these cases. We saw termsfligg(z) and f(x)g’(z) appearing, and thus asked ourselves:
So, what can we do to bring out these terms from what we have® led to adding zero in a clever way. It's fine to add
zero, as it doesn’t change the value. The advantage is welempdeith a new expression where we could now do some great
simplifications.

No written homework due next Friday! Instead use the time to lild up your strategic reserve in the book. We will not
cover most of Chapter 3 in class — read the material and if thez are calculations you are having trouble with or want
to see in class, let me know and I'll do. Start reading ChapteiFour. Monday'’s class will be a quick run of the Chapter
Three material. Later we will talk about some applications d probability to mathematical modeling. There will not be
reading assigned for this; the purpose of this is to (1) quick show you how useful probability can be, and (2) give you a
sense of the tools and techniques we'll see later in the sertegsand (3) give you plenty of time to read ahead and build
up your strategic reserve (if you don’t take advantage of th you will have some painful weeks down the road!).

Also use this time to make sure you can do simple, basic codinthis is why | am not giving you HW to submit. |
don’t care what language you use (Mathematica, R, Python, Ftran, ...), but you should be comfortable doing simple
assignments. I'll post a list of basic problems you should bable to do. If you want to learn Mathematica, | have
a template online and a YouTube tutorial. Just go tohttp://web.w | |ians. edu/ Mat hematics/sjm ||l er/
public_htm /mat h/ handout s/ | at ex. ht m(note you'll also get links to using LaTeX). There are also \deos
online from introducing coding in my problem solving class.

e 2017:htt ps://youtu. be/ e8l 5al er kOn


http://web.williams.edu/Mathematics/sjmiller/public_html/math/handouts/latex.htm
http://web.williams.edu/Mathematics/sjmiller/public_html/math/handouts/latex.htm
https://youtu.be/e8I5alerkOw
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e 2018: htt ps://youtu. be/ e8I 5al er kOw (code here:http://web. willians.edu/ Mat hemati cs/
sjmller/public_htn/331Fal8/ mat hemati capr ogr ans/ mat h331l nt r oCodi ng2018. nb)

1.3. Assignment: HW #3: Due Friday, September 28, 2018#1: Imagine we have a deck withsuits andV cards in each
suit. We play the gamAces Up except now we put dows cards on each turn. What is the probability that the finedrds

are all in different suits? Write a computer program to seeil1,000,000 deals and compare your observed probabithty w
your theoretical prediction; it is fine to just do the progrions=4 and N=13 (a standard hand); you may earn 15 out of 10
points if you write general code for generalN. #2: Consider all generalized gamesAxfes Upwith C cards ins suits

with N cards in a suit; thu§¢’ = sN. What values ok and NV give us the greatest chance of all the cards being in differen
suits? Of being in the same suit? #3: The double factoriaéfindd as the product of every other integer down to 1 or 2;
thus6!! = 6-4-2while7!! = 7-.5-3- 1. One can writg2n — 1)!! asa!/(b°d!) wherea, b, c andd depend om; find this
elegant formulaHint: b turns out to be a constant, taking the same value fonalit4: A regular straight is five cards (not
necessarily in the same suit) of five consecutive numbees, aray be high or low, but we anet allowed to wrap around. A
kangaroo straight differs in that the cards now differ by@ @xample, 4 6 8 10 Q). What is the probability someone istdeal
a kangaroo straight in a hand of five cards? #5: A prisonenvisngan interesting chance for parole. He’s blindfolded ahd t

to choose one of two bags; once he does, he is to reach in drmlpalmarble. Each bag has 25 red and 25 blue marbles, and
the marbles all feel the same. If he pulls out a red marble ketifree; if it's a blue, his parole is denied. What is his a&n

of winning parole? #6: The set-up is similar to the previorghem, except now the prisoner is free to distribute thebhesr
among the two bags however he wishes, so long as all the nsaatdedistributed. He's blindfolded again, chooses a bag at
random again, and then a marble. What is the best probahditan do for being set free? While you can get some points for
writing down the correct answer, to receive full credit youstproveyour answer is optimal!


https://youtu.be/e8I5alerkOw
http://web.williams.edu/Mathematics/sjmiller/public_html/331Fa18/mathematicaprograms/math331IntroCoding2018.nb
http://web.williams.edu/Mathematics/sjmiller/public_html/331Fa18/mathematicaprograms/math331IntroCoding2018.nb
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2. HW #3: DUE FRIDAY, SEPTEMBER28, 2018

2.1. Assignment (followed by solutions):#1: Imagine we have a deck withsuits andN cards in each suit. We play the
gameAces Up except now we put dowsn cards on each turn. What is the probability that the fingdrds are all in different
suits? Write a computer program to simulate 1,000,000 deadscompare your observed probability with your theorética
prediction; it is fine to just do the program for s=4 and N=13t@ndard hand); you may earn 15 out of 10 points if you write
general code for generaJ N. #2: Consider all generalized gamesAaies Upwith C' cards ins suits with NV cards in a suit;
thusC = sN. What values ot and NV give us the greatest chance of all the cards being in diffengits? Of being in the
same suit? #3: The double factorial is defined as the prodwstesy other integer down to 1 or 2; th@8 = 6 - 4 - 2 while

7!l =7-5-3-1. One can writd2n — 1)!! asa!/ (b°d!) wherea, b, c andd depend om; find this elegant formulaHint: b turns

out to be a constant, taking the same value formalk4: A regular straight is five cards (not necessarily in theesauit) of

five consecutive numbers; aces may be high or low, but weatrallowed to wrap around. A kangaroo straight differs in that
the cards now differ by 2 (for example, 4 6 8 10 Q). What is thebpbility someone is dealt a kangaroo straight in a hand of
five cards? #5: A prisoner is given an interesting chancedoolp. He's blindfolded and told to choose one of two bagsgon
he does, he is to reach in and pull out a marble. Each bag ha&si2zgd 25 blue marbles, and the marbles all feel the same. If
he pulls out a red marble he is set free; if it's a blue, his [gaiodenied. What is his chance of winning parole? #6: Theipet

is similar to the previous problem, except now the prisordree to distribute the marbles among the two bags however he
wishes, so long as all the marbles are distributed. He'slfdided again, chooses a bag at random again, and then aemarbl
What is the best probability he can do for being set free? 8#wolu can get some points for writing down the correct answer,
to receive full credit you mugiroveyour answer is optimal!

#1: Imagine we have a deck withsuits andV cards in each suit. We play the gaiees Up except now we put dows
cards on each turn. What is the probability that the fingdrds are all in different suits? What is the probabilityt the finals
cards are all in different suits? Write a computer prograsinmulate 1,000,000 deals and compare your observed piipabi
with your theoretical prediction; it is fine to just do the gram for s=4 and N=13 (a standard hand); you may earn 15 out of
10 points if you write general code for genesalV.

Solution: There aresN cards and there ar(e‘iv) ways to choose of them with order not mattering. How many ways are
there to choose one card from each suit? (f9(})---(}) a total ofs times, orN*. Thus the answer i&*/(*") =
Nosl(sN — s)l/(sN)\.

acesup[n_, S, numter_] := Mdule[{},
(*n, S vari abl esx)
(*n is nunber of cards in a suit,
can’t use C or N as variable in Mathematicax)
(*S is the nunber of suitsx)
(xfor this problemonly care about suits of cards,
not nunbers=*)(*only care about the suit of the cards;
creates a deck of S suits with n cards in each suitx)
(*have suites 1, 10, 100,

1000 and so on so can easily tell if one of eachx)
deck = {};
For[i =1, i <=n, i++ (=

this goes through each of the possible nunbers *)
For[s = 1, s <= S, s++, (* this goes through each possible suit *)

deck = AppendTo[deck, 107(s - 1)]]11;

maxsum = Suni 10°(s - 1), {s, 1, S}];

(» this is the value of a hand of S cards, 1 in each suit x)
(» only way to sumto 111...111 is if one of each suit! =)
success = 0; (* initialize nunber of successes to 0 *)
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(* now the main | oop, randomy checking s cards numiter tines *)
For[i =1, i <= numter, i++,
{
(» prints an update every tinme do 10% x)
[f[Mod[i, numiter/10] == O,
Print["Have done ", 100.0 i/numter, "%"]];
hand = RandontSanpl e[ deck, S]; (=
randomy chooses S cards from deck *)
[f[Sunfhand[[i]], {i, 1, S}] == maxsum success = success + 1];
(» if the hand has S different suits increase success by 1 *)
}1; (* end of i loop *)

Print["CObserved Percent of tine last ", S, " sane suit is ",
100.0 success/numiter, "%"];
Print["Theoretical Percent of tine last ", S, " same suit is ",

100.0 n”S/ Binomal[Sn, §, "%"];
]1; (* end of nodul e *)

For example, running with four suits, 13 cards in a suit, aoithgl 1,000,000 simulations gave us an observed probability
of 10.5343%, very close to the theoretical prediction 06298%.

#2: Consider all generalized gamesAafes Upwith C cards ins suits with N cards in a suit; thu§¢’ = s/N. What values
of s andN give us the greatest chance of all the cards being in diffengits? Of being in the same suit?
Solution: If s = 1 then all the cards are in the same suit)if= 1 then all the cards are in different suits.

#3: The double factorial is defined as the product of evergmtiteger down to 1 or 2; thui! = 6-4-2 while 7! = 7-5-3-1.
One can writg2n — 1)!! asa!/(b°d!) wherea, b, ¢ andd depend om; find this elegant formulaHint: b turns out to be a
constant, taking the same value for all
Solution: We have

@n—1 = (@n-1)(2n-3)---3-1
B 2n-(2n—2)---4-2
= (2n—1)(2n—3)-~-3-1-2n.(2n_2)”'4'2
(2n)! (2n)!

o2n-(2n—2)---4-2  2npl’

thusa = 2n, b = 2, ¢ = n andd = n. It's natural to multiply by the even numbers; we have a poawer all odd numbers,
which isn’t a factorial because we're missing the even nusibEhe final bit is then noticing that in the denominator weeha
all even numbers, and by pulling out a 2 from each we have afaaterial. Why is this problem useful? We’'ll see later in the
semester how to approximate factorials (Stirling’s fora)ulvhich then immediately yields estimates on the douldtofzl
(which we’ll also see has combinatorial significance).

#4: A regular straight is five cards (not necessarily in thaesauit) of five consecutive numbers; aces may be high or low,
but we arenotallowed to wrap around. A kangaroo straight differs in tiat ¢ards now differ by 2 (for example, 4 6 8 10 Q).
What is the probability someone is dealt a kangaroo straigatand of five cards?

Solution: The possibilitiesare A3579,246810,3579J,46810Q,57 %I&K10 Q A. There are thus six possibilities.
All we need to do is figure out the probability of one of theseasid then multiply by six. For each fixed kangaroo straight,
we have four choices for each card, for a totakdKangaroo straights of a given pattern. Thus the total nurabkangaroo
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straights is5 - 4°> = 6144. As the number of ways to choose five cards from 52 (with ordenmattering) i5(552) = 2,598,960,
we see the probability of a Kangaroos straightds /54145 ~ 0.00236402.

#5: A prisoner is given an interesting chance for parole séhdfolded and told to choose one of two bags; once he does,
he is to reach in and pull out a marble. Each bag has 25 red abli@%narbles, and the marbles all feel the same. If he pulls
out a red marble he is set free; if it's a black, his parole isigeg. What is his chance of winning parole?

Solution: His chance is 50%. Probably the easiest way to see this ishteed is complete symmetry here between red and
blue marbles, and thus he has an equal chance of choosieg éiibte there are 100 marbles in all (50 red and 50 blue).

#6: The set-up is similar to the previous problem, except timprisoner is free to distribute the marbles among the two
bags however he wishes, so long as all the marbles are digttibHe’s blindfolded again, chooses a bag at random agjadh,
then a marble. What is the best probability he can do for beatdree? While you can get some points for writing down the
correct answer, to receive full credit you mpsbveyour answer is optimal!

Solution: Let’s assume he placesed marbles and blue marbles in the first bag; thus the second baghasr red marbles
and50 — b blue marbles. If he picks the first bag, he earns parole withability ., while if he picks the second bag he
earns parole with probability Wit%. As each bag has probability 1/2 of being chosen, his prdibabf getting parole

is
1 r 1 50—7r  b(25—7)+r(75—7)
2r+b T2100—r—b (100 —b—7r)(b+7) "

It's always worthwhile checking extreme casesr K b then the two jars are balanced, and we have a 50% chance. Can
we break 50%? What if we put all the reds in one and all the bluasother? That gives us 50% as well. How about 15 red
and 35 blue in one jar? That also gives 50%.

You might be thinking that, no matter what we do, we alwayss§&b. We've unfortunately madevery common mistake
— we're not freely investigating all possibilities. Noteatheach of these cases has the same number of marbles in each ja
What if we try something else, say 20 red and 10 blue in oneJ&& gives 23/42, or a tad over 54.7%. This is promising.
What if we keep the 20 red and decrease to 5 blue? Doing scsy8¢tdor 60%. It now becomes natural to keep sending the
number of blues in the first jar to zero. If we have 20 red in tret far and no blue, we get 11/16 or 68.75%. Of course, it's
wasteful to have 20 red in the first jar; if there are only réustif we pick that jar wenustget a red. Thisuggestsve want
to have 1 red in the first jar and all the remaining marbles énstacond. If we do this we get a red with probability 74/99, or
almost 75%.

