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Gameplan

@ History of the subject.

@ Main results and proofs:
© Constructing Families
© Phase transition
< More summands
o k-Generational.

@ Describe open problems.

Joint with: Peter Hegarty, Ginny Hogan, Geoffrey lyer,
Oleg Lazarev, Brooke Orosz, Dan Scheinerman, Liyang
Zhang.
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Statement

A finite set of integers, |A| its size. Form
@ Sumset: A+ A= {a +a;:a,a €A}
o Difference set: A— A= {a —a; : a,a € A}

Arise in Goldbach’s Problem, Twin Primes, Fermat’s Last
Theorem, ....
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Statement

A finite set of integers, |A| its size. Form
@ Sumset: A+ A= {a +a;:a,a €A}
o Difference set: A— A= {a —a; : a,a € A}

Arise in Goldbach’s Problem, Twin Primes, Fermat’s Last
Theorem, ....

Definition

We say A is difference dominated if |A — A| > |[A+A|,
balanced if |A — A| = |A + A| and sum dominated (or an
MSTD set) if A+ A] > |A—A|.




Questions

Expect generic set to be difference dominated:
@ addition is commutative, subtraction isn’t:
@ Generic pair (x,y) gives 1 sum, 2 differences.
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Questions

Expect generic set to be difference dominated:
@ addition is commutative, subtraction isn’t:
@ Generic pair (x,y) gives 1 sum, 2 differences.

@ Do there exist sum-dominated sets?

o If yes, how many?

TS HHSHHH
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Examples
@ Conway: {0,2,3,4,7,11,12 14}.
@ Marica (1969): {0,1,2,4,7,8,12,14,15}.

@ Freiman and Pigarev (1973): {0,1,2,4,5, 9,12, 13,
14,16,17, 21,24,25,26, 28, 29}.

@ Computer search of random subsets of {1, ...,100}:
{2,6,7,9,13,14,16, 18,19, 22, 23, 25, 30, 31, 33, 37, 39,
41,42, 45 46, 47,48,49.51 52,54,57,58,59,61, 64, 65,
66,67,68,72,73,74,75,81,83,84,87, 88,91, 93,94, 95,
98, 100}.

@ Recently infinite families (Hegarty, Nathanson).
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Infinite Families

Key observation
If A is an arithmetic progression, |A + A| = |A—A|.
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Infinite Families

Key observation
If A is an arithmetic progression, |A + A| = |A—A|.

Proof:

@ WLOG,A={0,1,....,n} as A — oA+  doesn't
change [A+A|, |A—A|.
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Infinite Families

Key observation
If A is an arithmetic progression, |A + A| = |A—A|.

Proof:

@ WLOG,A={0,1,....,n} as A — oA+  doesn't
change [A+A|, |A—A|.

o A+A=1{0,....2n},A— A= {—n,...,n}, both of size
2n + 1. O
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Previous Constructions

Most constructions perturb an arithmetic progression.

Example:
@ MSTD set A=1{0,2,3,4,7,11,12 14}.

o A={0,2}U{3,7,11} U (14 — {0,2}) U {4}.
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Example (Nathanson)

Theorem
m,d,k e Nwithm>4,1<d<m-1,d#m/2, k > 3if
d <m/2elsek > 4. Let
e B=[0,m—1]\{d}.
oeL={m-d,2m—-d,... ., km—d}.
o a =(k+1)m-2d.
o A*=BuULU(a*—B).
o A=A"U{m}.
Then Ais an MSTD set. )

Note: gives exponentially low density of MSTD sets.
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New Explicit Constructions: Results and Notation

Previous best explicit sub-family of {1, ... ,n} gave
density of C;n9/2"/2,

Our new family gives C,/n?, almost a positive percent.
Current record by Zhao: Cz/n.

Notation:
o [a,b]={k €Z:a<k <b}.

@ Ais a P,-set if its sumset and difference sets contain
all but the first and last n possible elements (may or
may not contain some of these fringe elements).
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New Construction

Theorem (Miller-Orosz-Scheinerman '09)

@ A=LUR be aP,, MSTD set where L C [1,n],
R cC[n+1,2n],and 1,2n € A.

@ Fixak > n and let m be arbitrary.

