TIC TAC TOE PROBLEM

generaltictactoe[simulate_, numiter_, size_] := Module[\{\},
(* simulate = 1 if simulating,
if 0 brute force *)
(* numiter is the number of
times we go through *)
(* doing it on size by size for the board *)
If[simulate > 1,
Print["Bad choice of simulate."]];
wins [1] = 0; wins [2] = 0;
(* keeps track of wins *)
list = \{\};
For $[\mathbf{i}=1, \mathrm{i} \leq$ size, $\mathrm{i}++$,
For [j = 1, $\mathbf{j} \leq \operatorname{size}, \mathrm{j}++$, list = AppendTo[list, \{i, j\}]
]]; (* creates the board for the game *)
If [simulate =: 0,
biglist = Permutations[list]];
(* if brute force, store ALL games *)
If[simulate =: 1, numdo = numiter,
numdo = (size * size) !];
(* this sets how many times we do *)
For [n = 1, $\mathrm{n} \leq$ numdo, $\mathrm{n}++$,

$$
\begin{aligned}
& \text { If [Mod [n, numdo / 10] }==0 \text {, Print [} \\
& \text { "We have done ", } 100.0 \mathrm{n} / \mathrm{numdo,} \mathrm{"} \mathrm{\% ."]];} \\
& \text { (* prints out status every } 10 \% \text { *) } \\
& \text { If [simulate =: 1, game = } \\
& \text { RandomSample[list], game = biglist[[n]]]; } \\
& \text { (* randomly choose a game, } \\
& \text { or take the next brute force game *) } \\
& \text { (* reset game board; } \\
& \text { we have list of moves now *) } \\
& \text { For }[\mathbf{i}=1, i \leq s i z e, ~ i++, \\
& \text { For }[j=1, j \leq s i z e, j++, \\
& \text { board[i, j] = 0;]]; (* initialize all } \\
& \text { board squares to } 0 \text {; no one took *) } \\
& \text { gameover }=0 \text {; (* make this } 1 \\
& \text { as soon as game done *) } \\
& \text { nummoves }=0 \text {; (* keeps track } \\
& \text { of what move we are on *) }
\end{aligned}
$$

While [
nummoves < size * size \&\& gameover < 1, \{
(* play till run
out of moves or someone wins *)
nummoves = nummoves + 1;
(* making a move! *)
currentmove = game[[nummoves]];
(* loads move *)
x = currentmove[[1]];
y = currentmove[[2]];
If [Mod[nummoves, 2] == 1,
board $[x, y]=1$, board $[x, y]=-1]$;
(* adds move to board *)
(* check to see if someone has won *)
win = 0;
For $[i=1, i \leq s i z e, i++$,
If [Abs[Sum[board[i, j], \{j, 1, size\}]] == size, win = 1];
]; (* ends i for loop;
checks columns *)
For [j = 1, \mathbf{j} < size, j++,
If [Abs[Sum[board[i, j], \{i, 1, size\}]] ==
size, win = 1];
]; (* ends i for loop; checks rows *)
If[Abs[Sum[board[i, i], $\{i, 1$, size\}]] ==
size, win = 1];
If [Abs [Sum[board[size + 1-i, i],
\{i, 1, size\}]] == size, win = 1];

$$
\begin{aligned}
& \text { If [win > 0, } \\
& \text { \{ } \\
& \text { gameover = 1; } \\
& \text { (* someone won! record *) } \\
& \text { If [Mod[nummoves, 2] =: 1, wins [1] = } \\
& \text { wins[1] + 1, wins[2] = wins[2] + 1]; } \\
& \text { \}]; (* end if statement on win *) } \\
& \text { \}]; (* end of While loop *) } \\
& \text { \}]; (* end of n for loop *) } \\
& \text { If[simulate == 1, } \\
& \text { Print ["We are simulating and doing ", } \\
& \text { numiter, " trials."], } \\
& \text { Print ["We are brute force enumerating } \\
& \text { all possibilities."]]; }
\end{aligned}
$$