Now that we have a conjectured answer, the question is howedmraveit? Assume we start with red andb blue in the
first jar. If we transfer some blues to the second jar we irs@dhe chance of getting a red in the first jar but decrease the
chance in the second, and we need to argue that we gain morevéhknse. There are a lot of ways to try to do the algebra.
One is to quantify that this movement always helps us, anildhee we have no blues in the first jar we transfer the remginin
reds.

Here is another approach. We break all the possibilities¢ases depending on teeamof  andb. Thus, let’s look at all
pairs(r, b) such that- + b = ¢. We might as well assume< 50 asoneof the jars must have at most 50 marbles. This gives
us the function

_¢(25—7) +50r
9:(") = —Ago =g

whose derivative (with respect tQ is
, _ 50-c
9:r) = o= g
As c is positive and at most 50, we see the derivative with regpects positive unlesg = 50 (in which case the derivative
is zero, which corresponds to our earlier result that thégbdity is independent of andb when each jar has 50 marbles).
We thus see that for a giveatal number of marbles in jar 1, the best we can do is to have all gxdl@s in jar 1 be red. This
means we only need to explore assignments where jar 1 isdalhosvever, now our earlier analysis is applicable. If janlyo
has red marbles, once we have one red marble the others &assugere, and are better used in jar 2 (moving those extra re
marbles over doesn’t change the probability of a red in jdut does increase it in jar 2). Thus, the optimal solutioraisl]
consisting of just one red marble.
We give some Mathematica code to investigate the problem.
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flri_, bl , r2_, b2_] :=(2/2) (r1/ (rl + bl)) + (1/2) (r2/ (r2 + b2));
mar bl ejar[red_, blue_] := Mdule[{},
maxprob = O;
maxred = O;
maxbl ue = 0;
For[rl =1, rl <=red, rl++ (=*
wi t hout | oss of generality one jar has a red =)
For[bl = 0, bl <= blue, bl++,
If[rl + bl >=1 & (red - rl) + (blue - bl) >= 1, (=
this is to make sure each jar is nonenpty »*)
{
x = f[r1, bl, red - r1l, blue - bl];
If[x > maxprob,
{
maxprob = x;
maxred = r1i;
maxbl ue = bl,;
}]1; (* end of x > maxprob =)
}1; (x end of if loop *)
]1; (* end of bl |oop *)
]; (* end of r1 [oop *)
Print["Max prob is ", maxprob, " or ", 100. naxprob, "% and have ", maxred,
"'red and ", maxbl ue,
" blue in first jar."];
]; (* end of nodule x)

To test how fast this is, type
Ti m ng[ mar bl ej ar[ 1000, 1000]]

Of course, this is not necessarily the fastest code. Thdgrois we investigate some pairs multiple times (if the dsition
of (red,blue) for the two jars are (10,40) and (40,10), #&te same as (40,10) and (10,40). We instead loop on thetotdler
of marbles in the first jar, and we may assume without loss négaity that the first jar has at most half the total number of
marbles (by the Pidgeon-hole principle, at least one jaahasost half the marbles). This leads to faster code, which@60
red and 1000 blue runs in a little less than half the time.

flrl, bl, r2_, b2.] :=(1/2) (r1/ (rl + bl)) + (1/2) (r2/ (r2 + b2));

fastmarblejar[red_, blue_] := Mdule[{},
maxprob = O;
maxred = O;
maxbl ue = 0;
For[num= 1, num<= (red + blue)/2, numt+, (*

wi t hout | oss of generality one jar has a red =)
For[rl =0, rl <= num r1l++,
{
bl = num- r1;
x = f[r1, bl, red - rl, blue - bl];
I f[x > maxprob,
{
maxprob = x;
maxred = r1i;
maxbl ue = bil;
}1; (* end of x > maxprob *)
}1; (* end of rl1 [oop *)
1; (* end of num |l oop *)
Print["Max prob is ", maxprob, " or ", 100. naxprob, "% and have ", maxred,
red and ", maxbl ue,
" blue in first jar."];
]; (* end of nodul e *)

To test how fast this is, type
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Ti mi ng[ mar bl ej ar[ 1000, 1000]]

It is possible to solve this entirely elementarily; i.e., caculus! The best we can do can't be better than 75%. To see
this, imagine one jar has probability> 1/2 of red; then there must be more blacks in the other jar thanased it must
have a probabilityy < 1/2. The best possible case is wher= 1 andg = 1/2 (it's NOT clear that we can do this!), which
gives(p + ¢)/2 = 3/4 as our chance of winning. So we know we can't do better than.738tv close can we come? The
closerq is to 1/2, the better. We knowhas to be less than 1/2; the closest it can be is ifugemiss, which happens when
have 49 red and 50 blue. Why? In this case we get 49/99, so veelt#idy1/198; note any other fraction/(r + b) misses
1/2 by more (as the best case is when= b — 1, in which case we miss 1/2 bly/(4b — 2). Thus the best we can do is
(1449/99)/2 =74/99 ~ 0.747475%.

Assignment: HW #4: Due Friday, October 5: Note Mathematical Inductioigimibe useful for some of these problems. #1:
Let {A,}>2 , be a countable sequence of events such that forea@tob(A4,,) = 1. Prove the probability of the intersection
of allthe A,,’s is 1. #2: Prove the number of ways to mazhpeople inton pairs of 2 is(2n — 1)!! (recall the double factorial

is the product of every other integer, continuing down to 2pr#3: Assumé < Prob(X),Prob(Y) < 1 andX andY

are independent. Ar& ¢ andY“ independent? (Not& ¢ is not X, or 2\ X). Prove your answer. #4: Using the Method of
Inclusion-Exclusion, count how many hands of 5 cards haleaat one ace. You need to determine what the evénstiould

be. Do not find the answer by using the Law of Total Probabditd complements (though you should use this to check your
answer). #5: We are going to divide 15 identical cookies agrfoar people. How many ways are there to divide the cookies
if all that matters is how many cookies a person receives? @d problem but now only consider divisions of the cookies
where person gets at least cookies (thus person 1 must get at least one cookie, and sé&@nRedo the previous problem
(15 identical cookies and 4 people), but with the followirgstraints: each person gets at most 10 cookies (it's thesiipe
some people get no cookies). #7: Find a discrete randomblariar prove none exists, with probability density funntijtx
such thatfx () = 2 for somex between 17 and 17.01. #8: Find a continuous random variabjerove none exists, with
probability density functiorfx such thatfx (x) = 2 for all  between 17 and 17.01. #9: L&t be a continuous random
variable with pdffy satisfyingfx (z) = fx(—=z). What can you deduce abaklik, the cdf? #10: Find if you can, or say why
you cannot, the first five Taylor coefficients of (a}(1 — ) atu = 0; (b) log(1 — u?) atu = 0; (¢) zsin(1/z) atz = 0. #11:
Let X be a continuous random variable. (a) Pr@%g is a non-decreasing function; this medns(z) < Fx (y) if z < y. (b)

Let U be a random variable with cdfy () = 0if u < 0, Fy(z) =2 if 0 <z < 1, andFy(x) = 1if 1 < z. Let F' be any
continuous function such that is strictly increasing and the limit asapproaches negative infinity &f(x) is 0 and the limit
asx approaches positive infinity is 1. Pro¥e= F'~!(U) is a random variable with cdf.
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3. HW #4: DUE FRIDAY, OCTOBERS

3.1. Assignment: HW #4: Due Friday, October 5: Note Mathematical Inductiogintibe useful for some of these problems.
#1: Let{A,}>°, be a countable sequence of events such that for eathob(4,,) = 1. Prove the probability of the
intersection of all thed,,’s is 1. #2: Prove the number of ways to matehpeople inton pairs of 2 is(2n — 1)!! (recall the
double factorial is the product of every other integer, gurnhg down to 2 or 1). #3: Assume < Prob(X), Prob(Y) < 1
andX andY are independent. Ar& ¢ andY ¢ independent? (Not& © is not X, orQ \ X). Prove your answer. #4: Using the
Method of Inclusion -Exclusion, count how many hands of Slsdrave at least one ace. You need to determine what the events
A, should be. Do not find the answer by using the Law of Total Podityaand complements (though you should use this to
check your answer). #5: We are going to divide 15 identicakges among four people. How many ways are there to divide
the cookies if all that matters is how many cookies a persoeives? Redo this problem but now only consider divisions of
the cookies where persogets at least cookies (thus person 1 must get at least one cookie, and sé@nfRedo the previous
problem (15 identical cookies and 4 people), but with thefeing constraints: each person gets at most 10 cookisslfit's
possible some people get no cookies). #7: Find a discrettorarvariable, or prove none exists, with probability densit
function fx such thatfx (z) = 2 for somez between 17 and 17.01. #8: Find a continuous random variabjerove none
exists, with probability density functiofix such thatfx (x) = 2 for all = between 17 and 17.01. #9: L&t be a continuous
random variable with pdfx satisfyingfx (z) = fx(—=z). What can you deduce abakik, the cdf? #10: Find if you can, or
say why you cannot, the first five Taylor coefficients of i@)(1 — u) atu = 0; (b) log(1 — u?) atu = 0; (c) xsin(1/z) at

x = 0. #11: LetX be a continuous random variable. (a) Pré\%eis a non-decreasing function; this medns(xz) < Fx(y)

if < y. (b) LetU be a random variable with cdfy (z) = 0if u < 0, Fy(z) =zif 0 <z < 1,andFy(z) = 1if 1 < z.

Let F be any continuous function such tHais strictly increasing and the limit asapproaches negative infinity &f(z) is O

and the limit asc approaches positive infinity is 1. Prove= F~1(U) is a random variable with cdf.

3.2. Solutions:

#1: Let{A,}5>, be a countable sequence of events such that for eabhob(4,,) = 1. Prove the probability of the
intersection of all thed,,’s is 1.
Solution: If P(A4,,) = 1 thenP(A%) = 0. If we look at the intersection of the events,, we see this is all elements @ach
A,,. In other words, it is the complement of the union of the esetf}. Let's prove this carefully.

Claim: N2, A, = (U, AS)". Proof: A standard way to establish set-theoretic idemstitiech as this is to show every
element in the left hand side is in the right, and every eldnrethe right hand side is in the left. This implies the twosset
have the same elements, and are therefore equal.

Imagine nowr € N5, A,,. Thenz € A, for eachn, which means: ¢ A¢, for eachn, which impliesz ¢ U5, A, and
then taking complements yieldse (U2 ; A¢)“.

For the other direction, imaginee (U°; AS)“. Thenz ¢ U, AS, which means that for eachwe haver ¢ AS. This
immediately implies: € A,, for all n, and hence: € N22_; A,, as desired. O

The reason we did this is we have results relating the prdéibadi a union to the sum of the probabilities. It's thus niatiu
to try and recast the problem in terms of unions.

Returning to the proof, we hal® AS) = 0. Imagine we could prove that the probability of the unionfE #¢'s is 0; i.e.,
P(U2 , AS) = 0. Then the complement of this union is 1, but from our analgbisve the complement s ; A,,. In other
words, if we proveP(U22_; A¢) = 0 then we deducB(NS, 4,,) = 1, which is our goal.

We're thus left with provingP(U22_; A¢) = 0. If the eventsA?, were disjoint we would be done, as the probability of a
countable union of disjoint events is the sum of the prolitis] and each probability is 0. Unfortunately the eveis }
need not be disjoint, so some care is needed. When we logk at AS, what matters is what is id$ that is not inA¢, as
anything in A§ is already included. We can write the union of these two eveatl{ U (45 N A;). This is a disjoint union,
and sinceA§ N A; C A$, it still has probability zero sincd$§ has probability zero. What we’re doing is we're throwing gwa
anything inA4$ that's in As.

To help highlight what's going on, leB; = A{, By = A§ N BY (the items inA§ not in B; = A{). We then let
Bs = A5 N (A§ U A$), the new items that are iA§ but not inA§ or AS. As Bs C A§ andP(A5) = 0, we findP(Bs) = 0.
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We continue in this manner, settidg), = AS N (A U---U AS_,), andP(B,) = 0. The B,,’s are now a disjoint union of
events of probability zero, and thi®§U>2, B,,) = >~ P(B,) = 0. This completes the proof, a§> , B, = U2, A%. O
Actually, we don’t need all the arguments above. We can amdidducing theB,,’s by usingP(Us2; AS) < >~ P(AS).
As each summand on the right hand side is zero, the doubldingus harmless and we again find this union has probability
zero.

Remark:What we really want to do is remark that y_, ., P(NY_; A,,) = P(lim,, ;o NY_; A,,). In other words, we want
to interchange the limit and the probability. The argumeitisve are to help us make such a justificatidBasumeyou knew
this fact from other sources. We present another proof Heptobability of the intersection is 1. Notice the right Haide
is readily analyzed, aB(lim,, ., NY_;A4,) = P(N32, A,). For the left hand side, if we can show for each finiethat
P(NY_, A,,) = 1 then the limitis 1.

The simplest way to prove this is by induction XfandY” happen with probability one, thé( X NY) = P(X) + P(Y) —
P(XUY"). Note every probability on the right hand side equals 1 (remegan have probability greater than 1, &hd: X UY
soP(AUY) = 1). This impliesP(X NY) = 1. We've thus shown if two events each have probability ona their union
has probability one. We now proceed by induction, setfing- U,]:’:len andY = Ay to getP(NY_, 4,) = 1 forall N. So
for any finite NV we haveP(n)_, A,,) = 1. We now take the limit a®&' — oo, and we getimy o, P(NY_; 4,,) = 1.