@ M any subset of [n + k +1,n + k 4+ m] st no run of
more than k missing elements. Assume
n+k+1¢&M.

@ SetA(M)=LUO; UM UO, UR’, where
Or=n+1n+k],0,=[n+k+m+1n+ 2k +mj,
and R" =R + 2k + m.

Then A(M) is an MSTD set, and 3C > O st the
percentage of subsets of {0, ..., r} that are in this family
(and thus are MSTD sets) is at least C /r2.
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Probability Review

X random variable with density f(x) means
o f(x) >0;
o [T f(x)=1;
@ Prob(X € [a,b]) = [ f(x)dx.

Key quantities:
@ Expected (Average) Value: E[X] = [ xf(x)dx.
@ Variance: 0% = [(x — E[X])?f(x)dx.
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Binomial model

Binomial model, parameter p(n)
Each k € {0,...,n} is in A with probability p(n).

Consider uniform model (p(n) = 1/2):

o LetAc {0,...,n}. Most elements in {0,...,2n} in
A+Aandin{—n,....n}in A—A.

o E[[A+A]]=2n—11,E[A—A]] =2n—7.
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Martin and O’Bryant '06

Let A be chosen from {0, ...,N} according to the
binomial model with constant parameter p (thus k € A
with probability p). At least ksp,,2V+* subsets are sum
dominated.




Phase Transition
.

Martin and O’Bryant '06

Let A be chosen from {0, ...,N} according to the
binomial model with constant parameter p (thus k € A
with probability p). At least ksp,,2V+* subsets are sum
dominated.

@ ksp;1/2 > 1077, expect about 1073.
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Martin and O’Bryant '06

Let A be chosen from {0, ...,N} according to the
binomial model with constant parameter p (thus k € A
with probability p). At least ksp,,2V+* subsets are sum
dominated.

@ ksp;1/2 > 1077, expect about 1073.

@ Proof (p = 1/2): Generically |A| = ¥ + O(VN).
o about ¥ — K ways write k € A + A,
o about ¥ — K ways write k € A — A.
¢ Almost all numbers that can be in A + A are.

© Win by controlling fringes.
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Notation

@ X ~ f(N) means Ve, e; > 0, IN stVN > N

€1,€2 €1,€2

Prob (X & [(1 — e1)f(N), (1 + e1)f(N)]) < eo.
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—|A+A,D=|A-A|
50 2N +1-8,D°=2N+1—D.
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Notation

@ X ~ f(N) means Ve, e; > 0, IN stVN > N

€1,€2 €1,€2

Prob (X & [(1 — e1)f(N), (1 + e1)f(N)]) < eo.

—|A+A,D=|A-A|
SC 2N +1-8,D°=2N+1—D.

New model: Binomial with parameter p(N ):

° 1/N = o(p(N)) and p(N) = o(1);
@ Prob(k € A) = p(N).

Conjecture (Martin-O’Bryant)
As N — oo, A is a.s. difference dominated.
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Main Result

Theorem (Hegarty-Miller)

e *—(1—x)
X

p(N) as above, g(x) =2
@ p(N) = o(N~2): D~ 25 ~ (Np(N))?;
@ p(N)=cN~¥2: D ~g(c?®)N,S~g (%) N
(c—0,D/S —2;,¢c—00,D/S — 1)
@ N %2 =0(p(N)): 8¢~ 2D°¢ ~ 4/p(N)>.

Can generalize to binary linear forms or arbitrarily many
summands, still have critical threshold.




Phase Transition

Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Need to allow dependent random variables.
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Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Need to allow dependent random variables.

Sketch of proofs: X € {S, D, ¢, D°}.

© Prove E[X] behaves asymptotically as claimed;
@ Prove X is strongly concentrated about mean.
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Only need new strong concentration for N=%/2 = o(p(N)).

Will assume p(N) = o(N~%/?) as proofs are elementary
(i.e., Chebyshev: Prob(|Y — E[Y]| > koy) < 1/k?)).
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Only need new strong concentration for N=1/2 = o(p(N)).

Will assume p(N) = o(N~%/?) as proofs are elementary
(i.e., Chebyshev: Prob(|Y — E[Y]| > koy) < 1/k?)).

