
Intro Examples Phase Transition Generalizations Ongoing Research / Open Problems Bibliography

When Almost All Sets Are
Difference Dominated

Steven J Miller
Williams College

Steven.J.Miller@williams.edu
http://web.williams.edu/Mathematics/sjmiller/public_html/

University of Illinois at Urbana-Champaign
Number Theory Seminar, March 26, 2013

1

http://web.williams.edu/Mathematics/sjmiller/public_html/


Intro Examples Phase Transition Generalizations Ongoing Research / Open Problems Bibliography

Gameplan

History of the subject.

Main results and proofs:
⋄ Constructing Families
⋄ Phase transition
⋄ More summands
⋄ k -Generational.

Describe open problems.

Joint with: Peter Hegarty, Ginny Hogan, Geoffrey Iyer,
Oleg Lazarev, Brooke Orosz, Dan Scheinerman, Liyang
Zhang.
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Introduction
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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : aj , aj ∈ A}.
Difference set: A − A = {ai − aj : aj , aj ∈ A}.

Arise in Goldbach’s Problem, Twin Primes, Fermat’s Last
Theorem, ....
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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : aj , aj ∈ A}.
Difference set: A − A = {ai − aj : aj , aj ∈ A}.

Arise in Goldbach’s Problem, Twin Primes, Fermat’s Last
Theorem, ....

Definition
We say A is difference dominated if |A − A| > |A + A|,
balanced if |A − A| = |A + A| and sum dominated (or an
MSTD set) if |A + A| > |A − A|.
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Questions

Expect generic set to be difference dominated:
addition is commutative, subtraction isn’t:
Generic pair (x , y) gives 1 sum, 2 differences.
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Questions

Expect generic set to be difference dominated:
addition is commutative, subtraction isn’t:
Generic pair (x , y) gives 1 sum, 2 differences.

Questions
Do there exist sum-dominated sets?
If yes, how many?
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Examples
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Examples

Conway: {0, 2, 3, 4, 7, 11, 12, 14}.

Marica (1969): {0, 1, 2, 4, 7, 8, 12, 14, 15}.

Freiman and Pigarev (1973): {0, 1, 2, 4, 5, 9, 12, 13,
14, 16, 17, 21, 24, 25, 26, 28, 29}.

Computer search of random subsets of {1, . . . , 100}:
{2, 6, 7, 9, 13, 14, 16, 18, 19, 22, 23, 25, 30, 31, 33, 37, 39,
41, 42, 45, 46, 47, 48, 49, 51, 52, 54, 57, 58, 59, 61, 64, 65,
66, 67, 68, 72, 73, 74, 75, 81, 83, 84, 87, 88, 91, 93, 94, 95,
98, 100}.

Recently infinite families (Hegarty, Nathanson).
9
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Infinite Families

Key observation

If A is an arithmetic progression, |A + A| = |A − A|.
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Infinite Families

Key observation

If A is an arithmetic progression, |A + A| = |A − A|.

Proof:

WLOG, A = {0, 1, . . . , n} as A → αA + β doesn’t
change |A + A|, |A − A|.
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Infinite Families

Key observation

If A is an arithmetic progression, |A + A| = |A − A|.

Proof:

WLOG, A = {0, 1, . . . , n} as A → αA + β doesn’t
change |A + A|, |A − A|.

A +A = {0, . . . , 2n}, A −A = {−n, . . . , n}, both of size
2n + 1. �
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Previous Constructions

Most constructions perturb an arithmetic progression.

Example:

MSTD set A = {0, 2, 3, 4, 7, 11, 12, 14}.

A = {0, 2} ∪ {3, 7, 11} ∪ (14 − {0, 2}) ∪ {4}.

13
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Example (Nathanson)

Theorem
m, d , k ∈ N with m ≥ 4, 1 ≤ d ≤ m − 1, d 6= m/2, k ≥ 3 if
d < m/2 else k ≥ 4. Let

B = [0,m − 1]\{d}.
L = {m − d , 2m − d , . . . , km − d}.
a∗ = (k + 1)m − 2d.
A∗ = B ∪ L ∪ (a∗ − B).
A = A∗ ∪ {m}.