We could have argued slightly differently above. The keyrsving P(X N'Y') = 1; another approach is to use partitions,
and observ®(X) =P(XNY)+P(XNY°). AsP(Y) =1,P(Y°) =0and thusP(X NY°) =0 (@asX NY° C Y°). Thus
P(X)=P(XNY),andasP(X) = 1 we finally deduc&(X NY") = 1. Note how important in this problem the= 2 case is
in the inductive proof. Frequently in induction proofs wstjmeed to use the result withto proven + 1; however, a sizable
number of times the general proof basically just reducesittetstanding the = 2 case.

#2: Prove the number of ways to mateh people inton. pairs of 2 is(2n — 1)!! (recall the double factorial is the product of
every other integer, continuing down to 2 or 1).

Solution: As anyone can be matched with anyone, therg zwme— 1)!! ways to do this, where the double factorial means we
take the product of every other terl!l(= 6 - 4 - 2 and5!! = 5 - 3 - 1). One way to see this is to note this is just

2n\ [(2n — 2 4\ (2 l
2 2 2/\2) nl’
we divide byn! as we have attached labels to each pair of people, and ther swpposed to be labels. We now do some
algebra. Noting%) = 22=1 'we get our product is
2n(2n—1) 2n—2)(2n—3) 2-11
2 2 2 nl
ni2n—1)-(n—=1)2n—-3)---1(1)
nn—1)---2-1
= (2n—-1)2n-3)---1. (3.1)
We could also proceed by induction. The first person must kehed with someone; there &te — 1 ways to do this. We
now pair off the remainingn — 2 people, which by induction happe(&: — 3)!! ways, so there ar@n — 1) - (2n — 3)!! =
(2n — 1)!! ways. If you must be matched with someone from the opposits #iere are only! ways.

#3: Assumé) < Prob(X),Prob(Y) < 1 andX andY are independent. Ar& ¢ andY © independent? (Not& © is not X, or
Q\ X). Prove your answer.
Solution: SinceX andY are independent, we hal®¢X NY) = P(X)P(Y). We want to sholP(X°NY*°) = P(X)P(Y°).
We haveP(X¢) =1 —P(X) andP(Y¢) =1 — P(Y), therefore
PXIP(YS) = (1-PX))(1-P(Y))
= 1-PX)-PY)+PX)PY)
1-P(X)-PY)+PXnNY).
We need to work on the right hand side to make it look K& © N Y'©). Using
P(XUY) = P(X)+P(Y) -P(XNY)
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(essentially the double counting formula), we recogniserthht hand side as— P(X UY'). We're making progress, and we
now have

P(X)P(Y?) = 1-P(XUY) = P((XUY)9)
from the Law of Total Probability. Now we just need to obsetivat (X U Y)c = X¢NY*c. Thisis a basic fact in set theory,
and completes the proof. Thuks‘ andY ¢ are independent.

Appendix to the problenithe proof tha{ X UY )¢ = XN Y ¢ involves a nice technique; you didn’t need to prove this, but
it's good to see. We show that anyn the set on the left hand side is in the set on the right haahel sind any in the right
hand side is in the left hand side. Thus the two sets have the sfements, and must be equal.

Imaginet € (X UY)°. This meangisnotin X UY, sot € X¢andt € Y, hencet € X°NY*°.

Whatifs € X°NY*°? Thens € X°¢ands € Y (it must be in each if it is in the intersection), sds notin X U'Y, which
meanss isin (X UY)e.

Note: Alternative proofThere is another way to do this problem, and it illustrateka technique. The philosopher David
Hume asked what happens if each day you replace a differamntitom a ship. Clearly it's still the same point when you go
from dayn to dayn + 1, but at some point there are no longer any of the original deeft! What does that have to do
with this problem? We can move in stages. We start witlandY" are independent. Step 1 is to show thaflibnd B are
independent events then so too atend B¢. Why does this help? We then go frofX,Y") independent td X, Y¢) are
independent, which of course is the sam¢ls, X) are independent. We now apply this observation again (sosewY ¢
and B = X) and find(Y©, X¢) are independent! We thus “move” to the point we want in sugigesstages. You might
have seen this method before in a calculus class (it can attiie multidimensional chain rule, trying to figure out wléo
evaluate points).

#4: Using the Method of Inclusion-Exclusion, count how mhands of 5 cards have at least one ace. You need to determine
what the eventsl; should be. Do not find the answer by using the Law of Total Podiyaand complements (though you
should use this to check your answer).

Solution: Let A, be the event that the ace in suiis in our hand (we’ll let spades be the first suit, hearts tlfooise suit,
diamonds the third and clubs the fourth, though of coursegifebels don’t matter). The evest U A, U A3 U Ay is the event
that our hand has at least one ace. We give two “proofs” ofrésalt. Read carefully below. Are they both right? If not, which
one is wrong? It is good to occasionally see wrong answerthese can highlight subtle issues.

Note that# A, = (}) (448) for eachi (we have to have a specific ace, cannot have any other acetyeanthust choose 4
cards from the 48 non-aces).

Similarly, for all pairsi # j, we have#(A; N A;) = (1) (5) (). Continuing along these lines we find for each triple

i< j < kwehave#(A;, NA;NAL) = (})3(428) and finally#(A; N A2 N A3 N Ag) = ().
The Inclusion-Exclusion Formula is “nice” to use here, dstadt matters is how many pairs (or triples or quadruples) of
indices we have, as all the options have the same couM,lf is the number of hands, we find
4
Nuces = Y #Ai— Y #ANA)+ Y #ANANA)
i=1 1<i<j<4 1<i<j<k<4

—#(Al NA;NAsN A4)

The number of pairs with < ¢ < j < 4 is the number of ways to choose two elements from four witleondt mattering, or
(5) = 6. Similarly the number of triples with < i < j < k < 4is (3) = 4. We find

Naces = 4A#A; —6#(A1NAy) +4#(A1 N AN As) — #(A1 N A2 N A3 N Ay)

(8) o) o) () -

Equivalently, as there ar(éf) = 2,598, 960 possible hands, we see the probability of getting a hand atitbast one ace is

679008 0
2598960 26.1%.

Is this answer reasonable? The probability of getting omreifip ace in five cards |${) (448)/(552) ~ 7.5%; if we multiply
this by 4 we get about 30%. This is close to the correct answerther, it's off in the right way — we expect to be over-
estimating, as multiplying by 4 leads to double (and tripie guadruple) counting.
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Let's also check by using complements. The probability dfige no aces in a hand of five cards is j¢&t) /(7). Thus 1
minus this, which isl — (1) /(77) = 18472 is the probability of getting at least one ace. If we appmade the fraction, we
get about 34.1%.

Something must be wrong —we can’t have two different answeld/NVhile you should get in the habit of running computer
simulations to get a feel for the answer, it's a very importill to be able to do this when you have two different answer
Let’s do a simulation and see if we can determine which anggght. The code is

acetest[num] := Modul e[{},
count = O;
For[n = 1, n <= num n++,

{
X =
RandonBanpl e[{1, 2, 3, 4, 5, 6, 7, 8 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52}, 5];
isin = 0;
For[j =1, j <= 4, j++,
I f[Menmber@ x, j] == True, isin = 1];
I
If[isin > 0, count = count + 1];
H
Print[100. count / nuni;
I
Simulating 100,000 times yielded about 34.077%, very closthe second method. Thus, it's quite likely we made a
mistake in the first method, but where?
The problem is that the event; is just getting a specific ace; it doesn’t mean we can’gete aces. ThustA,; = (1) (%))
instead of(;) (*"). We have to continue down the line and correct all the prditiaisi We get

Naces = 4#A1 — 6#(A1 N Ag) + 44:(A1 N Ay N Ag) — #(A1 N A N A3 N Ay)
51 50 49 48
= 4 - 4 -
(3) ()1 (z)-(0)
18472

exactly as before.

We also must revisit our calculation as to whether or not osneer is reasonable. The probability of getting one spemiféc
in five cards is(}) (%)) / (%?) ~ 9.6%; if we multiply this by 4 we get about 38%. This is close to toerect answer. Further,
it's off in the right way — we expect to be over-estimating,magltiplying by 4 leads to double (and triple and quadruple)
counting.

#5: We are going to divide 15 identical cookies among fourpieoHow many ways are there to divide the cookies if all
that matters is how many cookies a person receives? Redprttitem but now only consider divisions of the cookies where
person; gets at least cookies (thus person 1 must get at least one cookie, and so on)

Solution: From the cookie problem, if there a€éidentical cookies and people, the number of ways to divide(@jgf;l);

thus the answer to the first part(i&;*; ") = (';) = 816. We have just solved the equation + z» + x5 + x4 = 816. We
now letz; = y; + j (to deal with the constraints), and fige+y. +ys +y4 + 10 = 15, or equivalentlyy; + y2 +y3 +y4 = 5.

This is thus the same as looking at a cookie problem with 5 iesadnd 4 people, so the answe(?ﬁ;l) = (g) = 56.

#6: Redo the previous problem (15 identical cookies and $le¢obut with the following constraints: each person gets a
most 10 cookies (it's thus possible some people get no cepkie

Solution: We can use the Law of Total Probability (or of complementamnts). We find out the number of ways without the
restriction (which is jus(**/ ") = ('}) = 816), then subtract off the number of ways when the restrictsoviolated. The

key observation is that it's impossible for two or more pedpleach get at least 11 cookies, as there are only 15 codkias.

we just need to break into cases based on who gets the 11 sob¥emight as well assume the first person gets the eleven or

more cookies, and then multiply by 4 for the remaining cases.
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Thus, letz; = 11 + y; andz; = y; for j > 3. The number of ways when the first person has at least 11 coakie
11+ y1 +y2 +ys+ys = 15,0ry; +y2 + y3 + y4 = 4. This is the same as a cookie problem with 4 cookies and 4 peopl
the solution to that i§***7") = ({) = 35. Remembering to multiply by 4 (as there are four differerdgle who could have
11 or more) we get 140.

Thus the number of ways to divide 15 identical cookies amomwiséinct people such that each person gets at most 10
cookies is('’) — 4 (%) = 816 — 140 = 676.

As always, it's good to write some simple code to check. Thieviong is notthe most efficient, but it runs very fast as the
numbers are small, and it's easily coded.
count = 0;

For[x1 = 0, x1 <= 10, x1++,
For[x2 = 0, x2 <= 10, x2++,
For[x3 = 0, x3 <= 10, x3++,
If[15 - x1 - x2 - x3 >= 0 & & 15 - x1 - x2 - x3 <= 10,
count = count + 1]

111;

Print[count];

#7: Find a discrete random variable, or prove none exist$, priobability density functiorfx such thatfx (z) = 2 for
somez between 17 and 17.01.
Solution: There is no such discrete random variable. The probabifitgny event is at most 1, and this would assign a
probability of 2 to an event.

#8: Find a continuous random variable, or prove none exists,probability density functiorfx such thatfx (z) = 2 for
all x between 17 and 17.01.
Solution: While we cannot assign a probability greater than 1 to antef@na continuous random variable it is possible for
the probability density function to exceed 1, as probaediaire found by integrating the pdf over intervals. Thudpsg as
the interval is short, we can haye () = 2. The simplest example is a uniform distribution on the waf17,17.5]. If we

take
2 f17<x <175
fx(@) = {O otherwise

then [%_ fx(z)dz =1, fx(z) > 0andfx(z) = 2 from 17 to 17.01.

#9: Let X be a continuous random variable with ptif satisfyingfx () = fx(—z). What can you deduce abakik, the
cdf?
Solution: We must haveé'y (0) = 1/2. The reason is the evenness of the pdf implies that half thlegtnility is before 0, and
half after. To see this mathematically, note

/:: fr(@)dz = /_OOO Fx(@)dz + /OOO fx(z)dx = /_OOO fx(=x)dx + /OOO fx (x)dz

Let’s change variables in the first integral. Lettihng- —z we seedz = —dt and the integration runs from= oo to ¢ = 0;
we can thus use the minus sign-alt to have the integral range from 0 to infinity, and we find

= /OOO fX(t)dt+/Ooo fx(x)de = Q/OOOfX(x)dx

thus half the probability is after zero (and similarly hdiétprobability is before).

#10: Find if you can, or say why you cannot, the first five Tagloefficients of (aJog(1 — u) atu = 0; (b) log(1 — u?) at
u=0; (c) zsin(1/z) ate = 0.
Solution: (a) Taking derivatives we find that ff(v) = log(1—u) thenf’(u) = —(1—u)~L, f"(u) = —(=1)(1—u)"2(-1) =
—(1—u)72, f"(u) = —2(1 —w) 3 andf""(u) = —3-2(1 —u)~*. Atu = 0 we flndf( )=0, f'(0) =—1, f"(0) = —1,
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f"(0) = —2andf"””(0) = —6. Thus the fourth order Taylor series is
. f”(O) u2 N f///(o) u3 N f””(O) 4 u2 u3 u4

— / — g _
Tu(w) = JO)+ O+ =, . gt = - -
(b) There are lots of ways to do this problem, but my favostthe ‘lazy’ way. If instead ofog(1 — «) we hadlog(1 + u),

all that we need do is replaeewith —u above, and we get

2 3 4

u u u
log(1+u) = U—g"r?—zﬁ""-

Why is this helpful? Note
log(1 —u?) = log ((1 —u)(14u)) = log(1 —u) + log(1 + u).