For convenience let p(N) = N9, € (1/2,1).
lID binary indicator variables:

5 1 with probability N—°
"N Y0 with probability 1 — N~°.

X =5 X, E[X] = N9,
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Lemma

P1(N) = 4N~(-9),
O=#{(m,n):m<ne{l,...,N}A}L
With probability at least 1 — P;(N) have
Q X e [N 3N,

1N1—6(1N1—6_
e 2N (2N 1) SOS

BNTTOENTO)
. :

2
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Lemma

P1(N) = 4N~(-9),
O=#{(m,n):m<ne{l,...,N}A}L
With probability at least 1 — P;(N) have
Q X e [N 3N,

lNl—é(;Nl—é_l) §N1—6(§N1—6_1)
2 2 2 2

Proof:
@ (1) is Chebyshev: Var(X) = NVar(Xnn) < N2,
@ (2) follows from (1) and (3,) ways to choose 2 fromr.
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Concentration

Lemma

o f(5) = min (3,321), g(d) satisfies 0 < g(8) < f(d).

@ p(N)=N=° 4 € (1/2,1), Py(N) = 4N—(1-9),
P,(N) = CN (1(5)~9(5))

With probability at least 1 — P;(N) — P,(N) have
D/S =2+ O(N—9@),
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Concentration

o f(5) = min (3,321), g(d) satisfies 0 < g(8) < f(d).

@ p(N)=N=° 4 € (1/2,1), Py(N) = 4N—(1-9),
P,(N) = CN (1(5)~9(5))

With probability at least 1 — P;(N) — P,(N) have
D/S =2+ O(N—9@),

Proof: Show D ~ 20 + O(N37%), S ~ O + O(N3%),

As O is of size N?~2% with high probability, need
2—-20>3—46o0ro6>1/2.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.

Difficulty: (m,n) and (m’,n’) could yield same differences.
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v )1 fn—m=n"—-m’
m.n.men 0 otherwise.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.
Difficulty: (m,n) and (m’,n’) could yield same differences.

Notation: m<n,m' <n’,m<m/,

v )1 fn—m=n"—-m’
m.n.men 0 otherwise.

E[Y] < N3.N-% 4+ N2.N-3 < 2N3%, As § > 1/2,
#{bad pairs} <« O.

Claim: oy < N"®with r(6) = 1 max(3 — 44,5 — 75). This
and Chebyshev conclude proof of theorem.
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Proof of claim

Cannot use CLT as Ymnm o are not independent.

Use Var(U + V) < 2Var(U) + 2Var(V).
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Proof of claim

Cannot use CLT as Ymnm o are not independent.
Use Var(U + V) < 2Var(U) + 2Var(V).
Write

E Ym,n,m’,n’ - E Um,n,m’,n"f‘g Vm,n,n’

with all indices distinct (at most one in common, if so must
be n =m’).

Var(U) = > Var(Unpwa)+2 Y CoVar(Umna.n U i)

(m~,n~,m~’ ,nj)#
(M,n,m’,n’)
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Analyzing Var(Um nm n)

At most N3 tuples.
Each has variance N=% — N—80 < N—49,

ThUS ZVar(Um7n7m/7n/) S N3_46.

A
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Analyzing COV&F(Umjnjm/’n/, Urﬁ,ﬁ,rﬁ’,ﬁ’)

@ All 8 indices distinct: independent, covariance of 0.

@ 7 indices distinct: At most N2 choices for first tuple, at
most N2 for second, get

EUnU@)] —E[UnEU@z] =N —N"*N"% < N7

@ Argue similarly for rest, get < N5=70 4 N3-49,

A
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Notation

@ As adding sets and not multiplying, set

KA = A+---+A.
—
k times

o [a,b] = {a,a+1,...,b}.

AR
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Questions

@ Can we find a set A such that |KA + kA| > |KA — kA|?

@ Can we find a set A such that |[A+ A| > |A — A and
I2A + 2A| > |2A — 2A|?

@ Can we find a set A such that |kA + kA| > |KA — kA|
for all k?

A




Generalizations
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Questions

@ Can we find a set A such that |kA + kA| > |KA — kA|?
Yes.