Then A is an MSTD set.

Note: gives exponentially low density of MSTD sets.
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New Explicit Constructions: Results and Notation

Previous best explicit sub-family of {1, . . . , n} gave
density of C1nd/2n/2.

Our new family gives C2/n2, almost a positive percent.

Current record by Zhao: C3/n.

Notation:
[a, b] = {k ∈ Z : a ≤ k ≤ b}.

A is a Pn-set if its sumset and difference sets contain
all but the first and last n possible elements (may or
may not contain some of these fringe elements).
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New Construction

Theorem (Miller-Orosz-Scheinerman ’09)

A = L ∪ R be a Pn, MSTD set where L ⊂ [1, n],
R ⊂ [n + 1, 2n], and 1, 2n ∈ A.
Fix a k ≥ n and let m be arbitrary.
M any subset of [n + k + 1, n + k + m] st no run of
more than k missing elements. Assume
n + k + 1 6∈ M.
Set A(M) = L ∪ O1 ∪ M ∪ O2 ∪ R′, where
O1 = [n + 1, n + k ], O2 = [n + k + m + 1, n + 2k + m],
and R′ = R + 2k + m.

Then A(M) is an MSTD set, and ∃C > 0 st the
percentage of subsets of {0, . . . , r} that are in this family
(and thus are MSTD sets) is at least C/r2.
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Phase Transition
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Probability Review

X random variable with density f (x) means

f (x) ≥ 0;
∫∞

−∞
f (x) = 1;

Prob(X ∈ [a, b]) =
∫ b

a f (x)dx .

Key quantities:
Expected (Average) Value: E[X ] =

∫
xf (x)dx .

Variance: σ2 =
∫
(x − E[X ])2f (x)dx .

18
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Binomial model

Binomial model, parameter p(n)

Each k ∈ {0, . . . , n} is in A with probability p(n).

Consider uniform model (p(n) = 1/2):

Let A ∈ {0, . . . , n}. Most elements in {0, . . . , 2n} in
A + A and in {−n, . . . , n} in A − A.

E[|A + A|] = 2n − 11, E[|A − A|] = 2n − 7.
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Martin and O’Bryant ’06

Theorem
Let A be chosen from {0, . . . ,N} according to the
binomial model with constant parameter p (thus k ∈ A
with probability p). At least kSD;p2N+1 subsets are sum
dominated.
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Martin and O’Bryant ’06

Theorem
Let A be chosen from {0, . . . ,N} according to the
binomial model with constant parameter p (thus k ∈ A
with probability p). At least kSD;p2N+1 subsets are sum
dominated.

kSD;1/2 ≥ 10−7, expect about 10−3.
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Martin and O’Bryant ’06

Theorem
Let A be chosen from {0, . . . ,N} according to the
binomial model with constant parameter p (thus k ∈ A
with probability p). At least kSD;p2N+1 subsets are sum
dominated.

kSD;1/2 ≥ 10−7, expect about 10−3.

Proof (p = 1/2): Generically |A| = N
2 + O(

√
N).

⋄ about N
4 − |N−k |

4 ways write k ∈ A + A.
⋄ about N

4 − |k |
4 ways write k ∈ A − A.

⋄ Almost all numbers that can be in A ± A are.
⋄ Win by controlling fringes.
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Notation

X ∼ f (N) means ∀ǫ1, ǫ2 > 0, ∃Nǫ1,ǫ2 st ∀N ≥ Nǫ1,ǫ2

Prob (X 6∈ [(1 − ǫ1)f (N), (1 + ǫ1)f (N)]) < ǫ2.
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Notation

X ∼ f (N) means ∀ǫ1, ǫ2 > 0, ∃Nǫ1,ǫ2 st ∀N ≥ Nǫ1,ǫ2

Prob (X 6∈ [(1 − ǫ1)f (N), (1 + ǫ1)f (N)]) < ǫ2.