Thus there’s no need to go through the Taylor series arguagiain; we can simply combine our two expansions and we find
u4
log(l1 —u?) = —u?— — —--.
2
Of course, there’s another way we could have found this; wedctake the Taylor series expansion fog(1 — «) and
substituteu? for . The point is that if we spend some time thinking about oubfam, we can often eliminate the need to do
a lot of tedious algebra; however, if you don't see these Kfitgitions you can still solve the problem, just with morenkio
For example, if we leff (u) = log(1 — u?) thenf’(u) = —2u/(1 — u?), and then the quotient rule and some algebra gives
" (u) = —2(1 +u?) /(1 —u?), f"(u) = —4u(3 +u?)/(1 — u?) and so on.
(c) This function isnot differentiable at the origin, though it is continuous at@¢asx — 0, zsin(l/z) — 0 as
|sin(1/z)] < 1 and|z| — 0). The only way to make this function continuous at zero iséfirege it to be zero there; this
is reasonable assin(1/x) does go to zero as long as— 0. To find the derivative of (x) = xsin(1/x) at the origin we use
the limit formula:
lim F(O+h)— f(0) ~ lim hsin(1/h)
h—0 h h—0 h
however, this last limit does not exist and thus our funcisomot differentiable. If it isn’t differentiable, it cantiave a Taylor
series expansion.

= lim sin(1/h);
Tim sin(1/1);

#11: LetX be a continuous random variable. (a) Prdve is a non-decreasing function; this meafig(x) < Fx(y) if
x < y. (b) LetU be a random variable with cdfy (z) = 0if u < 0, Fy(z) = zif 0 <z < 1,andFy(z) =1if 1 < z. Let
F be any continuous function such thais strictly increasing and the limit asapproaches negative infinity f(z) is 0 and
the limit asz approaches positive infinity is 1. Prove= F~1(U) is a random variable with cdf.

Solution: (a) Assumer < y. ThenFx (y) = Prob(X < y) while Fx(x) = Prob(X < z). Therefore

Fx(y) — Fx(x) = Prob(z < X <y) > 0

(it is non-negative as it is a probability, and probabiltare non-negative). Fx (y) — Fx(z) > 0thenFx(y) > Fx(x),
which provesFy is a non-decreasing function.

(b) This is perhaps one of the most important problems in tiigeecourse! As/ is continuous and strictly increasing, it
has a continuous inverge !. NoteP(Y < y) = P(F~1(U) < y); however,F—1(U) < ymeand/ < F(y). ThenP(Y < y)
equalsP(U < F(y)); asF(y) € [0,1], from the givens of the problefA(U < F(y)) = F(y), which completes the proof.

Why is this problem so important? One way of interpretingrésult is to say that if we can simulate any random variable
that is uniformly distributed (or equidistributed) ¢ 1], then we can simulate any random variable whose cumulatsse d
tribution function is strictly increasing. Of course, howa$ one generate a random number uniformly? This is a vedy har
question. See forinstanté t p: / / www. r andom or g/ .

Let's do a bit more with this problem. Consider the Cauchyritigtion, where the density igy (y) = %ﬁ The
cumulative distribution function is the integral ¢ from —co to y:
Yol o dt arctan(y) — arctan(—oo) arctan(y) + /2
Fe(y) = [ ——— = - .
oo 1+t T m

We needF} ' settingFy (y) = u we can solve fog in terms ofu:

t 2
w = SO T e —12) = Frl(w).
™
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20 -10 0 10 20 30 20 -10 0 10 20 20

FIGURE 1. Comparing methods to simulate Cauchy random variablet i& using the inverse CDF
method, right is using Mathematica’s built in function.

We have our strictly increasing functidi’;?l, and can now simulate from a Cauchy. This is amazing, as thet®aas infinite
variance!
Below is some Mathematica code to simulate from the Cauclkeyg@through a few ways to display the data, as there are
issues in comparing a histogram of discrete data to contisdata drawn from a Cauchy.
Finv[u_] := Tan[Pi u - Pi/2];
temp = {};
prunedtenmp = {};
truncatetenp = {};
num = 100000;
For[n = 1, n <= num n++,
{
y = Finv[Randon{]];
tenp = AppendTo[tenp, y];
I f[Abs[y] <= 30,
{
prunedt enp = AppendTol[ prunedt enp, y];
t = Floor[y - .5]/1 + .5;
truncatetenp = AppendTo[truncatetenp, t];
s

B
Print[Lengt h[ prunedtenp] 100. / Length[tenp]];
Print[H stogranftenp, Automatic, "Probability"]];
Print[Hi stograniprunedtenp, Automatic, "Probability"]];
Print[H stogranftruncatetenp, Automatic, "Probability"]];
Print[Plot[{.2, (1/Pi) 1/(1 + x*2)}, {x, -30, 30}]1];

Of course, Mathematica has the ability to directly simufeden Cauchy distributions.

ctenp = {};
ptemp = {};
For[n = 1, n <= 100000, n++,

{
y = Randonf CauchyDi stribution[0, 1]];
ctenp = AppendTo[ctenp, Vy];
I f[Abs[y] < 30, ptenp = AppendTo[ptenp, yl];
G
Print[H stogranptenp, Autonatic, "Probability"]]

We compare the two methods in Figlte 1.

3.3. Assignment #5: Due October 19, 2018#1: We toss: fair coins. Every coin that lands on heads is tossed agairatWh
is the probability density function for the number of heatisrathe second set of tosses (i.e., after we have retoskdtkal
coins that landed on heads)? If you want, imagine you havdHefroom and return after all the tossing is done; what is
the pdf for the number of heads you see? #2: Is thaPesach thatf (z) = Cexp(—x — exp(—=x)) is a probability density
function? Here-co < x < co. #3: LetX be a discrete random variable. Prove or disprdVg:/ X| = 1/E[X]. #4: Let
X1,...,X, be independent, identically distributed random varialies have zero probability of taking on a non-positive
value. ProveE[(X; + -+ X))/ (X1 + -+ + X,,)] = m/n for 1 < m < n. Does this result seem surprising? Write a
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computer program to investigate when the random variabéedrmwn from a uniform distribution 0§, 1]. #5: LetX andY
be two continuous random variables with densifigsand fy. (a) For whatis ¢fx (x) 4+ (1 — ¢) fy (z) a density? (b) Can
there be a continuous random variable with pdf equdhtér) fy (z)? #6: The standard normal has densy’% exp(—22/2)
(this means this integrates to 1). Find the first four mome#its Find the errorS in the following code:
hoops[p_, q_, need_, num] := Mdule[{},
birdwi n = 0;
For[n = 1, n <= num
{
[ f[Mod[n, nunf 10] == 0, Print["We have done ", 100. n/num "%"]];
bi r dbasket = O;
magi cbhasket = O0;
Whi | e[ bi rdbasket < need || nagi cbasket < need,
{
| f[ Randon{] <= p, birdbasket = birdbasket + 1];
| f[ Randoni{] <= g, mmgi cbasket = magi cbasket + 1];
}1; (* end of while |l oop *)
| f[ bi rdbasket == need, birdwin == birdwin + 1];
}1; (» end of for |oop *)
Print["Bird wins ", 100. birdwi n/num "%"];
Print["Magic wins ", 100. - 100. birdwin/num "%"];
l;

hoops[.32, .33, 5, 100]
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4. HW #5: DUE OCTOBER19, 2018

4.1. Assignment: #1: We toss fair coins. Every coin that lands on heads is tossed againat\igtthe probability density
function for the number of heads after the second set of o=, after we have retossed all the coins that landed on
heads)? If you want, imagine you have left the room and redfter all the tossing is done; what is the pdf for the number
of heads you see? #2: Is thereCasuch thatf(z) = Cexp(—z — exp(—=x)) is a probability density function? Here
—00 < x < oco. #3: LetX be a discrete random variable. Prove or disprdif:/ X| = 1/E[X]. #4: LetXy,..., X,
be independent, identically distributed random variakies have zero probability of taking on a non-positive val®eove
E[(X14+ -+ Xnm)/(X1+ -+ X,)] =m/nfor1 < m < n. Does this result seem surprising? Write a computer program
to investigate when the random variables are drawn fromf@umidistribution on[0, 1]. #5: LetX andY” be two continuous
random variables with densitigs, and fy . (a) Forwhat is cfx (z) + (1 — ¢) fy (x) a density? (b) Can there be a continuous
random variable with pdf equal tfx (z)fy (x)? #6: The standard normal has dens\i}% exp(—x?/2) (this means this
integrates to 1). Find the first four moments. #7: Find ther&in the following code:
hoops[p_, q_, need_, num] := Mdule[{},
birdwi n = 0;
For[n = 1, n <= num
{
[f[Mod[n, num/ 10] == 0, Print["We have done ", 100. n/num "%"]];
bi r dbasket = O;
magi cbhasket = O0;
VWi | e[ bi rdbasket < need || nmgicbasket < need,
{
| f[ Randon{] <= p, birdbasket = birdbasket + 1];
| f[ Randon{] <= g, mmgi cbasket = nmmgi chasket + 1];
}1; (* end of while |loop *)
| f[ bi rdbasket == need, birdwin == birdwin + 1];
}1; (» end of for |oop *)
Print["Bird wins ", 100. birdw n/num "%"];
Print["Magic wins ", 100. - 100. birdwin/num "%"];
l;

hoops[.32, .33, 5, 100]
4.2. Solutions:

#1: We toss: fair coins. Every coin that lands on heads is tossed agaimnat\glthe probability density function for the
number of heads after the second set of tosses (i.e., afteaveeretossed all the coins that landed on heads)?
Solution: We solve this problem two ways. The first is the ‘natural’ aygmh. It has the advantage of being a reasonable
method to try, but leads to a very messy formula. It's not thath more work to solve when the coin isn't fair, so let's aseu
there’s a probability of heads and — p of tails. There’s another advantage to this. If the coinis fa/2)™(1/2)"~™ =
(1/2)™, and behavior is blended; if the coin is biased, we haVé€l — p)™, and this might focus our thoughts on the process
a bit more.

Our first solution uses conditional probability. Let’s sag want to compute all the ways of havingheads on the second
toss, with clearlyd < m < n. We can express this probability as

P(m heads at end) = Z P(m heads on second toss|k heads on first) - P(k heads on first toss).
k=m
Why? We must have tossed some number of heads on the firstviois$, we denote by:. Clearlyk > m as otherwise we
can’'t havem heads on the second. The answer is thus

S k m k—m n k n—k
;§1<m)p (1-p) (k)p (1—p)" "
It is worth asking what would happen if we forgot about thenieon thatm < n; for example, what ifh = 4 andm = 67
We would have the binomial coefficie(@) — how is this defined? We might at first expect it togg‘jw; this works but
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you need to know thgt-2)! is defined to be infinity! We'll discuss this later when we taliout the Gamma function, which
generalizes the factorial function. There is another wageée’ what the definition should be. We expect the answer to be
zero, as the combinatorial interpretationti@w many ways are there to choose 6 objects from 4 when ordmnitanatter?
Clearly there ar@mo such ways, and thus the answer should be zero. Another wagfiofrth (Z) is
nn—1)---(n—(k—1))
k(k—1)---1

4 74-3-2-1-0-(—1)70
6/  6-5-4-3-2.1

In our case, we would have

as we have a 0 in the numerator.

Remember, in mathematics we can make almost any definitiowant — the question is when our definition is useful.
The above is a great way to define the choose function whenattenb exceeds the top, and agrees with our combinatorial
intuition.

Let’s see if we can simplify the sum a bit. We have

P(m heads at end) = Zn: (Z)pm(l e (Z)pk(l ek

k=m

. k! n! . .
) ];nm'(k_m)'kl(n_k)|p (1—p) pk

n! &

ml(k —m)l(n — k)!p

M=

= P

k=m

n! (n—m)!

ml(n —m)! (k —m)!(n—k)!

= prAl-pn " P,

M-

m

where in the last step we multiplied by 1 in the fotra= (n—m)!/(n—m)!. Why would we do this? When looking at the ratio
of the factorials we notice anl /m!; this isalmost(" ). It would be, except it's missing aim —m)! in the denominator. Thus,
we must multiply by(n — m)!/(n — m)! so we can recognize the binomial coefficient. Notice thahatend of the day we
want exactlym heads out of: coins, and thus we should be thinking of gh) somewhere. Further, the factgf (1 — p)"~™
outside is rightin line with such an interpretation.

We now continue simplifying the algebra. We change summatéiables and let = k —m (sok = m + ). Sincek runs

from m to n we havef runs from0 to n — m, andp® becomeg**™. We find

n\ .. o = -m)
P(m heads at end) = (m)P (1-p) éz g!(i_im_)g)!p *
=0

Il
7~
SN———

=

3
_
ch

S

3

=

3
ol
/~
S

~ |
3
N————
iy

T

i

= (D)pra- e,

where we wrotd "™ to highlight the application of the binomial theorem. Nate p and1 + p are both to the: — m power;
combining them give$l — p?)"~™, and we obtain our final simplification:

)<p2>m<1 e

Notice that this is the density of a binomial random variakita probabilityp? of success and thus— p? of failure. As
this is such a beautiful answer with such a nice interpratait is highly suggestive that there isvauch better approach to
this problenthen the algebraic nightmare we did above!