@ Can we find a set A such that |[A+ A| > |A — A and
|2A + 2A| > |2A — 2A]? Yes.

@ Can we find a set A such that |kA + kA| > |KA — kA|
for all k? No. (No such set exists, but can do for
arbitrarily many k.)

A
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Initial Observations

Question: Can we find A with |KA 4+ kKA| > |[KA — KA|?

AR
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Initial Observations

Question: Can we find A with |KA 4+ kKA| > |[KA — KA|?

@ One set gives infinitely many (generalize
Miller-Orosz-Scheinerman), more work get positive
percentage.
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Initial Observations

Question: Can we find A with |KA 4+ kKA| > |[KA — KA|?

@ One set gives infinitely many (generalize
Miller-Orosz-Scheinerman), more work get positive
percentage.

@ How do we find one set?
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Initial Observations

Question: Can we find A with [KA + kA| > |kA — kA|?

@ One set gives infinitely many (generalize
Miller-Orosz-Scheinerman), more work get positive
percentage.

@ How do we find one set?

@ Computer simulations? We couldn’t find a set for

k = 2; the probability of finding some of these sets is
less than 1016,

AQ
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Initial Observations

Question: Can we find A with [KA + kA| > |kA — kA|?

@ One set gives infinitely many (generalize
Miller-Orosz-Scheinerman), more work get positive
percentage.

@ How do we find one set?
@ Computer simulations? We couldn’t find a set for

k = 2; the probability of finding some of these sets is
less than 1016,

If A'is symmetric (A = ¢ — A for some c) then

IA+A =|A+(c—A)=|A—-A
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Example: |2A + 2A| > |2A — 2A|

A = {0,1,3,4,5,9} U[33,56]U{79,83,84,85,87,88,89}
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Example: |2A + 2A| > |2A — 2A|

A = {0,1,3,4,5,9} U[33,56]U{79,83,84,85,87,88,89}

3 9 1 El E 7 &
®@® @
® 00000 ® 00 000 ® 000 ® ®
Q 00000 4 900 00 4 000 ® ®
E 145 58 68 178
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Example: |2A + 2A| > |2A — 2A|

A = {0,1,3,4,5,9} U[33,56]U{79,83,84,85,87,88,89}
A+A+A

3 9 1 El E &
©0-3 ®-10

® 00000 ® 00 000 ® 000 ® ®

Q 00000 4 900 00 4 000 ® ®

3 9 18 E 145 158 168 178
-z ar-20) are-10)

® ® ©0-- 000 ® 00 000 000 ® ® ®

® ® 00000 900 009§ 000 ® ® ®

0 9 18 7 El T 27 257 27
09 018 2 039 @7-30) 26720 26710
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Example: |2A + 2A| > |2A — 2A|

A = {0,1,3,4,5,9} U[33,56]U{79,83,84,85,87,88,89}

A+A+A+A

3 9 1 = E ) o
©0-3 ®-10

® 0000 Py o060 006 Py o0 ® ®

v g hd Dt i hd g g

3 9 ® ) 15 159 168 s
ar-zy ar-20) are-10)

® ® ©0-- 000 ® o060 000 00 ® ® ®

T h Lt hd Rt Y b g g g

3 9 » e o a 2 27 27
09 ©18 2 039 @7-30) @120 @710

4 4 4 4 4 lead 4 4 o

h h h h i Toon v v v

3 9 1 z = S ) e E
©9 o8 2 039 (@56-30) (@s6-20) @s6-10)
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Example: |2A + 2A| > |2A — 2A|

A = {0,1,3,4,5,9} U[33,56]U{79,83,84,85,87,88,89}

3 9 1 El E 7 &
®@® @
® 00000 ® 00 000 ® 000 ® ®
Q 00000 4 900 00 4 000 ® ®
E 145 58 68 178
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Example: |2A + 2A| > |2A — 2A|

A = {0,1,3,4,5,9} U[33,56]U{79,83,84,85,87,88,89}
A+A—A

o 9 18 B 56 3
-3 ©9-10)

PN 0 000 ® 00 000 ® 000 ® ®

® 90000 L 4 900 000 \ 4 000 ® ®

o 9 18 £ us 158 1 1
am-x ams-20 ams-10)