S = |A + A|, D = |A − A|,
Sc = 2N + 1 − S, Dc = 2N + 1 −D.
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Notation

X ∼ f (N) means ∀ǫ1, ǫ2 > 0, ∃Nǫ1,ǫ2 st ∀N ≥ Nǫ1,ǫ2

Prob (X 6∈ [(1 − ǫ1)f (N), (1 + ǫ1)f (N)]) < ǫ2.

S = |A + A|, D = |A − A|,
Sc = 2N + 1 − S, Dc = 2N + 1 −D.

New model: Binomial with parameter p(N):
1/N = o(p(N)) and p(N) = o(1);
Prob(k ∈ A) = p(N).

Conjecture (Martin-O’Bryant)
As N → ∞, A is a.s. difference dominated.

25



Intro Examples Phase Transition Generalizations Ongoing Research / Open Problems Bibliography

Main Result

Theorem (Hegarty-Miller)

p(N) as above, g(x) = 2e−x−(1−x)
x .

p(N) = o(N−1/2): D ∼ 2S ∼ (Np(N))2;

p(N) = cN−1/2: D ∼ g(c2)N, S ∼ g
(

c2

2

)

N

(c → 0, D/S → 2; c → ∞, D/S → 1);
N−1/2 = o(p(N)): Sc ∼ 2Dc ∼ 4/p(N)2.

Can generalize to binary linear forms or arbitrarily many
summands, still have critical threshold.
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Inputs

Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Need to allow dependent random variables.
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Inputs

Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Need to allow dependent random variables.

Sketch of proofs: X ∈ {S,D,Sc,Dc}.

1 Prove E[X ] behaves asymptotically as claimed;
2 Prove X is strongly concentrated about mean.
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Setup

Only need new strong concentration for N−1/2 = o(p(N)).

Will assume p(N) = o(N−1/2) as proofs are elementary
(i.e., Chebyshev: Prob(|Y − E[Y ]| ≥ kσY ) ≤ 1/k2)).

29
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Setup

Only need new strong concentration for N−1/2 = o(p(N)).

Will assume p(N) = o(N−1/2) as proofs are elementary
(i.e., Chebyshev: Prob(|Y − E[Y ]| ≥ kσY ) ≤ 1/k2)).

For convenience let p(N) = N−δ, δ ∈ (1/2, 1).

IID binary indicator variables:

Xn;N =

{

1 with probability N−δ

0 with probability 1 − N−δ.

X =
∑N

i=1 Xn;N , E[X ] = N1−δ.
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Proof

Lemma

P1(N) = 4N−(1−δ),
O = #{(m, n) : m < n ∈ {1, . . . ,N}

⋂
A}.

With probability at least 1 − P1(N) have
1 X ∈

[
1
2N1−δ, 3

2N1−δ
]
.

2
1
2 N1−δ( 1

2 N1−δ−1)
2 ≤ O ≤

3
2 N1−δ( 3

2 N1−δ−1)
2 .
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Proof

Lemma

P1(N) = 4N−(1−δ),
O = #{(m, n) : m < n ∈ {1, . . . ,N}

⋂
A}.

With probability at least 1 − P1(N) have
1 X ∈

[
1
2N1−δ, 3

2N1−δ
]
.

2
1
2 N1−δ( 1

2 N1−δ−1)
2 ≤ O ≤

3
2 N1−δ( 3

2 N1−δ−1)
2 .

Proof:

(1) is Chebyshev: Var(X ) = NVar(Xn;N) ≤ N1−δ.
(2) follows from (1) and

(r
2

)
ways to choose 2 from r .
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Concentration

Lemma

f (δ) = min
(

1
2 ,

3δ−1
2

)
, g(δ) satisfies 0 < g(δ) < f (δ).

p(N) = N−δ, δ ∈ (1/2, 1), P1(N) = 4N−(1−δ),
P2(N) = CN−(f (δ)−g(δ)).