P(m heads at end) = <n
m

We now give an alternate solution. While the problem says mlg re-flip the coins that landed heads initially, we can
re-flip all if we want, but only count as a ‘heads’ coins tha heads on both tosses. A much better way to look at this proble
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is to think what must happen for a coin to end up heads aftetdg®es. The only way this can occur is if the first and second
tosses are heads, which (since the coin lands on heads whhalgtity p) happens with probability - p = p?. Our situation
turns out to be equivalent to the followingoss a biased coin (with probabiliy? of landing on heads) a total of times;
what is the probability mass functiormhe answer is just

P(m heads) = <;:L) )" (1-p)"" = <;)p2m(1—p2)"’”-

The above analysis illustrates one of the most common wapsaee combinatorial identities. Namely, we calculate a
given quantity two different ways. As both count the sameohjthey must be equal. Typically one is easily computed, an
thus the other, harder combinatorial expression must ¢haaasier one. For example, in our case above the secormbappr
was fairly easy to compute. If we take= 1/2 and set the first and second solutions equal to each othemave fi
OG-0

m/)\k/) \ 2 ~ \m) 220
k=m
We can verify this identity for any choices of < n; however, is there a way of proving this directly (and noyirgy on us
being clever and noticing this counting problem was eqeivaio another)?

#2: Is there & such thatf (r) = C exp(—z — exp(—=x)) is a probability density function? Heresco < z < cc.
Solution: Our proposed density is again non-negative, so the queistijust whether or not it will integrate to 1 for some
choice ofC. We have

/jo Cexp(—x —exp(—z))dr = C/ﬁOO exp(—z) exp(— exp(—z))dzx.

We do au substitution. Let
u = exp(—exp(—z))
S0
du = exp(—z)exp(— exp(—x))dzx,
andx : —oo — oo becomes: : 0 — 1. Thus our integral is

1
C/du:l.
0

There are other change of variables we could make, but ttheisimplest. The integral is thus equal to Tit= 1.

#3: Let X be a discrete random variable. Prove or dispr@fe¢; X| = 1/E[X].
Solution: Usually E[1/X] is not1/E[X]. Almost anything is a counter-example. A trivial one is tkgaX = +1 with
probability 1/2 for each. Another example is to takKe= 2 or 4 with probability 1/2 for each, as

1 1 1 1 3
E/X] =33+1 3~ &
while
1 1 1

EX] 2. 1+4.7 %
It is possible for them to be equal — this is always the cagé # x with probability 1 for some non-zere. Assume we have
X = z; with probabilityp; fori € {1, 2} and we want these two to be equal. As= 1 — py, lettingp = p; that then requires

p 1—-p 1
Ea —
Z1 T2 x1p+ x2(1 — p)
or
r1(1 —p) + pra _ 1
T1%2 z1p+x2(1 —p)’

which simplifies to
(x1(1 —p) + px2) (x1p+ 22(1 — p)) —x122 = 0.



MATH 341: COMMENTS ON HW 23

Are there any non-trivial solutions to this? We have threknowns and only one equation, so this should be solvable. Of
course, we do have restrictiors< p < 1 andz; # x2. (We takep # 0, 1 as otherwise this reduces to the trivial solution.)
By symmetry, so long ag; # 0 we can taker; = 1 (this is just multiplying both sides hy;). This reduces our equation
to
—r2+ (p+ (1 =p)a2)(1 —p+pr2) = 0;
unfortunately this equation has a double root at 1 and thergtfre no non-zero solutions where the probability is coimated
on two distinct masses.

#4: LetX,, ..., X,, be independent, identically distributed random variatiles have zero probability of taking on a non-
positive value. Prov&[(X; + -+ -+ X,n,) /(X1 + - - - + X,,)] = m/nfor 1 < m < n. Does this result seem surprising? Write
a computer program to investigate when the random variaoéedrawn from a uniform distribution df, 1].

Solution: This is one of my favorite problems. At first the answer seemesgood to be true, as it is independent of the
distribution of theX;’s! All that matters is that they are identically distribdtand that the sum is non-zero (so the division
makes sense). Lef have the same distribution as thg’s. The key technique here is to multiply by 1. We start with

this trivial observation is the key to the proof. We now writé in a clever way, and usmearity of expectation:
Lo {X1+~-~+Xn]
X1+ + X,

and so

X X
El— * | gl 2k | _ l
Xi+--+ X, Xi+--+X, n
The key step above is that as thg's are identically distributed, the expected value of ang ohthem over the sum is the
same as that of any other over the sum. We now calculate theityuef interest:

Xi+--+X " X
g|ALE o Am ] SE|——2h | - m
X+ -+ X, = X+ 4+ X, n
Note an alternative way to view our solution is to do the case n first; this is a natural choice, as then the fraction is just 1.

Here is some code.

ratiotest[m, n_, numter_, listwork_] := Mdule[{},
(» mand n paraneters from probl em *)
(* numiter is nunber of tines do it =)
(» if listwork = 1 we save each run and do a histogramat end *)
(» initialize list and sumof ratios to 0 x)
list = {};
sunratio = 0;
(*» loop numiter tines x)

For[i =1, i <= numiter, i++,

{

(* print out every ten percent x*)
If[Mod[i, numter/10] == O,

Print["Have done ", 100. i/nunmiter, "%"]];
(* cal cul ates the nunmerator and denom nator, sums of unif rvs =)
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nurmer at or = Sunf{ Randon{], {k, 1, nm];
denom nator =
nunerator + If[m==n, 0, Sun{Randon{], {j, 1, n - n}]];
(* calculates the ratio, updates sum of ratios =)
ratio = nunerator 1.0 / denom nator;
sunratio = sunratio + ratio;
(» if listwork is 1 saves to list =)
If[listwork == 1, list = AppendTo[list, ratio]];
}1; (* end of i loop *)
(* calculates average ratio, prints results =)
averatio = sunratio / numter;

Print["Average ratio for m=", m " and n=", n, " is ",
1. 00 averatio];
Print["Conpare to mMn =", mn, " =", 1.0 mn];
If[listwork == 1,

{

Print[Hi stogranilist, Automatic, "Probability"]];

s

]

#5: LetX andY be two continuous random variables with densifigsand fy. (a) For what is cfx (z) + (1 — ¢) fy (x)
a density? (b) Can there be a random variable with pdf equgétte) fy (z)?
Solution: (a) It is definitely a density whene [0, 1], as then the function is non-negative and integrates to 1:

/_°° lefx (@) + (1 — &) fy(@)] dz = c/_°° fx<x>dx+<1—c>/_°° fr@de = e+ (1—¢) = 1.

It's possible for it to work for alle (it does if fx = fy). If, however,c ¢ [0,1] then it is always possible to find a pair of
densities such thatf x (x) + (1 — ¢) fy (z) is nota density. To see this, just take

1 fo<z<1
fx(@) = {0 otherwise

1 if2<x<3
fr(z) = {0 otherwise.

Note that ifc ¢ [0, 1] then this density is negative for some For example, ifc < 0 then thecfx () term is negative for
0 <z < 1, while if ¢ > 1 the second factor is negative r< x < 3. Thus, while it is possible to be a density for certain
choices offx and fy, the only choices of such that it isalwaysa density ar® < ¢ < 1.

(b) It's not always the case thdi () fy (x) is a density. A nice example i§is the uniform density oif0, 1] andg the
uniform density or{2, 3]. Then

1 ifo<z<1
fxlw) = {0 otherwise
and
1 if2<x<3
frz) = {0 otherwise.

Then f(z)g(z) = 0 for all z. It's often a good idea to play around searching for countareles, or seeing what makes
examples succeed. Just becagismdg are non-negative and integrate to 1, nothing implies theesaust be true for their
product.

Of course, the problem only asks whether or not tharebe a random variable with pdf equal to the prodfigt) fy (),
not whether or not the produntustbe a density. There are examples where this is a density.ifipdest isfx (x) = fy (z)
for 0 <z < 1 and 0 otherwise; note in this cage (z) fy () = 1.
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A more interesting example is

Frla) = {2 H0se<l/2 . 0 _ {2 if 1/4 < <3/4

0 otherwise 0 otherwise.
Note

Fx(@)fy(x) =
which is a density function (it is non-negative and integsdb 1). The continuous case is very different from the disccase.

In the discrete case, the only way we can have a solution Isti@mass of each is concentrated at one point. The reason is
the probabilities are multiplied andustdecrease as the probabilities are at most 1; in the contscase, the density can be
greater than 1 at a point or in short intervals. This is ondefreasons for the earlier problem on whether or not dessitia
exceed 1 at a point.

4 if1/4<x<1/2
0 otherwise,

#6: The standard normal has densj}% exp(—x2/2) (this means this integrates to 1). Find the first four moments

Solution: We need to compute
o0 1 2
k —x~/2
- e dx
/_OO V2T

for k € {1,2,3,4}. There are several ways to proceed. First, notice that sireétegrand is odd whehis odd and the
region is symmetric about the symmetry point, the integaalishes fok = 1 or 3, while for the even values it's just double
the integral from 0 tax.

One way to finish the problem is to usesubstitution. Given

> 20 —x%/2
— e dx
V2T /,OO

(for k = 2¢) we see if we lets = 22 thendu = 2zdx and the integral equals

2 [ i e
— e M 2du.
V2T /_OO

There’s no problem if = 1. IF ¢ = 2 we integrate by parts. Doing the algebra we find the secondenbis 1 and the fourth
moment is 3. The algebra isn't too bad because we alreadydid-substitution by replacing? with «; this lead to terms
like e=%/2 instead ofe=*"/2. This is very important, as there is no closed form for an-dativative ofe=="/2. We discuss
this issue a bit in some of the integration exercises in ttekbo

Now that we havenesolution, let’s look for another. We define

= [ = g [ A

While we could do thes-substitution, let's see what happens if we don’'t. We tryntegrate by parts. This is a good thing to
try. The reason is that our integrandépidly decaying asz — +o00, SO we won't have to worry about boundary terms. We
have to decide what to makeand what to makév. We want the polynomial to go down in degree, so it's natwahink

of settingu = =¥, but this doesn’t work. The issues is thémn = e~ /2dz, and we can't integrate that. We needr notx
(really, —zdx). So, we pull off one factor af from z*, and write

I(k) = E/mxkl e 24z,
We now set
w= 2" dv = e~ 2ady
and find
du = (k=122 v = —e @*/2
Using
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we obtain

1 2 /6| > 2

I(k) = — —:vk_le_””m‘ +/ k— a2~ 2dz| = (k—1)I(k -2

0= = | e (k= 11k ~2)

(note the boundary terms vanish as the exponential decayfsltte polynomial growth). We've discovered a recurrence
relation:

— 00

I(k) = (k—1)I(k—2).

We can keep iterating this. Each time we decrease the indeX Bjfe know that/(1) = 0 (as the integrand is odd) and
1(0) = 1 (as it is a probability density function, it integrates to ThusI(k) = 0 if k is odd, while ifk = 2¢ then

I20) = (20— 1)I(20—2) = (20— 1)(20—3)[(20 —4) = (20— 1)(20 —3)(20 —5)[(20 —6) = --- .

We continue until we hif (0) = 1. Recalling the definition of the double factorié2(n)!! = (2m—1)(2m—3)(2m—5) ---3-
1), we seel (2¢) = (2¢ — 1)!l;inparticular,/(2) = 1!l =1, I(4) =31 =3-1= 3.

It's interesting to see eombinatorialquantity arising in the moments of our density; it turns &g hagprofoundimplica-
tions. In other words, this was not a busy-work problem!

#7: Find the errorS in the following code:

hoops[p_, q_, need_, num] := Mdul e[{},
birdwin = 0O;
For[n = 1, n <= num
{
If[Mod[n, nunm 10] == 0, Print["We have done ", 100. n/num "%"]];
bi r dbasket = 0;
magi chasket = O;
Wi | e[ bi rdbasket < need || nmgicbasket < need,
{
| f[ Randoni{] <= p, birdbasket = birdbasket + 1];
| f[ Randoni{] <= q, nmgi cbhasket = nmagi chasket + 1];
}1; (* end of while |oop *)
| f[ bi rdbasket == need, birdwin == birdwin + 1];
}1; (* end of for |oop *)
Print["Bird wins ", 100. birdwin/num "%"];
Print["Magic wins ", 100. - 100. birdw n/num "%"];
I

hoops[ .32, .33, 5, 100]