® ® A 00— @ o060 0000 000--00 ® ®

¢ ® ® 000+ & 900 000+ 00009 ® ®

-8 &0 - -& -5 us s 158 168 i
(-89+9) (-89418) (-80427) (8933 am-30) am-20 am-10
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Example: |2A + 2A| > |2A — 2A|

A = {0,1,3,4,5,9} U[33,56]U{79,83,84,85,87,88,89}
A+A—A—A

3 9 » = 5 S
-39 210

o o A d ¢ ® 0w ® ¢

g h hd T bt d hd v hg

3 9 1 = us 158 x m
a3y a2 a1

© o o 0000 e COO+00 o o

e h h [ bt bt AN i v g

w0 @ n 62 5 w5 ue 158 188 I
(-89:9) -8918) 80z (-89:39 - -2 am-10)

® ® ® ® o0 00609 ® ® ®

o o o ® 0900 00009 ® ® ®

17 -160 -160 -151 15 148 158 169 )
178:9) 178418) i - ar-20) an-10
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Why the construction worked: Generalization to XA — yA

@ Write A = L UR (left and right).




Generalizations
°
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@ L, R almost symmetric, R slightly longer.
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Why the construction worked: Generalization to XA — yA

@ Write A = L UR (left and right).
@ L, R almost symmetric, R slightly longer.
@ Left of XA — yAis XL — yR (rightis yL — xR). As

|IR| > |L|, length of fringe depends on number of
copies of L, R.

GO
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Why the construction worked: Generalization to XA — yA

@ Write A = L UR (left and right).
@ L, R almost symmetric, R slightly longer.

@ Left of XA — yAis XL — yR (rightis yL — xR). As
|IR| > |L|, length of fringe depends on number of
copies of L, R.

@ Our example: (1) In A+ A+ A+ Aright hits middle,
no gaps, left 1 gap. (2) INnA+A —A—Aleftis
L+L-R-R,lengthbwL+L+L+Land
R+R+R+Rand1lgap. RightisR+R —L—1L,
also 1 short, so A+ A— A — A misses 2.

¢
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Generalization

After dealing with some technical obstructions, we can
generalize:

R
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Generalization

After dealing with some technical obstructions, we can
generalize:

For all nontrivial choices of s;,d;,S,,d>, 3A C Z such that
|S;|_A — dlAl > |32A — d2A|

R




Generalizations

Generalization

After dealing with some technical obstructions, we can
generalize:

For all nontrivial choices of s;,d;,S,,d>, 3A C Z such that
|S;|_A — dlAl > |32A — d2A|

Example: We can have A+ A+A+A| > |A+A+A-A
A = {0,1,3,4,5,9,33,34,35,50,54,55,56, 58,59, 60}.

¢
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A — A|
and [A+A+A+A >A+A-A-A?

RE
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A — A|
and [A+A+A+A >A+A-A-A?

Equivalently: A, 2A are sum-dominant. We say A is
2-generational.

AR
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A — A|
and [A+A+A+A >A+A-A-A?

Equivalently: A, 2A are sum-dominant. We say A is
2-generational.

More generally, A is k-generational if
|cA+cA| > |cA—cA|forall1l <c <k.

¢
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A — A
and [ A+A+A+A>|A+A-A-A?

R
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A — A
and [ A+A+A+A>|A+A—-A—-A? Yes!

A ={0,1,3,4,7,26,27,29, 30, 33,37, 38, 40, 41,42, 43,
46,49,50,52,53,54,72,75,76,78,79,80}

We can find a k-generational set for all k.

¢
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A — A
and [ A+A+A+A>|A+A—-A—-A? Yes!

A ={0,1,3,4,7,26,27,29, 30, 33,37, 38, 40, 41,42, 43,
46,49,50,52,53,54,72,75,76,78,79,80}

We can find a k-generational set for all k.

Idea of proof: Find A; such that [jA; + jA;j| > |jA; — jA;| for
each 1 <j <k.

