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THE POWER OF EXPECTATION

STEVEN J. MILLER (SJM1@WILLIAMS.EDU)

ABSTRACT. The purpose of these notes is to show the power of expectation. It is phe-
nomenal how many problems can be solved by appealing to the linearity of expectation.
Amazingly, it doesn’t matter if the random variables are dependent or independentif
we only care about the expected (ie, the average) value; the situation is very different
if we care about the size of the fluctuations about the averagevalue.

1. TERMINOLOGY

We began today’s lecture by reviewing the definition of moments, in particular that
the variance is the second centered moment, or�2 = E[(X − �)2], with � = E[X ].
The standard deviation is the square-root of the variation,and has the same units as
the random variable we are studying. For example, ifX is the average height in the
class, then the variance has units meters-squared while thestandard deviation has units
of meters. Thus, when studying fluctuations about the average value, it is the standard
deviation (and not the variance) that gives the right scale.

If X andY are independent random variables, thenE[XY ] = E[X ]E[Y ]. This is
a very useful relationship, and allows us to reduce complicated random variables to
simpler ones. It is possible for this relation to hold without X andY being independent
(it is a nice exercise to come up with such an example); in thiscase we sayX andY
are uncorrelated.

We proved (or discussed how one would do the algebra to prove)that

Var

(

n
∑

i=1

Xi

)

=

n
∑

i=1

Var(Xi) +
∑

1≤i<j≤n

CoVar(Xi, Xj),

with CoVar(Xi, Xj) = E[(X − �X)(Y − �Y )]. If two random variables are inde-
pendent than their covariances is zero. Thus in the special case that all theXi’s are
independent we have the variance of a sum is the sum of the variances. (Note, however,
thatVar(aX + bY ) = a2Var(X) + b2Var(Y ), so variance isnot linear.)

One application of our formulas for variances is portfolio theory from economics.
If we have two stocks with the same expected return� > 0 and same variance�2,
then imagine we allocate our funds as follows: if we have $1 tospend, we spendp
dollars on the first and1 − p on the second. Thus ifXi, i ∈ {1, 2} are the random
variables indicating our return for stocki, our investment may be denoted byX =
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pX1 + (1− p)X2. Note

E[X ] = pE[X1] + (1− p)E[X2] = p�+ (1− p)� = �

by linearity. Further

Var(X) = p2Var(X1) + (1− p)2Var(X2) =
(

p2 + (1− p)2
)

�2.

It is a nice calculus exercise to show that the minimum value is whenp = 1/2, which
gives a variance ofX of �2/2. In other words, we have found an investment with the
same expected return asX1 andX2 but with less risk / uncertainty. Of course, like
much of economics, there are many assumptions with this model that may not hold
in the real world (the severest being that we have two independent stocks). (As a nice
exercise, how should you allocate your resources if insteadthe stocks have two different
variances, say�2

1 and�2
2?)

2. DOUBLE INTEGRALS

We needed to compute
∫ ∞

−∞

∫ ∞

−∞

xyfX,Y (x, y)dxdy.

What we actually mean by such an integral (returning to Calc III) is the following: we
divide thexy-plane into small rectangles, and compute the volume of the upper and
lower boxes, and then take the limit as the partition becomesfiner and finer. This is the
natural generalization of the Riemann sum definition from Calc I or II.

Wedo not want to evaluate the integral by working with this definition(for those who
have taken analysis, by using the product measure). We want to reduce this to iterated
integrals. The Fubini / Fubini-Tonelli theorems tell us when we can so evaluate multiple
integrals; the Wikipedia entry

http://en.wikipedia.org/wiki/Fubini%27s theorem

is a good source.

Theorem 2.1 (Fubini’s Theorem). Assume f is continuous and
∫ b

a

∫ d

c

∣f(x, y)∣dxdy < ∞. (2.1)

Then
∫ b

a

[
∫ d

c

f(x, y)dy

]

dx =

∫ d

c

[
∫ b

a

f(x, y)dx

]

dy. (2.2)

Similar statements hold if we instead have
N1
∑

n=N0

∫ d

c

f(xn, y)dy,

N1
∑

n=N0

M1
∑

m=M0

f(xn, ym). (2.3)

For a proof in special cases, see

∙ P. Baxandall and H. Liebeck,Vector Calculus, Clarendon Press, Oxford, 1986.
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∙ W. Voxman and R. Goetschel, Jr.,Advanced Calculus, Mercer Dekker, New
York, 1981.

An advanced, complete proof is given in
∙ G. Folland,Real Analysis: Modern Techniques and Their Applications, 2nd

edition, Pure and Applied Mathematics, Wiley-Interscience, New York, 1999.
The exercise below gives an example where we cannot change the order of summa-

tion (by smoothing things out, we could make this a counterexample for integrals).

Exercise 2.2. One cannot always interchange orders of integration. For simplicity, we
give a sequence amn such that

∑

m(
∑

n am,n) ∕=
∑

n(
∑

m am,n). For m,n ≥ 0 let

am,n =

⎧



⎨



⎩

1 if n = m

−1 if n = m+ 1

0 otherwise.

(2.4)

Show that the two different orders of summation yield different answers (the reason for
this is that the sum of the absolute value of the terms diverges).

We will prove later that ifX andY are independent random variables with marginals
fX andfY and joint distributionfX,Y thatfX,Y (x, y) = fX(x)fY (y). Let’s recall what
all this means:

ℙ(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ b

a

∫ d

c

fX,Y (x, y)dxdy

ℙ(a ≤ X ≤ b) =

∫ b

a

fX(x)dx

ℙ(c ≤ Y ≤ d) =

∫ d

c

fY (y)dy.

