When Almost All Sets Are Difference Dominated

Steven J Miller Williams College

Steven.J.Miller@williams.edu
http://web.williams.edu/Mathematics/sjmiller/public_html/

University of Illinois at Urbana-Champaign
Number Theory Seminar, March 26, 2013

Gameplan

- History of the subject.
- Main results and proofs:
\diamond Constructing Families
\diamond Phase transition
\diamond More summands
$\diamond k$-Generational.
- Describe open problems.

Joint with: Peter Hegarty, Ginny Hogan, Geoffrey Iyer, Oleg Lazarev, Brooke Orosz, Dan Scheinerman, Liyang Zhang.

Introduction

Statement

A finite set of integers, $|A|$ its size. Form

- Sumset: $A+A=\left\{a_{i}+a_{j}: a_{j}, a_{j} \in A\right\}$.
- Difference set: $A-A=\left\{a_{i}-a_{j}: a_{j}, a_{j} \in A\right\}$.

Arise in Goldbach's Problem, Twin Primes, Fermat's Last Theorem,

Statement

A finite set of integers, $|A|$ its size. Form

- Sumset: $A+A=\left\{a_{i}+a_{j}: a_{j}, a_{j} \in A\right\}$.
- Difference set: $A-A=\left\{a_{i}-a_{j}: a_{j}, a_{j} \in A\right\}$.

Arise in Goldbach's Problem, Twin Primes, Fermat's Last Theorem,

Definition

We say A is difference dominated if $|A-A|>|A+A|$, balanced if $|A-A|=|A+A|$ and sum dominated (or an MSTD set) if $|A+A|>|A-A|$.

Questions

Expect generic set to be difference dominated:

- addition is commutative, subtraction isn't:
- Generic pair (x, y) gives 1 sum, 2 differences.

Questions

Expect generic set to be difference dominated:

- addition is commutative, subtraction isn't:
- Generic pair (x, y) gives 1 sum, 2 differences.

Questions

- Do there exist sum-dominated sets?
- If yes, how many?

Examples

Examples

- Conway: $\{0,2,3,4,7,11,12,14\}$.
- Marica (1969): $\{0,1,2,4,7,8,12,14,15\}$.
- Freiman and Pigarev (1973): $\{0,1,2,4,5,9,12,13$, 14, 16, 17, 21, 24, 25, 26, 28, 29\}.
- Computer search of random subsets of $\{1, \ldots, 100\}$: $\{2,6,7,9,13,14,16,18,19,22,23,25,30,31,33,37,39$, $41,42,45,46,47,48,49,51,52,54,57,58,59,61,64,65$, $66,67,68,72,73,74,75,81,83,84,87,88,91,93,94,95$, $98,100\}$.
- Recently infinite families (Hegarty, Nathanson).

Infinite Families

Key observation

If A is an arithmetic progression, $|A+A|=|A-A|$.

Infinite Families

Key observation

If A is an arithmetic progression, $|A+A|=|A-A|$.

Proof:

- WLOG, $\boldsymbol{A}=\{0,1, \ldots, n\}$ as $\boldsymbol{A} \rightarrow \alpha \boldsymbol{A}+\beta$ doesn't change $|A+A|,|A-A|$.

Infinite Families

Key observation

If A is an arithmetic progression, $|A+A|=|A-A|$.

Proof:

- WLOG, $\boldsymbol{A}=\{0,1, \ldots, n\}$ as $\boldsymbol{A} \rightarrow \alpha \boldsymbol{A}+\beta$ doesn't change $|A+A|,|A-A|$.
- $A+A=\{0, \ldots, 2 n\}, A-A=\{-n, \ldots, n\}$, both of size $2 n+1$.

Previous Constructions

Most constructions perturb an arithmetic progression.
Example:

- MSTD set $A=\{0,2,3,4,7,11,12,14\}$.
- $A=\{0,2\} \cup\{3,7,11\} \cup(14-\{0,2\}) \cup\{4\}$.

Example (Nathanson)

Theorem

$m, d, k \in \mathbb{N}$ with $m \geq 4,1 \leq d \leq m-1, d \neq m / 2, k \geq 3$ if $d<m / 2$ else $k \geq 4$. Let

- $B=[0, m-1] \backslash\{d\}$.
- $L=\{m-d, 2 m-d, \ldots, k m-d\}$.
- $a^{*}=(k+1) m-2 d$.
- $A^{*}=B \cup L \cup\left(a^{*}-B\right)$.
- $A=A^{*} \cup\{m\}$.

Then A is an MSTD set.

Note: gives exponentially low density of MSTD sets.

New Explicit Constructions: Results and Notation

Previous best explicit sub-family of $\{1, \ldots, n\}$ gave density of $C_{1} n^{d} / 2^{n / 2}$.