With probability at least 1 − P1(N)− P2(N) have
D/S = 2 + O(N−g(δ)).
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Concentration

Lemma

f (δ) = min
(

1
2 ,

3δ−1
2

)
, g(δ) satisfies 0 < g(δ) < f (δ).

p(N) = N−δ, δ ∈ (1/2, 1), P1(N) = 4N−(1−δ),
P2(N) = CN−(f (δ)−g(δ)).

With probability at least 1 − P1(N)− P2(N) have
D/S = 2 + O(N−g(δ)).

Proof: Show D ∼ 2O + O(N3−4δ), S ∼ O + O(N3−4δ).

As O is of size N2−2δ with high probability, need
2 − 2δ > 3 − 4δ or δ > 1/2.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.

Difficulty: (m, n) and (m′, n′) could yield same differences.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.

Difficulty: (m, n) and (m′, n′) could yield same differences.

Notation: m < n, m′ < n′, m ≤ m′,

Ym,n,m′,n′ =

{

1 if n − m = n′ − m′

0 otherwise.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.

Difficulty: (m, n) and (m′, n′) could yield same differences.

Notation: m < n, m′ < n′, m ≤ m′,

Ym,n,m′,n′ =

{

1 if n − m = n′ − m′

0 otherwise.

E[Y ] ≤ N3 · N−4δ + N2 · N−3δ ≤ 2N3−4δ. As δ > 1/2,
#{bad pairs} ≪ O.

Claim: σY ≤ N r(δ)with r(δ) = 1
2 max(3 − 4δ, 5 − 7δ). This

and Chebyshev conclude proof of theorem.
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Proof of claim

Cannot use CLT as Ym,n,m′,n′ are not independent.

Use Var(U + V ) ≤ 2Var(U) + 2Var(V ).
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Proof of claim

Cannot use CLT as Ym,n,m′,n′ are not independent.

Use Var(U + V ) ≤ 2Var(U) + 2Var(V ).

Write
∑

Ym,n,m′,n′ =
∑

Um,n,m′,n′ +
∑

Vm,n,n′

with all indices distinct (at most one in common, if so must
be n = m′).

Var(U) =
∑

Var(Um,n,m′,n′)+2
∑

(m,n,m′,n′) 6=
(m̃,ñ,m̃′,ñ′)

CoVar(Um,n,m′,n′,Um̃,ñ,m̃′,ñ′).
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Analyzing Var(Um,n,m′,n′)

At most N3 tuples.

Each has variance N−4δ − N−8δ ≤ N−4δ.

Thus
∑

Var(Um,n,m′,n′) ≤ N3−4δ.
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Analyzing CoVar(Um,n,m′,n′ ,Um̃,ñ,m̃′,ñ′)

All 8 indices distinct: independent, covariance of 0.

7 indices distinct: At most N3 choices for first tuple, at
most N2 for second, get

E[U(1)U(2)]−E[U(1)]E[U(2)] = N−7δ−N−4δN−4δ ≤ N−7δ.

Argue similarly for rest, get ≪ N5−7δ + N3−4δ.
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Generalizations

42
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Notation

As adding sets and not multiplying, set

kA = A + · · ·+ A
︸ ︷︷ ︸

k times

.

[a, b] = {a, a + 1, . . . , b}.
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Questions

Can we find a set A such that |kA + kA| > |kA − kA|?

Can we find a set A such that |A + A| > |A − A| and
|2A + 2A| > |2A − 2A|?

Can we find a set A such that |kA + kA| > |kA − kA|
for all k?
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Questions

Can we find a set A such that |kA + kA| > |kA − kA|?
Yes.

Can we find a set A such that |A + A| > |A − A| and
|2A + 2A| > |2A − 2A|? Yes.

