Aces Up

Steven J Miller: sjm1@williams.edu

acesup [numiter_] := Module [\{\},
(* computes the probability last four cards are in different suits *)
theory $=(52 / 52)(39 / 51)(26 / 50)$
(13/49) * 1.0; (* theoretical answer *)
success $=0$; (* prob have four
final cards in four suits *)
deck $=$ \{\}; (* initializes deck to empty, adds then 13 1's, 13 10's,
13 100's, 131000 *)
(* last four cards are different suits
if sum to 1111, else have a repeat *)
For $[j=0, j \leq 3, j++$,
For $[\mathbf{i}=1, \mathbf{i} \leq 13$,
i++, AppendTo[deck, $\left.10^{\wedge} \mathrm{j}\right]$];
]; (* end of j loop *)
For $[\mathrm{n}=1, \mathrm{n} \leq$ numiter,
n++, (* this is the main loop *)
\{
(* prints out every 10\%
so can see how you far we are *)
(* printing slows down the program, but

```
            only significantly if numiter is small *)
            If[Mod[n, numiter / 10] == 0,
            Print["We have done ",
            n * 100.0 / numiter, "%."]];
            temp = RandomSample[deck, 4];
            (* chooses the last four cards *)
            value = Sum[temp[[k]], {k, 1, 4}];
            (* calculates sum of last four cards *)
            If[value == 1111, success = success + 1];
            (* if sum is 1111,
            increase success by 1 *)
            }]; (* end of the n loop *)
            Print["Theory: ", theory * 100, "%."];
            (* print results *)
            Print["Observed: ",
            success * 100.0 / numiter, "%."];
                            ]
Timing[acesup [1000 000] ]
We have done \(10 . \%\).
We have done \(20 . \%\).
We have done \(30 . \%\).
We have done \(40 . \%\).
We have done \(50 . \%\).
We have done 60.\%.
We have done 70.\%.
We have done \(80 . \%\).
We have done \(90 . \%\).
We have done \(100 . \%\).
Theory: 10.5498\%.
```

Observed: 10.5366\%.
Out[37] $=\{8.04688, \mathrm{Null}\}$
$\ln [32]:=$ Timing [acesup [10000000]]
Theory: 10.5498\%. Observed: 10.5319\%.

Out[32]= \{76.4063, Null $\}$
$\ln [34]=$ Timing [acesup [100000000]]
Theory: 10.5498\%.
Observed: 10.5542\%.
Out[34]= $\{770.281, \mathrm{Null}\}$

