DIPLOMA PROBLEMS

Given n people, what is the probability that your diploma ' s number is within 1 of the correct value ? So if you are number 5 , get either 4, 5 or 6; if there are n people we say 1 and n are adjacent. Answer is $3 / n$ if $n \geq$ 3. Next : what is the expected number of people to get a diploma within 1 of theirs?
Linearity of expectation :
Let X_i be 1 if person i gets a diploma within 1 of theirs, and 0 else.
If X is the number of people with a diploma within 3, 早 then $X=X _1+\ldots+X _$n. So

So E X$]=$ Sum E[X_i] and E[X_i] =
1 * $3 / n+0$ * ($n-3$)/n = $3 / n$
SOE[X] = Sum_ \{i=1ton\}3/n=3
m($8 \|=$ threegrad [printcheck_, numiter_, n_] := Module[\{\},
count = 0;
list = \{\};
For [j = 1, $\mathrm{j} \leq \mathrm{n}$,
j++, list = AppendTo[list, j]];
(* creates list of numbers *)

For $[\mathbf{i}=1, i \leq n u m i t e r, i++$,
\{
newlist = RandomSample[list, n];
If [i == 1 \&\& printcheck == 1,
Print[list, " ", newlist]];
currentcorrect = 0; (* initialize to zero,
no one is within 1 yet *)
For [d = 1, $\mathrm{d} \leq \mathrm{n}$, $\mathrm{d}++$,
If[Abs[newlist[[d]] - d] ≤ 1,
currentcorrect = currentcorrect +1]];
(* d statement ends *)
(* have to handle wrap-around *)
If [newlist[[1]] $==\mathrm{n}$,
currentcorrect = currentcorrect + 1];
If [newlist[[n]] == 1,
currentcorrect = currentcorrect + 1];
If[i == 1 \&\& printcheck == 1,
Print["Number of matches is ", currentcorrect]];
count = count + currentcorrect;
\}]; (* end of i loop *)
Print [
"The average number observed that are within
1 is ", 1.00 count / numiter];
] (* end of module *)

M(G) $)=$ Timing [threegrad [0, 100000, 10]]
The average number observed
that are within 1 is 2.99995
Out[57] $=\{2.57402$, Null $\}$

Now consider a success if diploma is the same parity as yours; even - even or odd - odd; not even - odd or odd - even. Now what
is the expected number of successes?
Recursion : if $\mathbf{n}=1$ expected
number of successes is 1
If $\mathrm{n}=2$ expected number of successes is $1=$

$$
2 * 1 / 2+0 * 1 / 2
$$

If $n=3: 123=132=213=231=312=$ $321(3+1+1+1+1+3) / 6=10 / 6=5 / 3$
$a(2 n)=1 / 2(1+a(2 n-1))+$
$1 / 2(0+a(2 n-2))$
a $(2 n+1)=$? ?
mirri=
paritygrad[printcheck_, numiter_, n_] := Module [\{ \},
count = 0;
list = \{\};
For $[\mathbf{j}=1, \mathrm{j} \leq \mathrm{n}, \mathrm{j}+\boldsymbol{+}$,

$$
\text { list = AppendTo[list, } \operatorname{Mod}[j, 2]]] ;
$$

(* creates list of numbers *)
For $[\mathrm{i}=1, \mathrm{i} \leq$ numiter, $\mathrm{i}++$,
\{
newlist = RandomSample[list, n];
If[i == 1 \&\& printcheck == 1,
Print[list, " ", newlist]];
currentcorrect = 0; (* initialize to zero, no one is within 1 yet *)
For [d = 1, $d \leq n$, $d++$, If [newlist[[d]] == Mod[d, 2], currentcorrect = currentcorrect +1]];
(* d statement ends *)
If[i == 1 \&\& printcheck == 1, Print["Number of matches is ", currentcorrect]];
count = count + currentcorrect;
\}]; (* end of i loop *)
Print [
"The average number of same parity is ",
1.00 count / numiter];
] (* end of module *)
nrafl) Timing [paritygrad [1, 10000,10$]$]
$\{1,0,1,0,1,0,1,0,1,0\}\{1,0,1,0,0,1,1,0,0,1\}$
Number of matches is 6
The average number of same parity is 4.9782
$O u t[74]=\{0.218401, \mathrm{Null}\}$