Print["Percentage of time player 1 won: ", 100. wins [1] / numdo, "(actual = ", wins[1] / numdo, ")"];
Print["Percentage of time player 2 won: ", 100. wins [2] / numdo, "(actual = ", wins[2] / numdo, ")"];
Print["Percentage of time of tied game: ",

```
            100. - 100. (wins[1] + wins[2]) / numdo,
            "(actual = ",
            (numdo - wins[1] - wins[2]) / numdo, ") "];
                                    ] (* end of module *)
m[f== Timing[generaltictactoe [1, 1000, 20]]
    We have done 10.%.
    We have done 20.%.
    We have done 30.%.
    We have done 40.%.
    We have done 50.%.
    We have done 60.%.
    We have done 70.%.
    We have done 80.%.
    We have done 90.%.
    We have done 100.%.
    We are simulating and doing 1000 trials.
    Percentage of time player 1 won: 0.(actual = 0)
Percentage of time player 2 won: 0.(actual = 0)
Percentage of time of tied game: 100.(actual = 1)
Out[-]= {216.327, Null}
m(12]= Timing[generaltictactoe [0, 1000, 2]]
    We have done 50.%.
    We have done 100.%.
    We are brute force enumerating all possibilities.
    Percentage of time player 1 won: 100.(actual = 1)
Percentage of time player 2 won: 0.(actual = 0)
Percentage of time of tied game: 0.(actual = 0)
Out[12]= {0., Null}
m[f]= Timing[generaltictactoe [0, 1000, 3]]
```

We have done $10 . \%$.
We have done $20 . \%$.
We have done $30 . \%$.
We have done $40 . \%$.
We have done 50.\%.
We have done $60 . \%$.
We have done $70 . \%$.
We have done $80 . \%$.
We have done $90 . \%$.
We have done $100 . \%$.
We are brute force enumerating all possibilities.
Percentage of time player 1 won: $58.4921\left(\right.$ actual $\left.=\frac{737}{1260}\right)$
Percentage of time player 2 won: 28.8095 (actual $=\frac{121}{420}$)
Percentage of time of tied game: 12.6984 (actual $=\frac{8}{63}$)
Out[$\cdot]=\{122.664$, Null $\}$
$\mathrm{m}_{\mathrm{m}[3]=}$ Timing [generaltictactoe [1, 1000, 20]]
We have done $10 . \%$.
We have done $20 . \%$.
We have done $30 . \%$.
We have done $40 . \%$.
We have done 50.\%.
We have done 60.\%.
We have done 70.\%.
We have done $80 . \%$.
We have done 90.\%.
We have done $100 . \%$.
We are simulating and doing 1000 trials.
Percentage of time player 1 won: 0.(actual = 0)
Percentage of time player 2 won: 0.(actual = 0)
Percentage of time of tied game: 100. (actual = 1)
Out[3] $=\{238.853$, Null $\}$
$\ln [27]:=$ fastgeneraltictactoe[simulate_, numiter_, size_] := Module[\{\},
(* simulate = 1 if simulating, if 0 brute force *)
(* numiter is the number of times we go through *)

```
(* doing it on size by size for the board *)
If[simulate > 1, Print["Bad choice of simulate."]];
wins[1] = 0; wins[2] = 0; (* keeps track of wins *)
list = {};
For[i=1, i < size, i++,
    For[j = 1, j \leq size, j++,
        list = AppendTo[list, {i, j}]
    ]]; (* creates the board for the game *)
If[simulate == 0, biglist = Permutations[list]];
(* if brute force, store ALL games *)
If[simulate == 1, numdo = numiter, numdo = (size*size) !];
(* this sets how many times we do *)
For[n = 1, n s numdo, n++,
    {
    If[Mod[n, numdo / 10] == 0, Print["We have done ", 100.0n / numdo, "%."]];
    (* prints out status every 10% *)
    If[simulate == 1, game = RandomSample[list], game = biglist[[n]]];
    (* randomly choose a game, or take the next brute force game *)
    gameover = 0; (* make this 1 as soon as game done *)
    nummoves = 0; (* keeps track of what move we are on *)
        (* initialize all sums to 0 *)
    For[k = 1, k \leq size, k++,
        {
            rowsum[k] = 0;
            columnsum[k] = 0;
        }];
    maindiagsum = 0; oppdiagsum = 0;
    While[nummoves < size * size && gameover < 1,
        {
        (* play till run out of moves or someone wins *)
        nummoves = nummoves + 1; (* making a move! *)
        currentmove = game[[nummoves]]; (* loads move *)
        x = currentmove[[1]];
        y = currentmove[[2]];
        If[Mod[nummoves, 2] == 1, player = 1, player = -1];
        rowsum[x] = rowsum[x] + player;
        columnsum[y] = columnsum[y] + player;
        If}[x == y, maindiagsum = maindiagsum + player]
```

```
If[x + y == size + 1, oppdiagsum = oppdiagsum + player];
(* check to see if someone has won *)
win = 0;
(* only check where add new mark! *)
If[Abs[rowsum[x]] == size, win = 1,
If[Abs[columnsum[y]] == size, win = 1,
If}[x== y&&Abs[maindiagsum] == size, win = 1
If [x+y == size + 1 && Abs[oppdiagsum] == size, win = 1]]]];
If[win > 0,
    {
    gameover = 1; (* someone won! record *)
    If[Mod[nummoves, 2] == 1, wins[1] = wins[1] + 1, wins[2] = wins[2] + 1];
        }]; (* end if statement on win *)
        }]; (* end of While loop *)
        }]; (* end of n for loop *)
    If[simulate == 1, Print["We are simulating and doing ", numiter, " trials."],
    Print["We are brute force enumerating all possibilities."]];
    Print["Percentage of time player 1 won: ",
        100. wins[1] / numdo, "(actual = ", wins[1] / numdo, ")"];
    Print["Percentage of time player 2 won: ", 100. wins[2] / numdo,
        "(actual = ", wins[2] / numdo, ")"];
    Print["Percentage of time of tied game: ",
        100. - 100. (wins[1] + wins[2]) / numdo,
        "(actual = ", (numdo - wins[1] - wins[2]) / numdo, ")"];
    ] (* end of module *)
ln[29]:= Timing[fastgeneraltictactoe[0, 1000, 3]]
```