Combine the A;’s using the method of base expansion.

y




Generalizations
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Base Expansion

Base Expansion: For sets A1, A, and m € N sufficiently
large (relative to A, Ay) the set

A=m-A +A

behaves like the direct product A; x A, C Z X Z.
(here multiplication is the usual scalar multiplication)

2SS
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Base Expansion

Base Expansion: For sets A1, A, and m € N sufficiently
large (relative to A, Ay) the set

A=m-A +A

behaves like the direct product A; x A, C Z X Z.
(here multiplication is the usual scalar multiplication)

In particular:
XA — yA| = [XAr — YA1| - [XA; — YA |

whenever x + vy is small relative to m.

y
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Generalization

For nontrivial x;, y;,w;, z; (2 <] < k), we can find an A
such that |x;A — y;A| > |wjA — z;A| for all j.

TS -
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Generalization

For nontrivial x;, y;,w;, z; (2 <] < k), we can find an A
such that |x;A — y;A| > |wjA — z;A| for all j.

Example: We can find an A such that

A+A > |A—A|
A+A—A| > |A+A+A|
I5A—2A| > |A—6A

|1870A — 141A| > |1817A — 194A.

y




Ongoing Research / Open Problems

Open Problems J

V- EEEEEOOSTSTSSSSSSS L —-—S




Ongoing Research / Open Problems
[ ]

Current and Open Problems

@ Similar results for arbitrary finite groups (with Kevin
Vissuet).

@ Generalize phase transition results for more
summands (SMALL 13 hopefully).

@ Generalize to subsets of Z* x Z* (SMALL '13
hopefully).

@ Study the dependence of the divot on p(N).
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Divot: Lazarev - Miller - O’Bryant

Let m(k) be the probability a uniformly drawn subset A of [0,n] has A + A
missing exactly k summands as n — oco.

mk)

0,07 +

0.06 . L

0.05

0.04

0.03 o

0.02 .

001 L

e

e
_7%%%0

P S R TSI S K
0 5 10 15 20 25 30

Figure: Experimental values of m(k), vertical bars error (often
smaller than dot!).

. What haegens if draw A from binomial with Earameter E! N I?
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Generalization of main result

Theorem (Hegarty-M): Binomial model with parameter p(N) as
before, u, v be non-zero integers with u > |v|, gcd(u,v) = 1 and
(u,v) # (1,1). Putf(x,y) := ux 4+ vy and let D; denote the random
variable |f(A)|. Then the following three situations arise:

© p(N) =0o(N-1/2): Then
Dy ~ (N -p(N))>.

@ p(N) =c- N2 for some ¢ € (0, 0) : Define the function
Quy : (0,00) = (0,u + |v|) by

v (x) = (0 V) = 2v] (S5 ) = (= e

Then
CZ
Dt ~ Quyv (U) N.

© N-Y2=0(p(N)): Let D¢ := (u + [v|)N — Ds. Then Df ~ s(“,\“‘;lz

y
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Generalization of Hegarty-Miller

Let f,g be two binary linear forms. Say f dominates g for the
parameter p(N) if, as N — oo, |f(A)| > |g(A)| almost surely when A is
a random subset (binomial model with parameter p(N)).

Theorem (Hegarty-M): f(x,y) = uix + upy and g(x,y) = uxx + gay,
where u; > |vi| > 0, gcd(u;, vi) = 1 and (uz, Vo) # (ug, £v;). Let

(uv)-—i M+u—|v| _ 3u—|v|
A=Y= 2\ 2 )7 Teuw -

The following two situations can be distinguished :

@ U + |vi| > Uz + |v2] and a(ug, Vi) < a(uz,Vvz). Then f dominates
g for all p such that N=3/5 = o(p(N)) and p(N) = o(1). In
particular, every other difference form dominates the form x —y
in this range.

@ Uy + |vi| > Uz + |v2| and a(uy,vi) > a(uz,Vv2). Then there exists
Ct g > 0 such that one form dominates for p(N) < cN~—1/2
(c < cr,g) and other dominates for p(N) > cN~/2 (¢ > ¢y g).

Qe
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Open Problems

@ One unresolved matter is the comparison of arbitrary difference
forms in the range where N—3/4 = O(p) and p = O(N—3/%),
Note that the property of one binary form dominating another is
not monotone, Or even convex.

@ A very tantalizing problem is to investigate what happens while
crossing a sharp threshold.

@ One can ask if the various concentration estimates can be
improved (i.e., made explicit).
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