Our new family gives C_{2} / n^{2}, almost a positive percent.
Current record by Zhao: C_{3} / n.
Notation:

- $[a, b]=\{k \in \mathbb{Z}: a \leq k \leq b\}$.
- A is a P_{n}-set if its sumset and difference sets contain all but the first and last n possible elements (may or may not contain some of these fringe elements).

New Construction

Theorem (Miller-Orosz-Scheinerman '09)

- $A=L \cup R$ be a $P_{n}, M S T D$ set where $L \subset[1, n]$, $R \subset[n+1,2 n]$, and $1,2 n \in A$.
- Fix a $k \geq n$ and let m be arbitrary.
- M any subset of $[n+k+1, n+k+m]$ st no run of more than k missing elements. Assume

$$
n+k+1 \notin M .
$$

- Set $A(M)=L \cup O_{1} \cup M \cup O_{2} \cup R^{\prime}$, where $O_{1}=[n+1, n+k], O_{2}=[n+k+m+1, n+2 k+m]$, and $R^{\prime}=R+2 k+m$.

Then $A(M)$ is an MSTD set, and $\exists C>0$ st the percentage of subsets of $\{0, \ldots, r\}$ that are in this family (and thus are MSTD sets) is at least C / r^{2}.

Phase Transition

Probability Review

X random variable with density $f(x)$ means

- $f(x) \geq 0$;
- $\int_{-\infty}^{\infty} f(x)=1$;
- $\operatorname{Prob}(X \in[a, b])=\int_{a}^{b} f(x) d x$.

Key quantities:

- Expected (Average) Value: $\mathbb{E}[X]=\int x f(x) d x$.
- Variance: $\sigma^{2}=\int(x-\mathbb{E}[X])^{2} f(x) d x$.

Binomial model

Binomial model, parameter $p(n)$

Each $k \in\{0, \ldots, n\}$ is in A with probability $p(n)$.

Consider uniform model ($p(n)=1 / 2$):

- Let $A \in\{0, \ldots, n\}$. Most elements in $\{0, \ldots, 2 n\}$ in $A+A$ and in $\{-n, \ldots, n\}$ in $A-A$.
- $\mathbb{E}[|A+A|]=2 n-11, \mathbb{E}[|A-A|]=2 n-7$.

Martin and O'Bryant '06

Theorem

Let A be chosen from $\{0, \ldots, N\}$ according to the binomial model with constant parameter p (thus $k \in A$ with probability p). At least $k_{\text {SD; } p} 2^{N+1}$ subsets are sum dominated.

Martin and O'Bryant '06

Theorem

Let A be chosen from $\{0, \ldots, N\}$ according to the binomial model with constant parameter p (thus $k \in A$ with probability p). At least $k_{\text {SD; } p} 2^{N+1}$ subsets are sum dominated.

- $k_{\text {SD } ; 1 / 2} \geq 10^{-7}$, expect about 10^{-3}.

Martin and O'Bryant '06

Theorem

Let A be chosen from $\{0, \ldots, N\}$ according to the binomial model with constant parameter p (thus $k \in A$ with probability p). At least $k_{\mathrm{sd} ;} 2^{N+1}$ subsets are sum dominated.

- $k_{\text {SD } ; 1 / 2} \geq 10^{-7}$, expect about 10^{-3}.
- Proof $(p=1 / 2)$: Generically $|A|=\frac{N}{2}+O(\sqrt{N})$. \diamond about $\frac{N}{4}-\frac{|N-k|}{4}$ ways write $k \in A+A$. \diamond about $\frac{N}{4}-\frac{|k|}{4}$ ways write $k \in A-A$. \diamond Almost all numbers that can be in $A \pm A$ are.
\diamond Win by controlling fringes.

Notation

- $X \sim f(N)$ means $\forall \epsilon_{1}, \epsilon_{2}>0, \exists N_{\epsilon_{1}, \epsilon_{2}}$ st $\forall N \geq N_{\epsilon_{1}, \epsilon_{2}}$ $\operatorname{Prob}\left(X \notin\left[\left(1-\epsilon_{1}\right) f(N),\left(1+\epsilon_{1}\right) f(N)\right]\right)<\epsilon_{2}$.

Notation

- $X \sim f(N)$ means $\forall \epsilon_{1}, \epsilon_{2}>0, \exists N_{\epsilon_{1}, \epsilon_{2}}$ st $\forall N \geq N_{\epsilon_{1}, \epsilon_{2}}$

$$
\operatorname{Prob}\left(X \notin\left[\left(1-\epsilon_{1}\right) f(N),\left(1+\epsilon_{1}\right) f(N)\right]\right)<\epsilon_{2} .
$$

- $\mathcal{S}=|A+A|, \mathcal{D}=|A-A|$, $\mathcal{S}^{\mathrm{c}}=2 N+1-\mathcal{S}, \mathcal{D}^{\mathrm{c}}=2 N+1-\mathcal{D}$.