We have done $10 . \%$.
We have done $20 . \%$.
We have done $30 . \%$.
We have done $40 . \%$.
We have done 50.\%.
We have done $60 . \%$.
We have done $70 . \%$.
We have done $80 . \%$.
We have done $90 . \%$.
We have done $100 . \%$.
We are brute force enumerating all possibilities.
Percentage of time player 1 won: $58.4921\left(\right.$ actual $\left.=\frac{737}{1260}\right)$
Percentage of time player 2 won: 28.8095 (actual $=\frac{121}{420}$)
Percentage of time of tied game: 12.6984 (actual $=\frac{8}{63}$)
m(130)= Timing [generaltictactoe [1, 1000, 20]]
We have done $10 . \%$.
We have done $20 . \%$.
We have done $30 . \%$.
We have done $40 . \%$.
We have done $50 . \%$.
We have done 60.\%.
We have done $70 . \%$.
We have done $80 . \%$.
We have done $90 . \%$.
We have done $100 . \%$.
We are simulating and doing 1000 trials.
Percentage of time player 1 won: 0.(actual = 0)
Percentage of time player 2 won: $0 .($ actual $=0)$
Percentage of time of tied game: 100. (actual = 1)
Out[30] $=\{228.573, \mathrm{Null}\}$
$\ln [34]:=$ Timing[fastgeneraltictactoe[1, 1000, 20]]

```
We have done 10.%.
We have done 20.%.
We have done 30.%.
We have done 40.%.
We have done 50.%.
We have done 60.%.
We have done 70.%.
We have done 80.%.
We have done 90.%.
We have done 100.%.
We are simulating and doing 1000 trials.
Percentage of time player 1 won: 0.(actual = 0)
Percentage of time player 2 won: 0.(actual = 0)
Percentage of time of tied game: 100.(actual = 1)
Out[34]= {5.25723, Null}
In[33]:= Timing[fastgeneraltictactoe[1, 1000, 200]]
We have done 10.%.
We have done 20.%.
We have done 30.%.
We have done 40.%.
We have done 50.%.
We have done 60.%.
We have done 70.%.
We have done 80.%.
We have done 90.%.
We have done 100.%.
We are simulating and doing 1000 trials.
Percentage of time player 1 won: 0.(actual = 0)
Percentage of time player 2 won: 0.(actual = 0)
Percentage of time of tied game: 100.(actual = 1)
Out[33]= {536.082, Null }
ln[35]:=
Timing[generaltictactoe[1, 1, 200]]
We have done 100.%.
Out[35]= $Aborted
In[37]:= Timing[generaltictactoe[1, 1, 100]]
```

```
We have done 100.%.
We are simulating and doing 1 trials.
Percentage of time player 1 won: 0.(actual = 0)
Percentage of time player 2 won: 0.(actual = 0)
Percentage of time of tied game: 100.(actual = 1)
Out[37]= {126.517, Null}
ln[40]:= Timing[fastgeneraltictactoe[1, 1000, 100]]
We have done 10.%.
We have done 20.%.
We have done 30.%.
We have done 40.%.
We have done 50.%.
We have done 60.%.
We have done 70.%.
We have done 80.%.
We have done 90.%.
We have done 100.%.
We are simulating and doing 1000 trials.
Percentage of time player 1 won: 0.(actual = 0)
Percentage of time player 2 won: 0.(actual = 0)
Percentage of time of tied game: 100.(actual = 1)
```

Out[40] $=\{132.211$, Null $\}$