Solution: The for loop needs an n++, it should be && (for andj [i (for or) in the while statement, and in the If statemerbiving
birdbasket use a single = to assign birdwin + 1 to birdwin. Gteect code is:

hoops[p_, q_, need_, num] := Mdul e[{},
birdwin = 0;
For[n = 1, n <= num n++,
{
bi r dbasket = 0;
magi cbhasket = 0;
Wi | e[ bi rdbasket < need && nmagi chasket < need,
{
| f[ Randon{] <= p, birdbasket = birdbasket + 1];
| f[Randoni{] <= q, nmgi cbhasket = nmagi chasket + 1];
}1; (* end of while |oop *)
| f[ bi rdbasket == need, birdwin = birdwin + 1];
}1; (* end of for |oop *)
Print["Bird wins ", 100. birdwi n/num "%"];
Print["Magic wins ", 100. - 100. birdw n/num "%"];
I
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4.3. Assignment #6: Due October 26, 2018: #1: Calculate the second and third mtoé X when X ~ Bin(n,p) (a
binomial random variable with parametersaindp). #2: We tossV coins (each of which is heads with probability, where
the numbetV is drawn from a Poisson random variable with parameter lambdt X denote the number of heads. What is
the probability density function ok ? Justify your answer. #3: Find the probability density fimof Y whenY = exp(X)

for X ~ N(0,1). #4: Each box of cereal is equally likely to have exactly ohe get ofc prizes. Thus, every time you
open a box you have B/c chance of getting prize 1, B/ ¢ chance of getting prize 2, .... How many boxes to you expect to
have to open before you have at least one of each of firzes? If you have having trouble, do= 2 for half credit. #5:
Let X1,...,X,, be independent Bernoulli random variables wh&e~ Bern(px) (you can think of this as independent
coin tosses, where coinis heads with probability). If Y = X; + --- + X,,, what is the mean and what is the variance of
Y? Assumep; + - - - 4+ p, = p; what choice or choices of the,’s lead to the variance df being the largest possible? #6:
State anything you learned or enjoyed in Arms’ talk. One ar $entences suffice. #7: The kurtosis of a random varighke
defined bykur(X) := E[(X — u)*]/o*, wherey is the mean and is the standard deviation. The kurtosis measures how much
probability we have in the tails. K ~ Poiss()), find the kurtosis ofX. #8: Consider a coin with probabilifyof heads. Find
the probability density function foX;, whereX; is how long we must weight before we get dirst head. #9: Consider a
coin with probabilityp of heads. Find the probability density function f&r, whereXs is how long we must weight before
we get ourseconchead. #10: Alice, Bob and Charlie are rolling a fair die inttbeder. They keep rolling until one of them
rolls a 6. What is the probability each of them wins? #11: dliBob and Charlie are rolling a fair die in that order. What
is the probability Alice is the first person to roll a 6, Bob lietsecond and Charlie is the third? #12: Alice, Bob and Gharli
arestill rolling the fair die. What is the probability that the first$riolled by Alice, the second 6 by Bob and the third 6 by
Charlie? #13: What are the mean and variance of a chi-sqigtribdtion with 2 degrees of freedom? X ~ x2(2), what is
the probability thatX takes on a value at least twice its mean? What is the prohafiiltakes on a value at most half of its
mean?
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5. HW #6: DUE OCTOBER?26, 2018:

5.1. Assignment #6: Due October 26, 2018: #1: Calculate the second and third mtsmeé X when X ~ Bin(n,p) (a
binomial random variable with parametersaindp). #2: We tossV coins (each of which is heads with probability, where
the numberV is drawn from a Poisson random variable with parameter lamhdt X denote the number of heads. What is
the probability density function ok ? Justify your answer. #3: Find the probability density fimof Y whenY = exp(X)

for X ~ N(0,1). #4: Each box of cereal is equally likely to have exactly oha set ofc prizes. Thus, every time you
open a box you have B/c chance of getting prize 1, B/ ¢ chance of getting prize 2, .... How many boxes to you expect to
have to open before you have at least one of each of firzes? If you have having trouble, do= 2 for half credit. #5:
Let X4,...,X,, be independent Bernoulli random variables wh&je~ Bern(p;) (you can think of this as independent
coin tosses, where coinis heads with probability). If Y = X; + --- + X,,, what is the mean and what is the variance of
Y? Assumep; + - - - 4+ p, = p; what choice or choices of the,’s lead to the variance df being the largest possible? #6:
State anything you learned or enjoyed in Arms’ talk. One ar $&ntences suffice. #7: The kurtosis of a random vari&bke
defined bykur(X) := E[(X — u)*]/o*, wherey is the mean and is the standard deviation. The kurtosis measures how much
probability we have in the tails. X ~ Poiss()), find the kurtosis ofX . #8: Consider a coin with probabilifyof heads. Find
the probability density function foX;, whereX; is how long we must weight before we get dirst head. #9: Consider a
coin with probabilityp of heads. Find the probability density function f&r, whereX5 is how long we must weight before
we get oursecondhead. #10: Alice, Bob and Charlie are rolling a fair die inttbeder. They keep rolling until one of them
rolls a 6. What is the probability each of them wins? #11: dliBob and Charlie are rolling a fair die in that order. What
is the probability Alice is the first person to roll a 6, Bob lietsecond and Charlie is the third? #12: Alice, Bob and Gharli
arestill rolling the fair die. What is the probability that the first$rolled by Alice, the second 6 by Bob and the third 6 by
Charlie? #13: What are the mean and variance of a chi-sqigtribdtion with 2 degrees of freedom? X ~ x2(2), what is
the probability thatX takes on a value at least twice its mean? What is the prohafiiltakes on a value at most half of its
mean?

5.2. Solutions: #1: Calculate the second and third momentsXofvhen X ~ Bin(n,p) (a binomial random variable with
parameters andp).

Solution: The problem only asks us to fifd[ X 2] andE[X 3], but we’ll compute the centered momefit§ X — )?] and
E[(X — p)3] below, as this allows us to highlight more techniques ancuis more issues.

One natural way to compute these quantities is from the diefni To evaluate the second moment, we either need to
computeE[(X — u)?] orE[X?] — E[X]?. In the latter, this leads us to finding

anj_OkQ - (Z)pk(l -

While we can do this through differentiating identitiesisifaster to use linearity of expectation. L¥t, ..., X, be i.i.d.r.v.
(independent identically distributed random variableghwhe Bernoulli distribution with parametgr Note these are inde-
pendent, and we have the probabilty is 1 isp and the probabilityX; is0is1 — p. Let X = X; + --- + X,,. As they are
independent, the variance of the sum is the sum of the vaganc

Var(Xq +---+X,,) = Var(Xy)+--- + Var(X,,) = np(l —p),
as the variance of eackj; is justp(1 — p). To see this, note
E[(X; — i)’ = E[(Xi =p)’] = 1 =p)’p+(0-p)* (L =p) = p(L =p)(L=p+p) = p(l —p).
We redo the calculations in a way that will help with the as#yof the third moment. We have
EX?] = E[(Xi+ - +Xn)’]
= EBX{+ 4+ X24+2X1Xo +2Xo X5+ +2X, 1X,]

ZE[XEHE > EIXX;].

i=1 i=1 j=i+1
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As the X’s are independenE [ X; X;] = E[X;]E[X,] = p? (so long as # j); note there ar¢?) pairs(i, j) with 1 < i < j <
n. What abouf£[ X ?]? That is readily seen to be just- p + 02 - (1 — p) = p. Substituting gives

E[X?] = zn:p+2§ Zn: p? = np-i—(Z)pQ.

We thus recover our result from above.
How should we handle the third moment? BEY| = np andE[X 2] = p, we have

E(X —p)’] = E[X°-3X°u+3Xp*— %]
= E[X°] - 3npE[X°] + 3(np)*E[X] — (np)°
= E[X?] = 3np*(1 — p) + 3n°p® — np>.
We can complete the analysis in a similar manner as aboveslgaxpanding out
X3 = (X1+"'+Xn)3

and then using linearity of expectation. At this point, éifintiating identities isn’t looking so bad!
To solve this with differentiating identities, we must avatle a sum such as

> K (n>pk(1 —p)" "
k
k=0
We start with the identity
T+ no_ ZCk n— k'
o = 3 (1)t

We apply the operatm'd% three times to each side, and find (after some tedious bigistiarward algebra and calculus) that
the left hand side equals

nz(x +y)"* (n®2® + 3nay — y(z —y)) .
Settingy = 1 — x andx = p yields

np (143(n—1)p+ (n* —3n+2)p Zk?’ <n> —p)n k.

The above is quite messy, and there is a very good chance werﬂmade an algebra mistake. Thus let's see if we can find
another approach which will lead to cleaner algebra. Iruistéalpplylng:c three times, let's apply =. Applying this to

(x + y)™ is very easy, giving:® - n(n — 1)(n — 2)(z + y)"~3; applying |t to the combinatorial expanS|on gives kotand
k(k —1)(k — 2). Collecting, we find

nin—1)(n-2)2%x+y)" 2 = 23 Z kE(k—1)(k—2) (Z) ak=3yn—k
k=0
= —3k% + 2k abynh
2 - (1)

OO

+2Zk<k> aFynk,

k=0
Settingz = p andy = 1 — p yields
nin—1)(n—-2)p> = E[X?] - 3E[X?] +2E[X].
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We have made a lot of progress, as we already kBOW| andE[X 2] and can thus solve fd[X3]. The point is that it is
easiernot to try and find E[X] directly, but rather to find a related quantity. Note, of course, that this method requires us
to knowE[X] andE[X 2] before we can deduce the valueRjfx ®]; this is not an unreasonable request, as typically we want
to know all the moments up to a certain point.

The general principle here is that algebra can be hard,yanfl tedious, but if you look at a problem the right way, you
can minimize how much algebra you need to do. It's worthwtdlepend a few minutes thinking about how we can try and
approach a problem, as often this leads to a way with significéess messy computations.

#2: We tossV coins (each of which is heads with probabilify; where the numbeW is drawn from a Poisson random
variable with parameter lambda. L&t denote the number of heads. What is the probability densitgtfon of X ? Justify
your answer.

Solution: We tossN coins (each of which is heads with probabilify whereN ~ Poisson(\), and letX denote the number
of heads. What is the probability mass function’d? We compute it by calculating the probability of gettimgheads when
we tossn coins, and weight that by the probability of havingoins to toss. Thus the answer is

Prob(X =m) = Z Prob(X = m|N = n) - Prob(N =n)
- n m n—m /\ne—)\
= 3 (e 2

o m_—A\ - n! n—m)\n
- e Z m!(n—m)!(l_p) n!

m,—A X n—my\n
_ pTe (L—p)" ™A
B m)! Z

n=m

(n —m)!

We need to be ‘clever’ here to simplify the algebra and geta,rilean expression, but note the very large ‘hints’ we get b
looking at the expression so far. First off, we have a facfgrée=* /m! outside. This looks a bit like the mass function of a
Poisson, but not quite. Second, the sum above has two pieaeddpend om — m and one piece that dependsonThis
suggests we should add zero, and write

)\n — )\nfm+m — /\nfm . Am
We can then pull tha™ outside of the sum and we find

mym_ ,—\ X
Prob(X =m) = prATe Z

m!

(1 _ p)n—m/\n—m
(n—m)!

n=m

We now letk = n — m so the sum runs from O teo. We also combine the factors, and obtain

(pA)™e i (1=pA)*

Prob(X =m) - x
k=0
_ M
m)!
from the definition of* as
> k
x X
e = Z F
k=0
Simplifying the above expression, we finally obtain
m,—pA
Prob(X =m) = (pA)"er f ;
m

which is the probability mass function for a Poisson randamable with parameter).

It takes awhile to become proficient and fluent with such algiebmanipulations. A good guiding principle is that we want
to manipulate the expressions towards some known end, wgiicles us in how to multiply by 1 or add 0. Here the key step
was writingA™ and\” =™ \™,
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The following is not needed for the problem, but providesthapopportunity to review some of the concepts we've seen,
and their application. Let's compute the average value ah@om variablé” with the Poisson distribution with parameter
We have

n!
e /\nef)\
= Z e
n.
n=1

= 67 .
—1)
—(n 1)!
To finish the evaluation, it's natural to write” and A"~ ! \. The reason for this is that we have a sum where the denominato

involvesn — 1, and thus it is helpful to make the numerator depend enl as well. If we letk = n — 1, then as: runs from
1 to oo we havek runs from 0 tooo, and we find

E[Y] _ e—)\i PLEDY _ )\e—ki)‘_k — de e = )
P k! P k! ’

where again we made use of the series expansiefi.of

& n,—A\
EY] = S on e
n=0

Using this fact, we can find the expected number of heads iaghkigned problemwithoutactually proving thafX is given
by the Poisson distribution with parameper. To see this, we claim that if

Prob(X =m) = Z Prob(X = m|N = n) - Prob(N = n),

then -
E[X] = Y E[X|N =n]- Prob(N = n),
n=0

which leads to

= A2
E[X] Z np - —
n=0 ’

> Are—A
pY n-——;

mn.
n=0

the last sum is just the expected value of the Poisson disisibwith parametek, which we know is\. ThusE[X] = pA.

#3: Find the probability density function &f whenY = exp(X) for X ~ N (0, 1).

Solution: We want to compute the density Bf = ¢, whereX ~ N(0,1). The latter means tha has the standard normal
distribution, namely that the density function.8f, fx, satisfies

fx(@) = %e-m.

One very easy way to compute the answer to problems likedtig using cumulative distribution functions, and noting th
probability density is the derivative. Léty and Iy represent the cumulative distribution functionsfandY’, and letfx
and fy denote their densities. We have

Fy(y) = Prob(Y <y)

[

T

= =

o O
=z Z =2
~ %
IN A
g
N
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We now differentiate, using the chain rule.

1
frly) = Fi(logy)- (logy) = fx(logy)- y
Substituting forfx, we obtain
f () 1 1 _ log2(y)
= —— —¢ 2
Y V2m Yy

#4: Each box of cereal is equally likely to have exactly ona sét ofc prizes. Thus, every time you open a box you have
al/cchance of getting prize 1,1 ¢ chance of getting prize 2, .... How many boxes to you expelcat@ to open before you
have at least one of each of therizes? If you have having trouble, de= 2 for half credit.

Solution: This is a beautiful problem illustrating the power of exgictn. Not surprisingly, it starts off as another geometric
series problem (i.e., waiting for the first success). Ygbe the random variable which denotes how much time we need to
wait to get the next new prize given that we hawdistinct prizes (of the prizes). For each pick, the probability we get one of
thej prizes we already have {5 and thus the probability we get a new prize is = 1 — £ = <1 Thus, lettingy = < we

find the probability that we get the next new prize on picis just(1 — p)”~!p, so the expected value is

oo o) .\ n—1 .
n— _ J C_.],
;nﬂ—mlw—Z(J =

n=1

asp = % and the expected value 1gp, we haveE[Y;]| = = Note the answer is reasonable. Whea: 0 the expected
wait is just one pick (which makes sense, as we have no prizasyghing is new). Whep = ¢ — 1 we are missing only one
prize, and the answer is an expected wait (dlso reasonable!).