Notation

- $X \sim f(N)$ means $\forall \epsilon_{1}, \epsilon_{2}>0, \exists N_{\epsilon_{1}, \epsilon_{2}}$ st $\forall N \geq N_{\epsilon_{1}, \epsilon_{2}}$ $\operatorname{Prob}\left(X \notin\left[\left(1-\epsilon_{1}\right) f(N),\left(1+\epsilon_{1}\right) f(N)\right]\right)<\epsilon_{2}$.
- $\mathcal{S}=|A+A|, \mathcal{D}=|A-A|$, $\mathcal{S}^{\mathrm{c}}=2 N+1-\mathcal{S}, \mathcal{D}^{\mathrm{c}}=2 N+1-\mathcal{D}$.
New model: Binomial with parameter $p(N)$:
- $1 / N=o(p(N))$ and $p(N)=o(1)$;
- $\operatorname{Prob}(k \in A)=p(N)$.

Conjecture (Martin-O'Bryant)

As $N \rightarrow \infty, A$ is a.s. difference dominated.

Main Result

Theorem (Hegarty-Miller)

$p(N)$ as above, $g(x)=2 \frac{e^{-x}-(1-x)}{x}$.

- $p(N)=o\left(N^{-1 / 2}\right): \mathcal{D} \sim 2 \mathcal{S} \sim(N p(N))^{2}$;
- $p(N)=c N^{-1 / 2}: \mathcal{D} \sim g\left(c^{2}\right) N, \mathcal{S} \sim g\left(\frac{c^{2}}{2}\right) N$
$(c \rightarrow 0, \mathcal{D} / \mathcal{S} \rightarrow 2 ; c \rightarrow \infty, \mathcal{D} / \mathcal{S} \rightarrow 1$);
- $N^{-1 / 2}=o(p(N)): \mathcal{S}^{c} \sim 2 \mathcal{D}^{c} \sim 4 / p(N)^{2}$.

Can generalize to binary linear forms or arbitrarily many summands, still have critical threshold.

Inputs

Key input: recent strong concentration results of Kim and Vu (Applications: combinatorial number theory, random graphs, ...).

Need to allow dependent random variables.

Inputs

Key input: recent strong concentration results of Kim and Vu (Applications: combinatorial number theory, random graphs, ...).

Need to allow dependent random variables.
Sketch of proofs: $\mathcal{X} \in\left\{\mathcal{S}, \mathcal{D}, \mathcal{S}^{\mathrm{c}}, \mathcal{D}^{\mathrm{c}}\right\}$.
(1) Prove $\mathbb{E}[\mathcal{X}]$ behaves asymptotically as claimed;
(2) Prove \mathcal{X} is strongly concentrated about mean.

Setup

Only need new strong concentration for $N^{-1 / 2}=O(p(N))$.
Will assume $p(N)=o\left(N^{-1 / 2}\right)$ as proofs are elementary (i.e., Chebyshev: $\left.\operatorname{Prob}\left(|Y-\mathbb{E}[Y]| \geq k \sigma_{Y}\right) \leq 1 / k^{2}\right)$).

Setup

Only need new strong concentration for $N^{-1 / 2}=O(p(N))$.
Will assume $p(N)=o\left(N^{-1 / 2}\right)$ as proofs are elementary
(i.e., Chebyshev: $\left.\operatorname{Prob}\left(|Y-\mathbb{E}[Y]| \geq k \sigma_{Y}\right) \leq 1 / k^{2}\right)$).

For convenience let $p(N)=N^{-\delta}, \delta \in(1 / 2,1)$.
IID binary indicator variables:

$$
X_{n ; N}= \begin{cases}1 & \text { with probability } N^{-\delta} \\ 0 & \text { with probability } 1-N^{-\delta}\end{cases}
$$

$X=\sum_{i=1}^{N} X_{n ; N}, \mathbb{E}[X]=N^{1-\delta}$.

Proof

Lemma

$P_{1}(N)=4 N^{-(1-\delta)}$,
$\mathcal{O}=\#\{(m, n): m<n \in\{1, \ldots, N\} \cap A\}$.
With probability at least $1-P_{1}(N)$ have
(1) $X \in\left[\frac{1}{2} N^{1-\delta}, \frac{3}{2} N^{1-\delta}\right]$.
(2) $\frac{\frac{1}{2} N^{1-\delta}\left(\frac{1}{2} N^{1-\delta}-1\right)}{2} \leq \mathcal{O} \leq \frac{\frac{3}{2} N^{1-\delta}\left(\frac{3}{2} N^{1-\delta}-1\right)}{2}$.