Can we find a set A such that |kA + kA| > |kA − kA|
for all k? No. (No such set exists, but can do for
arbitrarily many k .)
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Initial Observations

Question: Can we find A with |kA + kA| > |kA − kA|?
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Initial Observations

Question: Can we find A with |kA + kA| > |kA − kA|?
One set gives infinitely many (generalize
Miller-Orosz-Scheinerman), more work get positive
percentage.
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Initial Observations

Question: Can we find A with |kA + kA| > |kA − kA|?
One set gives infinitely many (generalize
Miller-Orosz-Scheinerman), more work get positive
percentage.
How do we find one set?
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Initial Observations

Question: Can we find A with |kA + kA| > |kA − kA|?
One set gives infinitely many (generalize
Miller-Orosz-Scheinerman), more work get positive
percentage.
How do we find one set?
Computer simulations? We couldn’t find a set for
k = 2; the probability of finding some of these sets is
less than 10−16.
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Initial Observations

Question: Can we find A with |kA + kA| > |kA − kA|?
One set gives infinitely many (generalize
Miller-Orosz-Scheinerman), more work get positive
percentage.
How do we find one set?
Computer simulations? We couldn’t find a set for
k = 2; the probability of finding some of these sets is
less than 10−16.

If A is symmetric (A = c − A for some c) then

|A + A| = |A + (c − A)| = |A − A|.
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Example: |2A + 2A| > |2A − 2A|

A = {0, 1, 3, 4, 5, 9}∪ [33, 56]∪{79, 83, 84, 85, 87, 88, 89}

A

0 9 18 33 56
H89-33L

79
H89-10L

89
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Example: |2A + 2A| > |2A − 2A|

A = {0, 1, 3, 4, 5, 9}∪ [33, 56]∪{79, 83, 84, 85, 87, 88, 89}

A + A

0 9 18 33 56
H89-33L

79
H89-10L

89

0 9 18 33 145
H178-33L

158
H178-20L

168
H178-10L

178
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Example: |2A + 2A| > |2A − 2A|

A = {0, 1, 3, 4, 5, 9}∪ [33, 56]∪{79, 83, 84, 85, 87, 88, 89}

A + A + A

0 9 18 33 56
H89-33L

79
H89-10L

89

0 9 18 33 145
H178-33L

158
H178-20L

168
H178-10L

178

0 9
H0+9L

18
H0+18L

27
H0+27L

33
H0+33L

234 237
H267-30L

247
H267-20L

257
H267-10L

267
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Example: |2A + 2A| > |2A − 2A|

A = {0, 1, 3, 4, 5, 9}∪ [33, 56]∪{79, 83, 84, 85, 87, 88, 89}

A + A + A + A

0 9 18 33 56
H89-33L

79
H89-10L

89

0 9 18 33 145
H178-33L

158
H178-20L

168
H178-10L

178

0 9
H0+9L

18
H0+18L

27
H0+27L

33
H0+33L

234 237
H267-30L

247
H267-20L

257
H267-10L

267

0 9
H0+9L

18
H0+18L

27
H0+27L

33
H0+33L

326
H356-30L

336
H356-20L

346
H356-10L

356
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Example: |2A + 2A| > |2A − 2A|

A = {0, 1, 3, 4, 5, 9}∪ [33, 56]∪{79, 83, 84, 85, 87, 88, 89}

A + A

0 9 18 33 56
H89-33L

79
H89-10L

89

0 9 18 33 145
H178-33L

158
H178-20L

168
H178-10L

178
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Example: |2A + 2A| > |2A − 2A|

A = {0, 1, 3, 4, 5, 9}∪ [33, 56]∪{79, 83, 84, 85, 87, 88, 89}

A + A − A

0 9 18 33 56
H89-33L

79
H89-10L

89

0 9 18 33 145
H178-33L

158
H178-20L

168
H178-10L

178

-89 -80
H-89+9L

-71
H-89+18L

-62
H-89+27L

-56
H-89+33L

145 148
H178-30L

158
H178-20L

168
H178-10L

178
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Example: |2A + 2A| > |2A − 2A|

A = {0, 1, 3, 4, 5, 9}∪ [33, 56]∪{79, 83, 84, 85, 87, 88, 89}

A + A − A − A

0 9 18 33 56
H89-33L

79
H89-10L

89

0 9 18 33 145
H178-33L

158
H178-20L

168
H178-10L

178

-89 -80
H-89+9L

-71
H-89+18L

-62
H-89+27L

-56
H-89+33L

145 148
H178-30L

158
H178-20L

168
H178-10L

178

-178 -169
H-178+9L

-160
H-178+18L

-151
H-178+27L

-145
H-178+33L

148
H178-30L

158
H178-20L

168
H178-10L

178
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Why the construction worked: Generalization to xA − yA

Write A = L ⊔ R (left and right).
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Why the construction worked: Generalization to xA − yA

Write A = L ⊔ R (left and right).