If Y is the random variable which denotes how long we must waittoad the prizes, thel = Yy + --- + Y._1. As

expectation is linear,
C C

Py R P
If we read the sum in reverse order and factor ocitvee notice it is

E[Y] = E[Yp] +-- +E[Y;y] =

2 3

as the sum is the™ harmonic numbe#,, which is aboufog ¢ (a better approximation g ¢ + v, where~ is the Euler-
Mascheroni constant and is about .5772156649). See

http://en.w ki pedi a. or g/ wi ki / Har noni c_nunber

11 1
E[Y] = c<1+—+—+---+—> ~ cloge,
C

for more information.

As it's often hard to see how to attack the general case imaheglj it's a good idea to try a simple case first and detect the
pattern. Let’s trye = 2. Our first box has to give us a prize we don't have; without lofsgenerality let's say we got the first
prize. We keep picking until we get the second prize. Eachvo®xpen from this point onward has a 50% chance of getting
us that second prize and ending our picking. Thus the préityave need one more box (or two total) is 1/2, that we need two
more boxes (or three total) {3/2)? = 1/4, that we need three more boxes (or four totaljlig2)® = 1/8 and so on. IfY;
denotes how long we have to wait from getting the first prizgetting the second, we s@eob(Y; = n) = (1/2)"™. ThusY;
is a geometric random variable with parameter 1/2, and tfa¢ Wit to get both prizes is + Y;. As the expected value of a
geometric random variable with parametés 1/p, E[1 + V1] =1+ 2 = 3.

#5: LetXy, ..., X, beindependent Bernoullirandom variables whEfe~ Bern(py) (you can think of this as indepen-
dent coin tosses, where cairis heads with probability). If Y = X; + - - - + X,,, what is the mean and what is the variance
of Y? Assumep; + - - - + p, = p; what choice or choices of the.’s lead to the variance df being the largest possible?

Solution: By linearity of expectation[Y] = E[X:]+- - -+ E[X,] andVar(Y) = Var(X;)+-- -+ Var(X, ). ASE[X:] = p
andVar(Xy) = pp(1 — p) we findE[Y] = p; + - - + p, andVar(Y) = p1(1 —p1) + -+ - + pn(1 — p,). We now turn to
finding the choice that leads to the largest possible vagianc

We first claim that there must be at least one choice whichsgivenaximum variance. To see this, we appeal to a result
from real analysis: a continuous function on a compact set, @ set that is closed and bounded) attains its maximum and


http://en.wikipedia.org/wiki/Harmonic_number
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minimum values. If you're not familiar with this, look at thleird proof below (the one using Lagrange multipliers) amidk
about how that was presented in your Calc Il class.

It turns out to be sufficient to study the special case when 2; before explaining why, we’ll analyze this case in detalil.
We give the ‘standard’ proof using techniques from calculéhile the idea is simple, the algebra quickly gets involaed
tedious, though everything does work out if we're patiemegh. As this much algebra is unenlightening, we give amrsdte,
simpler proof below as well.

First proof: long algebra.We first give the standard proof that one might give afterrtgla calculus class. Namely, we
convert everything to a function of one variable, and justyphhead with the differentiation, finding the critical p@imnd
comparing the values at the critical points to the end-oikithile this is exactly what we've been taught to do in calsul
we'll quickly see the algebra becomes involved and unetgiging, and thus we will givenanyalternate proofs afterwards!

Our situation is that we have + p» = © and we want to maximizg; (1 — p1) + p2(1 — p2). ASps = p — p1, we must
maximize

gp1) = pi(l—=p1)+(p—p1)(1—p+p1)
pr—pi+p(l = p) —pi(1— p) + pip — pi
= 2pip—2pi + p(l — p).

To find the maximum, calculus tells us to find the critical gsitthe values op; whereg’(p;) = 0) and compare that value
to the endpoints (which for this problem would pg = max(0, x — 1) andp; = min(u, 1)). We haveg'(p1) = 2p — 4p1,
so the critical pointig; = 1/2 which givesg(1/2) = u — % Straightforward algebra now shows that this is larger than
boundary values. Ag(p1) = g(1 — p1), it suffices to check the lower bounds.plif = 0 that mean$ < i < 1, and in this
casepy = 11 50g(0) = u(1 — p) = pu — p2, which is clearly smaller thag(p/2) = p — “72 Similarly if p; = 4 — 1 (which
implies1 < p < 2)thenps, = 1 and thusg(p — 1) = (u — 1)(2 — ) + 0 = —p? + 3u — 2. If this were larger thag(u/2),
we would have the following chain:

[ V)

2 +3u—-2 >

-
2
1
0 > —
2
2

0 > p?—du+4 > (u—2)7>%

which is impossible. Thus, after tedious but straightfahalgebra, we see the maximum value occurs not at a boundeanty p
but at the critical poinp; = 11/2, which impliesps = /2 as well.

We now consider the case of genefiallmagine we are at the maximum variance with valpgs - - , p,,. If any two of
thep,’s were unequal (say theand; values), by the argument above (in the case of just two valwescould increase the
variance by replacing; andp; with HTPJ Thus the maximum value of the variance occurs when all analeq

Second proof: cleaner algebras the algebra is a bit tedious, we give another approachgimgback in the: = 2 case)
thatp; # p. Let'swritep; = £ + x andp, = 5§ — =. We need to show the variance is maximized when 0. If z = 0 the

. .. 2 . -
variance is jusp, — 4&-, while for general: it is

) (-5 (=) (=) - o
(2+x) 1 5 )+ > z) (1 2+x I 5 2x°,

where the last step follows from multiplying everything otitus the variance is maximized in this case when 0. Note
how much faster this approach is. We included the first apr@e this is what we're taught in calculus, namely find the
critical points and check the boundary points; howevereeigly in instances where we have some intuition as to wheat t
answer should be, there are frequently better ways of aingitige algebra.

Third proof: Lagrange multipliersWe give one more proof, though here the pre-requisites are.mde use Lagrange
multipliers: we want to maximiz¢ (p1,p2) = p1(1 — p1) + p2(1 — p2) subject tog(p1, p2) = p1 + p2 — 1 = 0. We need
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Vf=Vg,so
f(p1,p2) p1—pi+p2—p3
g(p1,p2) = prt+p2—p
vf(p17p2) = (1 - 2p17 1— 2p2)
v.g(phpQ) = (171)

AsVf = AgandVyg(p1,p2) = (1,1), we find1l — 2p; = 1 — 2py Or p; = po as claimed. Note how readily this generalizes
to n variables, as in this case we would have

Vipi,....pn) = (1-=2p1,...,1—2p,)
Vg(p177pn) - (1,...,1)7

which implies all thep;’s are equal.

Fourth proof: geometrWe give yet another proof in the case= 2 andp; + p» = . We are trying to maximize
p(1—p1) +p2(1—p2) = pr—pi+p2—p5 = p— (P +p3).

As we are subtracting? + p32, we want that to be as small as possible. We may interpretthibie distance of the point
(p1, p2) from the origin, given thap; + p» = u. Geometrically it should be clear that the closest point®drigin is the
midpoint of the line from(0, 1) to (1, 0); if not and if we need to resort to calculus, this is at leastasier problem. Namely,
let po = 1 — p; SO we are trying to minimize

=PI+ (u—p1)?) = p—p>— 207 —2up1) = p—p® —2p1(p1 — p).

We thus need to minimize the value of the quadratigpn — 1); as the roots of this are 0 and the minimum is at the vertex
which is at the midpoint of the roots, namely = 11/2. In general, we are trying to minimize the function- (p? + - - - +p2)
subjecttd) < py,...,p, < landp; +--- + p, = p. Thisis equivalent to finding the point on the hyperplanaseki to the
origin in n-dimensional space, which is given by the point where theyadrequal.

Finally, is this result surprising? If everga = 0 or 1, then there would be no variation in the contribution fréfp. Thus
the variance will be smallest when all the's are in{0, 1}.

#6: State anything you learned or enjoyed in Arms’ talk. Oneve sentences suffice.
Solution: Anything should be fine!

#7: The kurtosis of a random variahk¢ is defined bykur(X) := E[(X — u)*]/o*, wherep is the mean and is the
standard deviation. The kurtosis measures how much priitigaé have in the tails. IfX ~ Poiss()), find the kurtosis ofX.
Solution: Let X ~ Poiss(\), so the mass function i§(n) = A"e~*/n! for n > 0 and 0 otherwise. For a Poisson random
variable with parametex, the mean is\ and the standard deviationyé\ (or equivalently the variance ), and thus

S o(n = N)AAmeA /nl
A2 '

There are several ways to try and analyze this. One way isgarekout(n — \)*. Whenever we have am, we can cancel
that with then in n!, and we are left with terms such a§)\7/(n — 1)!. We could then writex as(n — 1) + 1, expand and

do some more canceling. While this will work, the algebradmes tedious. The point of this exercise is to see that, while
there are numerous ways to solve a problem, it is importaneigh their advantages and disadvantages. For instanasgmwe
either make the linear combinations easy at the cost of meodied differentiation, or we can have easier combinatatthe
expense of more tedious differentiation. For this probliésgems as if the easiest algebra is when we make the diffetien
hard but the combinations easy. It takes awhile to develeglddr which approach will be most tractable for a given feah
This is one reason why we provide so many different solutions

kur(X)
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First solution. One of the best ways to compute the moments of Poisson (aed didtrete) random variables is through
differentiating identities. Consider the identity

oo n

T
e’ = E —
n!

n=0
We could keep applying the operatm‘i to this and obtain the moments, and then by expangling \)* piece everything
together. A faster way is to apply the operatox + x - four times and then set= \. If we do that we obtain

d d d ay ,
(_/\'i‘(EE) <—)\+(Ea) <—)\+$£> <—A+1’£>€ e = HZZO(TL

After some long but standard differentiation, we find the\dgtive above equals
e’ (A' = 4Nz + 60 %2(1 + z) — 4ha(1 4 3z + 2®) + z(1 + Tz + 62° + 2°)) ;

settingr = A gives

o0 )\TL
A 20 _ Y
Aet + 3X\%et = ngzo(n A) o

which means the kurtosis is

kur(X) = eA—Q (At +3X3¢Y) = 34 1.

Second solutionin terms of keeping the algebra simple, it might be easiexpmed(n — \)* and apply the operatar%
four times.

Third solution.Another possibility is to applyl/dx four times and then build back. For example, we start with
T - xn
e = Z W
n=0
Differentiating with respect ta once gives
—1

oo
T § z"
e = n- 1

n.
n=0

Takingz = \ and multiplying both sides bye=* gives

& AP —A

= Y n-—— = Elx],
n!
n=0
which implies the mean is. If we differentiatec” twice with respect ta:, we find
. o In—2 0 In—2
D NI B e I
n=0 n=0

Takingz = \ again and multiplying both sides by~ gives

oo

2_)\)\72’” )\8 Zn)\n_)\

as the last sum i&, we find

n, —\
X4
n!

SSEDIE
n=0
Continuing in this way we can g& X ] andE[X 4], and then substitute into
E[(X — '] = E[X"] - 4pE[X°] + 64°E[X?] — 4p°E[X] + p*.
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Fourth solution.For our fourth solution, we use some ideas from linear algeWfe start, as always, with the identit§y = ij’zo ™ /nl,
and we differentiate this 4 times:

n=0
e n—1
e T
&’ = Z:On —
o xn72
= —1).
e nz:;)n(n ) ]
e m'rLfS
e = Z:On(n—l)(n—Q)- ]
oo xn74
o= —1(n—2)(n—-3)-
e > n(n=1)(n=2)(n=3)-
We takez = A and multiply thek'" equation above by*, and find
oo )\TL
A —
o= > l
n=0
et A"
A — P
At = Yo nl
n=0
Nt = zo‘j(n2 —n) A
B n!
n=0
et = ioz(n3 —3n* +2n) - A
n=0 n!
o0 . )\”
Vet = 4 6nd 110 — Ry
e nE::O(n 6n” 4+ 11n" — 6n) o
We want to evaluate
—\ ©° n —\ ©© n
€ 4 A € 4 3 2,2 3 a4y A
F;(n—)\) o= 7;(71 — 40X+ 602 — 40X’ +07) - S

We writen? — 4n3X\ 4+ 6n2\% — 4n)\® + \* as a linear combination of the terms above. This is just Bgha system of equations (for
example, we may regamd’ — 4n®X 4+ 6n?\? — 4n\® + \* as the vecto(1, —4, 6, —4, 1,0), with the last component 0 as there is no
constant term). Solving the associated system of equagioas

nt — 43\ 4+ 6n22% — 4n)3 + \*
equals

1-(n* —6n® 4+ 11n> —6n) + (6 —4)) - (n® —3n° 4+ 2n) + (7— 12X+ 6X%) - (n® — n)
+(1—4X+6X>—4X*) - n + a* -1

and thus the kurtosis is

Y
‘1—2 [1 N (6 — ANAPN + (T — 121 + 62%)A% +

— [3BN+2] =3+

(1— 40+ 6)% — *)Ae + 16*] = 3

1
5

#8: Consider a coin with probability of heads. Find the probability density function &%, where X is how long we
must wait before we get ofirst head.
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Solution: ClearlyProb(X; = n) = 0unlessn € {1,2,3,...}. Forn € {1,2,3,...} we have to start witm — 1 tails (each
happening independently with probability- p) and then end with a head (which happens with probahilitfhus

(1—p)nlp ifne{l,2,3,...}

Prob(X; = =
rob(Xy =) {0 otherwise.