Proof

Lemma

$P_{1}(N)=4 N^{-(1-\delta)}$,
$\mathcal{O}=\#\{(m, n): m<n \in\{1, \ldots, N\} \cap A\}$.
With probability at least $1-P_{1}(N)$ have
(1) $X \in\left[\frac{1}{2} N^{1-\delta}, \frac{3}{2} N^{1-\delta}\right]$.
(2 $\frac{\frac{1}{2} N^{1-\delta}\left(\frac{1}{2} N^{1-\delta}-1\right)}{2} \leq \mathcal{O} \leq \frac{\frac{3}{2} N^{1-\delta}\left(\frac{3}{2} N^{1-\delta}-1\right)}{2}$.

Proof:

- (1) is Chebyshev: $\operatorname{Var}(X)=N \operatorname{Var}\left(X_{n ; N}\right) \leq N^{1-\delta}$.
- (2) follows from (1) and $\binom{r}{2}$ ways to choose 2 from r.

Concentration

Lemma

- $f(\delta)=\min \left(\frac{1}{2}, \frac{3 \delta-1}{2}\right), g(\delta)$ satisfies $0<g(\delta)<f(\delta)$.
- $p(N)=N^{-\delta}, \delta \in(1 / 2,1), P_{1}(N)=4 N^{-(1-\delta)}$, $P_{2}(N)=C N^{-(f(\delta)-g(\delta))}$.

With probability at least $1-P_{1}(N)-P_{2}(N)$ have $\mathcal{D} / \mathcal{S}=2+O\left(N^{-g(\delta)}\right)$.

Concentration

Lemma

- $f(\delta)=\min \left(\frac{1}{2}, \frac{3 \delta-1}{2}\right), g(\delta)$ satisfies $0<g(\delta)<f(\delta)$.
- $p(N)=N^{-\delta}, \delta \in(1 / 2,1), P_{1}(N)=4 N^{-(1-\delta)}$,

$$
P_{2}(N)=C N^{-(f(\delta)-g(\delta))} .
$$

With probability at least $1-P_{1}(N)-P_{2}(N)$ have $\mathcal{D} / \mathcal{S}=2+O\left(N^{-g(\delta)}\right)$.

Proof: Show $\mathcal{D} \sim 2 \mathcal{O}+O\left(N^{3-4 \delta}\right), \mathcal{S} \sim \mathcal{O}+O\left(N^{3-4 \delta}\right)$.
As \mathcal{O} is of size $N^{2-2 \delta}$ with high probability, need $2-2 \delta>3-4 \delta$ or $\delta>1 / 2$.

Analysis of \mathcal{D}

Contribution from 'diagonal' terms lower order, ignore.
Difficulty: (m, n) and $\left(m^{\prime}, n^{\prime}\right)$ could yield same differences.

Analysis of \mathcal{D}

Contribution from 'diagonal' terms lower order, ignore.
Difficulty: (m, n) and $\left(m^{\prime}, n^{\prime}\right)$ could yield same differences.
Notation: $m<n, m^{\prime}<n^{\prime}, m \leq m^{\prime}$,

$$
Y_{m, n, m^{\prime}, n^{\prime}}= \begin{cases}1 & \text { if } n-m=n^{\prime}-m^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Analysis of \mathcal{D}

Contribution from 'diagonal' terms lower order, ignore.
Difficulty: (m, n) and (m^{\prime}, n^{\prime}) could yield same differences.
Notation: $m<n, m^{\prime}<n^{\prime}, m \leq m^{\prime}$,

$$
Y_{m, n, m^{\prime}, n^{\prime}}= \begin{cases}1 & \text { if } n-m=n^{\prime}-m^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

$\mathbb{E}[Y] \leq N^{3} \cdot N^{-4 \delta}+N^{2} \cdot N^{-3 \delta} \leq 2 N^{3-4 \delta}$. As $\delta>1 / 2$, $\#\{$ bad pairs $\} \lll \mathcal{O}$.

Claim: $\sigma_{Y} \leq N^{r(\delta)}$ with $r(\delta)=\frac{1}{2} \max (3-4 \delta, 5-7 \delta)$. This and Chebyshev conclude proof of theorem.

Proof of claim

Cannot use CLT as $Y_{m, n, m^{\prime}, n^{\prime}}$ are not independent.

Use $\operatorname{Var}(U+V) \leq 2 \operatorname{Var}(U)+2 \operatorname{Var}(V)$.