L,R almost symmetric, R slightly longer.
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Why the construction worked: Generalization to xA − yA

Write A = L ⊔ R (left and right).

L,R almost symmetric, R slightly longer.

Left of xA − yA is xL − yR (right is yL − xR). As
|R| > |L|, length of fringe depends on number of
copies of L,R.
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Why the construction worked: Generalization to xA − yA

Write A = L ⊔ R (left and right).

L,R almost symmetric, R slightly longer.

Left of xA − yA is xL − yR (right is yL − xR). As
|R| > |L|, length of fringe depends on number of
copies of L,R.

Our example: (1) In A + A + A + A right hits middle,
no gaps, left 1 gap. (2) In A + A − A − A left is
L + L − R − R, length b/w L + L + L + L and
R + R + R + R and 1 gap. Right is R + R − L − L,
also 1 short, so A + A − A − A misses 2.
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Generalization

After dealing with some technical obstructions, we can
generalize:
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Generalization

After dealing with some technical obstructions, we can
generalize:

Theorem
For all nontrivial choices of s1, d1, s2, d2, ∃A ⊆ Z such that
|s1A − d1A| > |s2A − d2A|.
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Generalization

After dealing with some technical obstructions, we can
generalize:

Theorem
For all nontrivial choices of s1, d1, s2, d2, ∃A ⊆ Z such that
|s1A − d1A| > |s2A − d2A|.

Example: We can have |A + A + A + A| > |A + A + A − A|:

A = {0, 1, 3, 4, 5, 9, 33, 34, 35, 50, 54, 55, 56, 58, 59, 60}.
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A − A|
and |A + A + A + A| > |A + A − A − A|?
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A − A|
and |A + A + A + A| > |A + A − A − A|?

Equivalently: A, 2A are sum-dominant. We say A is
2-generational.
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A − A|
and |A + A + A + A| > |A + A − A − A|?

Equivalently: A, 2A are sum-dominant. We say A is
2-generational.

More generally, A is k -generational if
|cA + cA| > |cA − cA| for all 1 ≤ c ≤ k .
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A − A|
and |A + A + A + A| > |A + A − A − A|?
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A − A|
and |A + A + A + A| > |A + A − A − A|? Yes!

A = {0, 1, 3, 4, 7, 26, 27, 29, 30, 33, 37, 38, 40, 41, 42, 43,
46, 49, 50, 52, 53, 54, 72, 75, 76, 78, 79, 80}

Theorem
We can find a k-generational set for all k .
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A − A|
and |A + A + A + A| > |A + A − A − A|? Yes!

A = {0, 1, 3, 4, 7, 26, 27, 29, 30, 33, 37, 38, 40, 41, 42, 43,
46, 49, 50, 52, 53, 54, 72, 75, 76, 78, 79, 80}

Theorem
We can find a k-generational set for all k .

Idea of proof: Find Aj such that |jAj + jAj | > |jAj − jAj | for
each 1 ≤ j ≤ k .

Combine the Aj ’s using the method of base expansion.
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Base Expansion

Base Expansion: For sets A1,A2 and m ∈ N sufficiently
large (relative to A1,A2) the set

A = m · A1 + A2

behaves like the direct product A1 × A2 ⊆ Z× Z.
(here multiplication is the usual scalar multiplication)
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Base Expansion

Base Expansion: For sets A1,A2 and m ∈ N sufficiently
large (relative to A1,A2) the set

A = m · A1 + A2

behaves like the direct product A1 × A2 ⊆ Z× Z.
(here multiplication is the usual scalar multiplication)

In particular:

|xA − yA| = |xA1 − yA1| · |xA2 − yA2|

whenever x + y is small relative to m.
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Generalization

Theorem
For nontrivial xj , yj ,wj , zj (2 ≤ j ≤ k), we can find an A
such that |xjA − yjA| > |wjA − zjA| for all j .
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Generalization

Theorem
For nontrivial xj , yj ,wj , zj (2 ≤ j ≤ k), we can find an A
such that |xjA − yjA| > |wjA − zjA| for all j .