Assuming this fact for now, we analyzed the double integralsand provedE[XY ] =
E[X ]E[Y ] if they are independent.

While we will prove the claim later, we give the key insight. Assume not, so there is
some point such thatfX,Y (x0, y0) ∕= fX(x0)fY (y0). Without loss of generality assume
fX,Y (x0, y0) − fX(x0)fY (y0) > 0; let � = ∣fX,Y (x0, y0) − fX(x0)fY (y0)∣/2009. By
continuity, we can find a small square centered at(x0, y0) such thatfX,Y (x, y) is within
� of fX,Y (x0, y0), and similar statements hold forfX andfY . This violates

ℙ(a ≤ X ≤ b, c ≤ Y ≤ d) = ℙ(a ≤ X ≤ b, c ≤ Y ≤ d)ℙ(c ≤ Y ≤ d).

3. MODELING DETERMINISTIC SYSTEMS RANDOMLY

As we’ve stated numerous times, a given integer is either divisible by 7 or it is not;
what does it mean to say it has a 1 in 7 chance of being divisibleby 7? What we mean
is that if we consider a large number of consecutive integers, then roughly 1 in 7 will be
multiples of 7.

We discuss a model for counting the number of prime divisors of n. Letp be a prime.
For each prime at mostn, we flip a coin with probability1/p of heads. If a head comes
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up, we sayn is p-good; elsen is not p-good. For a givenn, on average how many
primes will it be consideredp-good?

Clearly this models how many distinct prime divisors a number has. There are, of
course, some differences. First,n cannot be divisible by a prime betweenn/2 andn−1,
while this is not the case in our random model (though we will see that the contribution
from such terms is small).

Fix n. LetXp be the random variable that equals1 with probability1/p and0 other-
wise. Then

E[Xp] = 1 ⋅ 1
p
+ 0 ⋅

(

1− 1

p

)

=
1

p
.

Similarly we find

Var(Xp) =

(

1− 1

p

)2

⋅ 1
p
+

(

0− 1

p

)2

⋅
(

1− 1

p

)

=
1

p
− 1

p2
,

where the last equality follows from elementary algebra. Let X be the random variable
equalling the number of primes for whichn is p-good; thusX =

∑

p≤nXp. By linearity
of expectation, we have

E[X ] =
∑

p≤n

E[Xp] =
∑

p≤n

1

p
.

There are many ways to evaluate this sum, some of which are discussed in the ad-
ditional comments from Tuesday, October 6th’s lecture. Oneway is to use the Prime
Number Theorem and partial summation. Another is to use the Riemann zeta function
�(s) and some truncation. Forℜe(s) > 1, set

�(s) =

∞
∑

n=1

1

ns
=

∏

p prime

(

1− 1

ps

)−1

.

We argue informally to give the general flavor (one needs to justify that the two cutoffs
can be chosen as we do below):

∑

n≤x

1

ns
∼

∏

p≤x

(

1− 1

ps

)−1

log
∑

n≤x

1

ns
∼ −

∑

p≤x

log

(

1− 1

ps

)

log
∑

n≤x

1

ns
∼

∑

p≤x

(

1

ps
+

1

2p2s
+

1

3p3s
+ ⋅ ⋅ ⋅

)

,

where the last follows from the Taylor series expansion oflog(1 − u). Takings = 1
and noting the left hand side is the harmonic sum (

∑

n≤x
1

n
∼ log x), and the sum over

the prime squares and higher is bounded, we find

log log x ∼
∑

p≤x

1

p
.

Thus the expected number of prime divisors ofn should be aboutlog log n. For n
enormous, the bounded constant doesn’t really matter, though for ‘small’ n it will be
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FIGURE 1. Distribution of the number of prime
factors for n (1000 consecutive values starting at
5487525252462375634352364513298043621345687989991218989811).

noticeable. What is its size? Remember thatlog grows slowly, andlog log even slower!
For example,log log(10100) is about 5.4, whilelog log(101000) is only 7.7 (if we go up
to the astronomically large1010000 it only increases to about 10).

What is the scale of the fluctuations? To understand this we need to know the vari-
ance ofX. Fortunately theXi’s are independent. This is clear in our model, as they
are chosen independently from each other. For the actual primes, this is a reasonable
assumption – whether or not a generic number is divisible by one prime is independent
of whether or not it is divisible by another. For example, one-third of all integers are
divisible by 3, one-fifth by 5, and one-fifteenth by 3 and 5.

Thus all the covariance terms are zero, and

Var(X) =
∑

p≤n

Var(Xp) =
∑

p≤x

(

1

p
− 1

p2

)

.

The sum of1/p2 converges (it is ap-series in the lingo of Calc II, though here ‘p’ refers
to the exponent 2), and we’ve discussed that the sum of1/p is of sizelog log n. As the
standard deviation is the square-root of the variance, we see that the fluctuations about
the mean oflog log n are quite small in the limit, typically of size

√
log logn.

We plot the distribution of the actual number of distinct prime divisors for 1000 val-
ues ofn starting at 5487525252462375634352364513298043621345687989991218989811.
The Erdos-Kac theorem, which is linked in the additional comments, describes a true
gem of number theory, namely that the number of prime divisors is normally distributed.

4. DIFFERENTIATING IDENTITIES

I have written a handout on this when I was at Brown; you shouldlook at pages 2
through 5 of the handout online at

http://www.williams.edu/go/math/sjmiller/public html

/341/handouts/DifferentiatingIdentities.pdf