Proof of claim

Cannot use CLT as $Y_{m, n, m^{\prime}, n^{\prime}}$ are not independent.
Use $\operatorname{Var}(U+V) \leq 2 \operatorname{Var}(U)+2 \operatorname{Var}(V)$.
Write

$$
\sum Y_{m, n, m^{\prime}, n^{\prime}}=\sum U_{m, n, m^{\prime}, n^{\prime}}+\sum V_{m, n, n^{\prime}}
$$

with all indices distinct (at most one in common, if so must be $n=m^{\prime}$).

$$
\operatorname{Var}(U)=\sum \operatorname{Var}\left(U_{m, n, m^{\prime}, n^{\prime}}\right)+2 \sum_{\substack{\left.\left(m, n, m^{\prime}, m^{\prime}, n^{\prime}\right) \\ m, n, \tilde{m}^{\prime}, \tilde{r}^{\prime}\right)}} \operatorname{CoVar}\left(U_{m, n, m^{\prime}, n^{\prime}}, U_{\tilde{m}, \tilde{n}, \tilde{m^{\prime}}, \tilde{n}^{\prime}}\right)
$$

Analyzing $\operatorname{Var}\left(U_{m, n, m^{\prime}, n^{\prime}}\right)$

At most N^{3} tuples.
Each has variance $N^{-4 \delta}-N^{-8 \delta} \leq N^{-4 \delta}$.
Thus $\sum \operatorname{Var}\left(U_{m, n, m^{\prime}, n^{\prime}}\right) \leq N^{3-4 \delta}$.

Analyzing $\operatorname{CoVar}\left(U_{m, n, m^{\prime}, n^{\prime}}, U_{\tilde{m}, \tilde{n}, \tilde{m}, \tilde{m}^{\prime}, \tilde{n}^{\prime}}\right)$

- All 8 indices distinct: independent, covariance of 0 .
- 7 indices distinct: At most N^{3} choices for first tuple, at most N^{2} for second, get

$$
\mathbb{E}\left[U_{(1)} U_{(2)}\right]-\mathbb{E}\left[U_{(1)}\right] \mathbb{E}\left[U_{(2)}\right]=N^{-7 \delta}-N^{-4 \delta} N^{-4 \delta} \leq N^{-7 \delta} .
$$

- Argue similarly for rest, get $\ll N^{5-7 \delta}+N^{3-4 \delta}$.

Generalizations

Notation

- As adding sets and not multiplying, set

$$
k A=\underbrace{A+\cdots+A}_{\text {k times }} .
$$

- $[a, b]=\{a, a+1, \ldots, b\}$.

Questions

- Can we find a set A such that $|k A+k A|>|k A-k A|$?
- Can we find a set A such that $|A+A|>|A-A|$ and $|2 A+2 A|>|2 A-2 A|$?
- Can we find a set A such that $|k A+k A|>|k A-k A|$ for all k ?

Questions

- Can we find a set A such that $|k A+k A|>|k A-k A|$? Yes.
- Can we find a set A such that $|A+A|>|A-A|$ and $|2 A+2 A|>|2 A-2 A|$? Yes.
- Can we find a set A such that $|k A+k A|>|k A-k A|$ for all k ? No. (No such set exists, but can do for arbitrarily many k.)

Initial Observations

Question: Can we find A with $|k A+k A|>|k A-k A|$?

Initial Observations

Question: Can we find A with $|k A+k A|>|k A-k A|$?

- One set gives infinitely many (generalize Miller-Orosz-Scheinerman), more work get positive percentage.

Initial Observations

Question: Can we find A with $|k A+k A|>|k A-k A|$?

- One set gives infinitely many (generalize Miller-Orosz-Scheinerman), more work get positive percentage.
- How do we find one set?

Initial Observations

Question: Can we find A with $|k A+k A|>|k A-k A|$?

- One set gives infinitely many (generalize Miller-Orosz-Scheinerman), more work get positive percentage.
- How do we find one set?
- Computer simulations? We couldn't find a set for $k=2$; the probability of finding some of these sets is less than 10^{-16}.

Initial Observations

Question: Can we find A with $|k A+k A|>|k A-k A|$?

- One set gives infinitely many (generalize Miller-Orosz-Scheinerman), more work get positive percentage.
- How do we find one set?
- Computer simulations? We couldn't find a set for $k=2$; the probability of finding some of these sets is less than 10^{-16}.