Example: We can find an A such that

|A + A| > |A − A|
|A + A − A| > |A + A + A|
|5A − 2A| > |A − 6A|

...
|1870A − 141A| > |1817A − 194A|.
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Open Problems
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Current and Open Problems

Similar results for arbitrary finite groups (with Kevin
Vissuet).

Generalize phase transition results for more
summands (SMALL ’13 hopefully).

Generalize to subsets of Z+ × Z
+ (SMALL ’13

hopefully).

Study the dependence of the divot on p(N).
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Divot: Lazarev - Miller - O’Bryant

Let m(k) be the probability a uniformly drawn subset A of [0, n] has A + A
missing exactly k summands as n → ∞.

0 5 10 15 20 25 30
k

0.01

0.02

0.03

0.04

0.05

0.06

0.07

mHkL

Figure: Experimental values of m(k), vertical bars error (often
smaller than dot!).

What happens if draw A from binomial with parameter p(N)?
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Generalization of main result

Theorem (Hegarty-M): Binomial model with parameter p(N) as
before, u, v be non-zero integers with u ≥ |v |, gcd(u, v) = 1 and
(u, v) 6= (1, 1). Put f (x , y) := ux + vy and let Df denote the random
variable |f (A)|. Then the following three situations arise:

1 p(N) = o(N−1/2) : Then

Df ∼ (N · p(N))2
.

2 p(N) = c · N−1/2 for some c ∈ (0,∞) : Define the function
gu,v : (0,∞) → (0, u + |v |) by

gu,v (x) := (u + |v |)− 2|v |
(

1 − e−x

x

)

− (u − |v |)e−x
.

Then

Df ∼ gu,v

(
c2

u

)

N.

3 N−1/2 = o(p(N)) : Let Dc
f := (u + |v |)N −Df . Then Dc

f ∼ 2u|v |
p(N)2 .
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Generalization of Hegarty-Miller

Let f , g be two binary linear forms. Say f dominates g for the
parameter p(N) if, as N → ∞, |f (A)| > |g(A)| almost surely when A is
a random subset (binomial model with parameter p(N)).
Theorem (Hegarty-M): f (x , y) = u1x + u2y and g(x , y) = u2x + g2y ,
where ui ≥ |vi | > 0, gcd(ui , vi) = 1 and (u2, v2) 6= (u1,±v1). Let

α(u, v) :=
1
u2

( |v |
3

+
u − |v |

2

)

=
3u − |v |

6u2 .

The following two situations can be distinguished :

u1 + |v1| ≥ u2 + |v2| and α(u1, v1) < α(u2, v2). Then f dominates
g for all p such that N−3/5 = o(p(N)) and p(N) = o(1). In
particular, every other difference form dominates the form x − y
in this range.

u1 + |v1| > u2 + |v2| and α(u1, v1) > α(u2, v2). Then there exists
cf ,g > 0 such that one form dominates for p(N) < cN−1/2

(c < cf ,g) and other dominates for p(N) > cN−1/2 (c > cf ,g).

79



Intro Examples Phase Transition Generalizations Ongoing Research / Open Problems Bibliography

Open Problems

One unresolved matter is the comparison of arbitrary difference
forms in the range where N−3/4 = O(p) and p = O(N−3/5).
Note that the property of one binary form dominating another is
not monotone, or even convex.

A very tantalizing problem is to investigate what happens while
crossing a sharp threshold.

One can ask if the various concentration estimates can be
improved (i.e., made explicit).
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Bibliography
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