#9: Consider a coin with probability of heads. Find the probability density function &5, where X, is how long we
must weight before we get ogeconchead.

Solution: The solution is similar to the previous problem. There are $mall changes. First, the non-zero probabilities are
forn € {2,3,4,...}. Second, in the first — 1 tosses we now have — 2 tails and 1 head; there a(@;l) =n — 1 ways to
choose which of the first — 1 tosses is the head. Each of these 1 possibilities happens with probabilify — p)"~2p?,

and we find

(n—1)(1—p)"2p? ifne{2,34,...}

Prob(X; =n) = X
0 otherwise.

#10: Alice, Bob and Charlie are rolling a fair die in that ord&hey keep rolling until one of them rolls a 6. What is the
probability each of them wins?

Solution: Let z be the probability Alice rolls the first six. We have
1 555
“ 5766 6
to have Alice win, she either rolls a six on her first turn (Whiappens with probability 1/6) or all three don't roll a six o
their first turn (which happens with probability6 - 5/6 - 5/6), at which point Alice now wins with probability (we have a
memoryless process, and it's as if we just started the gamie.abhuse = % + %x orz = 36/91.
If we let y be the probability Bob wins the game, clearly Bob cannot filice rolls a six on her first try. Thus we have

_ 5
y - 6 )
this is because once Alice rolls a non-six (which happensob/the time), the probability Bob wins is just. We find
y =232 =30/91.
Similarly, if z is the probability Charlie wins, then
5 5
Z = ==,
6 6

as both Alice and Bob must roll non-sixes (which happens pitability5/6 - 5/6), at which point the probability of Charlie
winning is justz. We findz = 5236 — 28,

Note there was no need to fingdwe could have found it by noting= 1 — = — y. It's good to calculate it from scratch as
this provides a check. Does+ y + z = 1? We have36/91 + 30/91 + 25/91 = 91/91, which is 1.

#11: Alice, Bob and Charlie are rolling a fair die in that ordé/hat is the probability Alice is the first person to roll a 6,
Bob is the second and Charlie is the third?

Solution: After A throws a 6 we do not care if shd (s obviously named Alice) throws another 6 bef@dclearly Bob) or
C (surely Charlie) does; all we care about is tliathen throws a 6 before Charlie. Letbe the probability thatl rolls the

first 6. Then
Tr = l—i— § 3:10'
6 6 ’

this is because she either rolls a 6 on her first try, or shelaaddC all miss, and then it is as if we've started the game fresh.
(Note how important the memoryless feature is in solving¢hgroblems!) We thus find = % + %x or after some algebra
x = % We now keep rolling, and we only care about the roll$3cdndC'. It suffices to determine the probabilify gets the
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next 6, as clearly’ will then be the last to roll. Letw be the probabilityB rolls a 6 before”, given thatB rolls first. A similar

analysis gives
1 (5)?
w = 6 + (6) w,
orw = % + 22y, which givesw = . Thus the probability that! is first, thenB3 and thenC' is just
36 6 1 216

91 11 ~ 1001
As always, we should ask if this answer is reasonable. Therg!a= 6 ways to order 3 people. As the denominator is
1001, if all six orderings were equally likely we would getradtion of (approximately) 167/1001. Thus our answer ista bi
higher than the case where all outcomes are equally likéddis i§ reasonable, as we do expddo get the first six....

#12: Alice, Bob and Charlie ar#till rolling the fair die. What is the probability that the first$rolled by Alice, the second 6 by Bob
and the third 6 by Charlie?

Solution: Using the notation and results from the earlier problemsnowe wantA to roll the first 6, and then the nextrBustbe rolled by
B, and then the nexnustbe rolled byC'; thus, we now care about’s subsequent rolls. Fortunately we've already solvedphidlem! In
the analysis above, we may interpret= 36/91 as the probability that the first 6 is rolled by the personently rolling. Thus the answer
here is just:® = (36/91)?; the reason is that oncé rolls a six, it is nowB’s turn to roll.

#13: What are the mean and variance of a chi-square disoibwith 2 degrees of freedom? ¥ ~ x?(2), what is the probability that
X takes on a value at least twice its mean? What is the probahiliakes on a value at most half of its mean?
Solution: The probability density function of g2 random variable withy degrees of freedom is

(2u/2r(y/2))71271//271671'/2
for x > 0 and0 otherwise. Notice that if = 2 then the density is
ze % ifz>0
= 2 -
fa(@) {0 otherwise;

this is an exponential random variable with= 2. We've shown in class that the mean of an exponential randorahie with parametex
is A. The answer to the first question is thus

Prob(X >2-2) = / 1(37“"”/2(1:76 = —671/2’00 = e 2
4 2 4
For the second question, we have
1 Y1 —z/2|t —1/2
Prob(X < =-2) = /—e* = — " ‘ =1l-—e .
2 0o 2 0

5.3. HW #7: Due Friday, Nov 9, 2018: #1: 10% of the numbers on a list are 15, 20% are 25, and thene80a What is the average?
#2: All 100 numbers in a list are non-negative and the aveim@e Prove that at most 25 exceed 8. #8and B are independent events
with indicator random variablebs ands; thusla(xz) = 1 with probability Pr(A) and is 0 with probabilityl — Pr(A). (a) What is the
distribution of (I4 + I5)*? (b) What isE[(I4 + I)?]? #4: Consider a random variahke with expectation 10 and standard deviation 5.
(a) Find the smallest upper bound you can®df > 20. (b) CouldX be a binomial random variable? #5: Suppose average fantibnie

is $10,000. (a) Find an upper bound for the percentage ofissmwith income over $50,000. (b) Redo (a) but with the adklealvledge
that the standard deviation is $8,000. #6: (a) Xebe a random variable with < X < 1 andE[X] = u. Show that) < p < 1 and

0 < Var(X) < pu(1 — p) < 1/4. (b) Generalize and consider the cas€ X < b. (c) Assumd) < X < 9. Find a random variable where
the variance is as large as possible.
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6. HW #7: DUE FRIDAY, Nov 9, 2018

6.1. HW #7: Due Friday, Nov 9, 2018: #1: 10% of the numbers on a list are 15, 20% are 25, and thene&0a What is

the average? #2: All 100 numbers in a list are non-negatidetam average is 2. Prove that at most 25 exceed 8. A#@nd

B are independent events with indicator random variableand I5; thusZ,(z) = 1 with probabilityPr(A4) and is 0 with
probabilityl — Pr(A). (@) What is the distribution dff 4 + I5)?? (b) What isE[(14 + I5)?]? #4: Consider a random variable
X with expectation 10 and standard deviation 5. (a) Find thallest upper bound you can f&X > 20. (b) Could X be

a binomial random variable? #5: Suppose average familynirecis $10,000. (a) Find an upper bound for the percentage of
families with income over $50,000. (b) Redo (a) but with tldeled knowledge that the standard deviation is $8,000. #6: (a
Let X be a random variable with < X < 1 andE[X] = u. Show that) < p < 1and0 < Var(X) < u(1 — u) < 1/4. (b)
Generalize and consider the casg X < b. (c) Assumé) < X < 9. Find a random variable where the variance is as large
as possible.

6.2. Solutions: #1: 10% of the numbers on a list are 15, 20% are 25, rest are 5@t M/the average?

Solution: Let there bex numbers. The mean i$9 - 15 + 200 . 25 100 . 50 — 150850043500 — 47 5. Note the answer is
greater than 15 (the smallest number on our list) and snthker50 (the largest on our list). Also 70% of the numbers 8re 5
so we expect the mean to be close to 50.

#2: All 100 numbers in list are non-negative and average Rr@ve that at most 25 exceed 8.
Solution: Imagine there were 26 that were greater than 8. What woukktbentribute to the mean? Well, if the 26 numbers
were 8, we would have a contribution to the mearﬁ%f- 8 = 2.08; as the other numbers are non-negative, the mean would
have to be at least 2.08, contradicting the fact that the riseann a sense, this question is poorly phrased, as we caettir.b
We can show that there are at most 24 that exceed 8. The averageallest when 25 exceed 8 if 75 are 0 and 25 exceed 8,
which gives a mean exceeding 2.

#3: A and B independent events with indicator random variaflegnd/z; thusl4(z) = 1 with probabilityPr(A4) and is
0 with probabilityl — Pr(A). (a) What is the distribution ofl 4 + I5)2? (b) WhatisE[(I4 + I5)?%]?
Solution: Squaring, it i§i+2IAIB +IfB = Ix+21 415+ 1p as the square of an indicator random variable is just theatdr.
It can only take on the values 0, 1, and 4. It is zero wHeand B don’'t happen, or it is O with probabilityl — PA)(1 — PB).
Itis 1 if exactly one ofA and B happens, so itis 1 with probabili4(1 — PB) + (1 — PA)PB. Itis 2 if both happens, or it
is 2 with probabilityP AP B.

(b) We usel? + 2141p + I3 = 14 + 21415 + I and the linearity of expectation to see that thiEj$a] + 2E[I4 /5] +
E[Ig]. The middle term is jusE[I4]E[Ig] = PAPB as the random variables are independent, and so this ansyeest i
PA + 2PAPB + PB. As an aside, if we hatl 4 + )", what do you think this will approximately equal farlarge?

#4: Consider a random variah#e with expectation 10 and standard deviation 5. (a) Find thallest upper bound you can
for PX > 20. (b) CouldX be a binomial random variable?
Solution: (a) Note that 20 is 2 standard deviations above the meanhasdt Chebyshev’s inequality the probability of being
at least 20 is at most 1/4. (b) If yes, it would have samand a probabilityp. We would have to solvE[X] = np = 10,
Var(X) = np(l — p) = 25. There are many ways to do the algebra. Substitute:fowhich must be 10, in the variance
equation to findl0(1 — p) = 25, sol — p = 2.5 or p = —1.5, which is impossible. What if instead we were told the mean
was 10 and the variance was 5? In that case we would H#te— p) = 5, which givesp = 1/2 and then frormmp = 10 we
getn = 20, so in this case it is possible to have a binomial random libeia

#5: Suppose average family income is $10,000. (a) Find upmend for percentage of families with income over $50,000.
(b) Redo (a) but with the added knowledge that the standaiatifen is $8,000.
Solution: (a) Note thatincome is non-negative (we hope!), so let'#taykov's inequality. S®I > $50,000 < E[I]/$50, 000
= 10000,/50000 = 1/5. (b) If we know the standard deviation is $8,000, then we baéwe are 4 standard deviations from
the mean, so by Chebyshev the probability of being at leatiridard deviations away from the mean is at mgéf. Not
surprisingly, we can do much better when we know more.

#6: (a) LetX be a random variable with < X < 1 andE[X] = u. Show that) < ; <1 and0 < Var(X) < pu(1 —pu) <
1/4. (b) Generalize and consider the cas€ X < b. (c) Assumé) < X < 9. Find a random variable where the variance is
as large as possible.
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Solution: (@) As0 < X < 1,0 < E[X] = p < 1. For the second claim, note< X? < X <las0 < X < 1. As
Var(X) = E[X?] - E[X]? = E[X?] — 2, andE[X?] < E[X] < 1, we haveVar(X) < p— p? = pu(1— p). Sinceu € [0, 1],

a calculus exercise shows the maximum of the funciign) = p(1 — u) occurs wherw = 1/2, leading to the value 1/4.
Another way to see thisis to noté1 — u) = —pu? — = —(u — 1/2)? — 1/4; as(u — 1/2)? > 0 the minimum value is 1/4.
Note: the variance bound should be a function:oif we letY = 1 — X then the mean df is 1 — i but the variance ot
is the same as the variance &f, thus we expect our variance bound to be a functiom ef . Thus the final result should
be a function ofu(1 — u), as we can’t tellX apart fromY” if we only care about the variancé&till another way is to note
Var(X) = E[X?] — E[X]? = E[X?] — 112, and then note

E[X?] = /01 2?p(x)dr < /O;Cp(x)dx = E[X];

this is essentially the same calculation, just writtenedihtly.

(b) The argument proceeds similarly. As< X < b, f; ap(z)dz < f; xp(x)dr < f; bp(z)dz, soa < E[X] < b. For
the variance, we could usér(X) = E[X?] — E[X]?, but it's better to reduce to part (a). LBt= (X — a)/(b — a). Note
0<Y <landuy = (ux —a)/(b— a). By part (a), the variance &f is at mostuy (1 — uy ), which gives

px —a px —a\  (px —a)(b— px)
b—a <1_ b—a) N (b—a)? '

Note thatVar(Y) = Var((X —a)/(b—a)) = Var(X)/(b—a)?. ThusVar(X) < (ux —a)(b— px). Using calculus, we see
this is largest whep x = 25, which gives after some algebvar(X) < 1(b—a)?. (To see this, lef (u) = (u—a)(b—u) =
—u? + (b —a)u — ab, S0 f'(u) = —2u + (b — a), S0 the critical pointis where = (b — a)/2.)

(c) If half the numbers are 9 and half are 0, then the mean iadd3he standard deviation is 4.5 (so the variandesi%),
as everything is 4.5 units from the mean. From part (b), theimmam the variance oKX can be is}l(Q —0)2 =20.25 = 4.52.
Thus the variance is as large as possible. This forces tha todse 4.5, and then the variance is maximized when half are 0
and half are 9. It's not surprising that parts (a) and (b) aeful here.

Var(X) <
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