If A is symmetric $(A=c-A$ for some $c)$ then

$$
|A+A|=|A+(c-A)|=|A-A| .
$$

Example: $|2 A+2 A|>|2 A-2 A|$

$$
A=\{0,1,3,4,5,9\} \cup[33,56] \cup\{79,83,84,85,87,88,89\}
$$

A

Example: $|2 A+2 A|>|2 A-2 A|$

$$
A=\{0,1,3,4,5,9\} \cup[33,56] \cup\{79,83,84,85,87,88,89\}
$$

$A+A$

Example: $|2 A+2 A|>|2 A-2 A|$

$$
A=\{0,1,3,4,5,9\} \cup[33,56] \cup\{79,83,84,85,87,88,89\}
$$

$A+A+A$

Example: $|2 A+2 A|>|2 A-2 A|$

$$
A=\{0,1,3,4,5,9\} \cup[33,56] \cup\{79,83,84,85,87,88,89\}
$$

$$
A+A+A+A
$$

Example: $|2 A+2 A|>|2 A-2 A|$

$$
A=\{0,1,3,4,5,9\} \cup[33,56] \cup\{79,83,84,85,87,88,89\}
$$

$A+A$

Example: $|2 A+2 A|>|2 A-2 A|$

$$
A=\{0,1,3,4,5,9\} \cup[33,56] \cup\{79,83,84,85,87,88,89\}
$$

$$
A+A-A
$$

Example: $|2 A+2 A|>|2 A-2 A|$

$$
A=\{0,1,3,4,5,9\} \cup[33,56] \cup\{79,83,84,85,87,88,89\}
$$

$$
A+A-A-A
$$

Why the construction worked: Generalization to $x A-y A$

- Write $A=L \sqcup R$ (left and right).

Why the construction worked: Generalization to $x A-y A$

- Write $A=L \sqcup R$ (left and right).
- L, R almost symmetric, R slightly longer.

Why the construction worked: Generalization to $x A-y A$

- Write $A=L \sqcup R$ (left and right).
- L, R almost symmetric, R slightly longer.
- Left of $x A-y A$ is $x L-y R$ (right is $y L-x R$). As $|R|>|L|$, length of fringe depends on number of copies of L, R.

Why the construction worked: Generalization to $x A-y A$

- Write $A=L \sqcup R$ (left and right).
- L, R almost symmetric, R slightly longer.
- Left of $x A-y A$ is $x L-y R$ (right is $y L-x R$). As $|R|>|L|$, length of fringe depends on number of copies of L, R.
- Our example: (1) In $A+A+A+A$ right hits middle, no gaps, left 1 gap. (2) $\operatorname{In} A+A-A-A$ left is $L+L-R-R$, length $\mathrm{b} / \mathrm{w} L+L+L+L$ and $R+R+R+R$ and 1 gap. Right is $R+R-L-L$, also 1 short, so $A+A-A-A$ misses 2 .

Generalization

After dealing with some technical obstructions, we can generalize:

Generalization

After dealing with some technical obstructions, we can generalize:

Theorem

For all nontrivial choices of $s_{1}, d_{1}, s_{2}, d_{2}, \exists A \subseteq \mathbb{Z}$ such that $\left|s_{1} A-d_{1} A\right|>\left|s_{2} A-d_{2} A\right|$.

Generalization

After dealing with some technical obstructions, we can generalize:

Theorem

For all nontrivial choices of $s_{1}, d_{1}, s_{2}, d_{2}, \exists A \subseteq \mathbb{Z}$ such that $\left|s_{1} A-d_{1} A\right|>\left|s_{2} A-d_{2} A\right|$.

Example: We can have $|A+A+A+A|>|A+A+A-A|$:

$$
A=\{0,1,3,4,5,9,33,34,35,50,54,55,56,58,59,60\} .
$$

k-Generational Sets

Question: Does a set A exist such that $|A+A|>|A-A|$ and $|A+A+A+A|>|A+A-A-A|$?

k-Generational Sets

Question: Does a set A exist such that $|A+A|>|A-A|$ and $|A+A+A+A|>|A+A-A-A|$?

Equivalently: $A, 2 A$ are sum-dominant. We say A is 2-generational.

k-Generational Sets

Question: Does a set A exist such that $|A+A|>|A-A|$ and $|A+A+A+A|>|A+A-A-A|$?

Equivalently: $A, 2 A$ are sum-dominant. We say A is 2-generational.

More generally, A is k-generational if $|c A+c A|>|c A-c A|$ for all $1 \leq c \leq k$.

k-Generational Sets

Question: Does a set A exist such that $|A+A|>|A-A|$ and $|A+A+A+A|>|A+A-A-A|$?

k-Generational Sets

Question: Does a set A exist such that $|A+A|>|A-A|$ and $|A+A+A+A|>|A+A-A-A|$? Yes!

$$
\begin{gathered}
A=\{0,1,3,4,7,26,27,29,30,33,37,38,40,41,42,43, \\
\\
46,49,50,52,53,54,72,75,76,78,79,80\}
\end{gathered}
$$

Theorem

We can find a k-generational set for all k.

k-Generational Sets

Question: Does a set A exist such that $|A+A|>|A-A|$ and $|A+A+A+A|>|A+A-A-A|$? Yes!

$$
\begin{gathered}
A=\{0,1,3,4,7,26,27,29,30,33,37,38,40,41,42,43, \\
\\
46,49,50,52,53,54,72,75,76,78,79,80\}
\end{gathered}
$$

Theorem

We can find a k-generational set for all k.

Idea of proof: Find A_{j} such that $\left|j A_{j}+j A_{j}\right|>\left|j A_{j}-j A_{j}\right|$ for each $1 \leq j \leq k$.

Combine the A_{j} 's using the method of base expansion.

Base Expansion

Base Expansion: For sets $A_{1}, \boldsymbol{A}_{2}$ and $m \in \mathbb{N}$ sufficiently large (relative to A_{1}, A_{2}) the set

$$
A=m \cdot A_{1}+A_{2}
$$

behaves like the direct product $A_{1} \times A_{2} \subseteq \mathbb{Z} \times \mathbb{Z}$. (here multiplication is the usual scalar multiplication)

Base Expansion

Base Expansion: For sets A_{1}, A_{2} and $m \in \mathbb{N}$ sufficiently large (relative to A_{1}, A_{2}) the set

$$
A=m \cdot A_{1}+A_{2}
$$

behaves like the direct product $A_{1} \times A_{2} \subseteq \mathbb{Z} \times \mathbb{Z}$. (here multiplication is the usual scalar multiplication)

In particular:

$$
|x A-y A|=\left|x A_{1}-y A_{1}\right| \cdot\left|x A_{2}-y A_{2}\right|
$$

whenever $x+y$ is small relative to m.

Generalization

Theorem

For nontrivial $x_{j}, y_{j}, w_{j}, z_{j}(2 \leq j \leq k)$, we can find an A such that $\left|x_{j} A-y_{j} A\right|>\left|w_{j} A-z_{j} A\right|$ for all j.

Generalization

Theorem

For nontrivial $x_{j}, y_{j}, w_{j}, z_{j}(2 \leq j \leq k)$, we can find an A such that $\left|x_{j} A-y_{j} A\right|>\left|w_{j} A-z_{j} A\right|$ for all j.

Example: We can find an A such that

$$
\begin{aligned}
|A+A| & >|A-A| \\
|A+A-A| & >|A+A+A| \\
|5 A-2 A| & >|A-6 A| \\
& \vdots \\
|1870 A-141 A| & >|1817 A-194 A| .
\end{aligned}
$$

Open Problems

Current and Open Problems

- Similar results for arbitrary finite groups (with Kevin Vissuet).
- Generalize phase transition results for more summands (SMALL '13 hopefully).
- Generalize to subsets of $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$(SMALL '13 hopefully).
- Study the dependence of the divot on $p(N)$.

Divot: Lazarev - Miller - O'Bryant

Let $m(k)$ be the probability a uniformly drawn subset A of $[0, n]$ has $A+A$ missing exactly k summands as $n \rightarrow \infty$.

Figure: Experimental values of $m(k)$, vertical bars error (often smaller than dot!).

Generalization of main result

Theorem (Hegarty-M): Binomial model with parameter $p(N)$ as before, u, v be non-zero integers with $u \geq|v|, \operatorname{gcd}(u, v)=1$ and $(u, v) \neq(1,1)$. Put $f(x, y):=u x+v y$ and let \mathcal{D}_{f} denote the random variable $|f(A)|$. Then the following three situations arise:
(1) $p(N)=o\left(N^{-1 / 2}\right)$: Then

$$
\mathcal{D}_{f} \sim(N \cdot p(N))^{2} .
$$

(2) $p(N)=c \cdot N^{-1 / 2}$ for some $c \in(0, \infty)$: Define the function $g_{u, v}:(0, \infty) \rightarrow(0, u+|v|)$ by

$$
g_{u, v}(x):=(u+|v|)-2|v|\left(\frac{1-e^{-x}}{x}\right)-(u-|v|) e^{-x} .
$$

Then

$$
\mathcal{D}_{f} \sim g_{u, v}\left(\frac{c^{2}}{u}\right) N .
$$

(3) $N^{-1 / 2}=o(p(N))$: Let $\mathcal{D}_{f}^{c}:=(u+|v|) N-\mathcal{D}_{f}$. Then $\mathcal{D}_{f}^{c} \sim \frac{2 u|v|}{p(N)^{2}}$.

Generalization of Hegarty-Miller

Let f, g be two binary linear forms. Say f dominates g for the parameter $p(N)$ if, as $N \rightarrow \infty,|f(A)|>|g(A)|$ almost surely when A is a random subset (binomial model with parameter $p(N)$).
Theorem (Hegarty-M): $f(x, y)=u_{1} x+u_{2} y$ and $g(x, y)=u_{2} x+g_{2} y$, where $u_{i} \geq\left|v_{i}\right|>0, \operatorname{gcd}\left(u_{i}, v_{i}\right)=1$ and $\left(u_{2}, v_{2}\right) \neq\left(u_{1}, \pm v_{1}\right)$. Let

$$
\alpha(u, v):=\frac{1}{u^{2}}\left(\frac{|v|}{3}+\frac{u-|v|}{2}\right)=\frac{3 u-|v|}{6 u^{2}} .
$$

The following two situations can be distinguished :

- $u_{1}+\left|v_{1}\right| \geq u_{2}+\left|v_{2}\right|$ and $\alpha\left(u_{1}, v_{1}\right)<\alpha\left(u_{2}, v_{2}\right)$. Then f dominates g for all p such that $N^{-3 / 5}=o(p(N))$ and $p(N)=o(1)$. In particular, every other difference form dominates the form $x-y$ in this range.
- $u_{1}+\left|v_{1}\right|>u_{2}+\left|v_{2}\right|$ and $\alpha\left(u_{1}, v_{1}\right)>\alpha\left(u_{2}, v_{2}\right)$. Then there exists $c_{f, g}>0$ such that one form dominates for $p(N)<c N^{-1 / 2}$ $\left(c<c_{f, g}\right)$ and other dominates for $p(N)>c N^{-1 / 2}\left(c>c_{f, g}\right)$.

Open Problems

- One unresolved matter is the comparison of arbitrary difference forms in the range where $N^{-3 / 4}=O(p)$ and $p=O\left(N^{-3 / 5}\right)$. Note that the property of one binary form dominating another is not monotone, or even convex.
- A very tantalizing problem is to investigate what happens while crossing a sharp threshold.
- One can ask if the various concentration estimates can be improved (i.e., made explicit).

Bibliography

Bibliography

- P. V. Hegarty, Some explicit constructions of sets with more sums than differences (2007). Acta Arithmetica 130 (2007), no. 1, 61-77. http://arxiv.org/abs/math/0611582
- P. V. Hegarty and S. J. Miller, When almost all sets are difference dominated, Random Structures and Algorithms 35 (2009), no. 1, 118-136. http://arxiv.org/abs/0707.3417
- G. Hogan and S. J. Miller, When Generalized Sumsets are Difference Dominated, preprint. http://arxiv.org/abs/1301.5703
- G. Iyer, O. Lazarev, S. J. Miller and L. Zhang, Finding and Counting MSTD sets, to appear in the conference proceedings of the 2011 Combinatorial and Additive Number Theory Conference. http://arxiv.org/abs/1107.2719
- G. Iyer, O. Lazarev, S. J. Miller and L. Zhang, Generalized More Sums Than Differences Sets, Journal of Number Theory 132 (2012), no. 5, 1054-1073. http://arxiv.org/abs/1108. 4500
- O. Lazarev, S. J. Miller and K. O'Bryant, Distribution of Missing Sums in Sumsets, to appear in Experimental Mathematics.
http://arxiv.org/abs/1109.4700

Bibliography (cont)

- J. Marica, On a conjecture of Conway, Canad. Math. Bull. 12 (1969), 233-234.
- G. Martin and K. O'Bryant, Many sets have more sums than differences. To appear in : Proceedings of CRM-Clay Conference on Additive Combinatorics, Montréal 2006.
http://arxiv.org/abs/math/0608131
- S. J. Miller, B. Orosz and D. Scheinerman, Explicit constructions of infinite families of MSTD sets, Journal of Number Theory 130 (2010), 1221-1233. http://arxiv.org/abs/0809.4621
- S. J. Miller, S. Pegado and S. Robinson, Explicit Constructions of Large Families of Generalized More Sums Than Differences Sets, Integers 12 (2012), \#A30. http://arxiv.org/abs/1303.0605
- M. B. Nathanson, Problems in additive number theory, 1. To appear in : Proceedings of CRM-Clay Conference on Additive Combinatorics, Montréal 2006. http://arxiv.org/abs/math/0604340
- M. B. Nathanson, Sets with more sums than differences, Integers : Electronic Journal of Combinatorial Number Theory 7 (2007), Paper A5 (24pp). http://arxiv.org/abs/math/0608148

Bibliography (cont)

- M. B. Nathanson, K. O'Bryant, B. Orosz, I. Ruzsa and M. Silva, Binary linear forms over finite sets of integers (2007). To appear in Acta Arithmetica. http://arxiv.org/abs/math/0701001
- I. Z. Ruzsa, On the cardinality of $A+A$ and $A-A$, Combinatorics year (Keszthely, 1976), vol. 18, Coll. Math. Soc. J. Bolyai, North-HollandBolyai Tarsulat, 1978, 933-938.
- V. H. Vu, New bounds on nearly perfect matchings of hypergraphs: Higher codegrees do help, Random Structures and Algorithms 17 (2000), 29-63.
- V. H. Vu, Concentration of non-Lipschitz functions and Applications, Random Structures and Algorithms 20 (2002), no. 3, 262-316.
- Y. Zhao, Constructing MSTD Sets Using Bidirectional Ballot Sequences, Journal of Number Theory 130 (2010), no. 5, 1212-1220.
http://arxiv.org/abs/0908.4442
- Y. Zhao, Sets Characterized by Missing Sums and Differences, Journal of Number Theory 131 (2011), 2107-2134.
http://arxiv.org/abs/0911.2292

