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Goal

Understand continuous models.

Solve continuous deterministic systems.

Introduce stochastic processes.

Discuss General Solutions.

Zeckendorf Decompositions.
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Continuous Systems
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Differential Equations: I: First Order

Lots of differential equations can study.

Consider f ′(x) = af (x) with initial condition f (0) = C.
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Differential Equations: I: First Order

Lots of differential equations can study.

Consider f ′(x) = af (x) with initial condition f (0) = C.

Special case: a = 1 solution f (x) = Cex ....
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Differential Equations: I: First Order

Lots of differential equations can study.

Consider f ′(x) = af (x) with initial condition f (0) = C.

Special case: a = 1 solution f (x) = Cex ....

Solution: f (x) = Ceax (f (0) = C yields unique soln).
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Differential Equations: I: First Order

Lots of differential equations can study.

Consider f ′(x) = af (x) with initial condition f (0) = C.

Special case: a = 1 solution f (x) = Cex ....

Solution: f (x) = Ceax (f (0) = C yields unique soln).

Check: f (x) = Ceax then f ′(x) = aCeax = af (x).
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Differential Equations: II: Second Order

What about f ′′(x) = af ′(x) + bf (x)?
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Differential Equations: II: Second Order

What about f ′′(x) = af ′(x) + bf (x)?

Similar to our difference equations! Try exponential!
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Differential Equations: II: Second Order

What about f ′′(x) = af ′(x) + bf (x)?

Similar to our difference equations! Try exponential!

f (x) = eρx (eρx = (eρ)x like rn from before) yields

ρ2eρx = aρeρx + beρx .
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Differential Equations: II: Second Order

What about f ′′(x) = af ′(x) + bf (x)?

Similar to our difference equations! Try exponential!

f (x) = eρx (eρx = (eρ)x like rn from before) yields

ρ2eρx = aρeρx + beρx .

Yields characteristic equation

ρ2 − aρ− b = 0 with roots ρ1, ρ2,

general solution (if ρ1 6= ρ2)

f (x) = αeρ1x + βeρ2x .
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Differential Equations: III: System

In general have several variables and/or related
quantities.

Consider a system involving f (x) and g(x):

f ′(x) = af (x) + bg(x)
g′(x) = cf (x) + dg(x).

How do we solve?

12



Continuous Systems Trafalgar Zeckendorf Decompositions Summary Homework Problems Bonus

Differential Equations: III: System

In general have several variables and/or related
quantities.

Consider a system involving f (x) and g(x):

f ′(x) = af (x) + bg(x)
g′(x) = cf (x) + dg(x).

How do we solve? Think back to similar examples.
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Differential Equations: III: System: Solution

f ′(x) = af (x) + bg(x)
g′(x) = cf (x) + dg(x).

In linear algebra solved for one variable in terms of others.
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Differential Equations: III: System: Solution

f ′(x) = af (x) + bg(x)
g′(x) = cf (x) + dg(x).

In linear algebra solved for one variable in terms of others.

g(x) = 1
b f ′(x)− a

b f (x),

15



Continuous Systems Trafalgar Zeckendorf Decompositions Summary Homework Problems Bonus

Differential Equations: III: System: Solution

f ′(x) = af (x) + bg(x)
g′(x) = cf (x) + dg(x).

In linear algebra solved for one variable in terms of others.

g(x) = 1
b f ′(x)− a

b f (x), substitute:

[

1
b

f ′(x)− a
b

f (x)
]′

= cf (x) + d
[

1
b

f ′(x)− a
b

f (x)
]
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Differential Equations: III: System: Solution

f ′(x) = af (x) + bg(x)
g′(x) = cf (x) + dg(x).

In linear algebra solved for one variable in terms of others.

g(x) = 1
b f ′(x)− a

b f (x), substitute:

[

1
b

f ′(x)− a
b

f (x)
]′

= cf (x) + d
[

1
b

f ′(x)− a
b

f (x)
]

f ′′(x) = (a + d)f ′(x) + (cb − ad)f (x),

reducing to previously solved problem!
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Differential Equations: III: Matrix Formulation for Syste m

V ′(x) = AV (x), V (x) =

(

f (x)
g(x)

)

, A =

(

a b
c d

)

.
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Differential Equations: III: Matrix Formulation for Syste m

V ′(x) = AV (x), V (x) =

(

f (x)
g(x)

)

, A =

(

a b
c d

)

.

Formally looks like f ′(x) = af (x), guess solution is
V (x) = eAx V (0), where

eAx = I + Ax +
1
2!

A2x2 +
1
3!

A3x3 + · · · =

∞
∑

k=0

1
k !

Akxk .
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Differential Equations: III: Matrix Formulation for Syste m

V ′(x) = AV (x), V (x) =

(

f (x)
g(x)

)

, A =

(

a b
c d

)

.

Formally looks like f ′(x) = af (x), guess solution is
V (x) = eAx V (0), where

eAx = I + Ax +
1
2!

A2x2 +
1
3!

A3x3 + · · · =

∞
∑

k=0

1
k !

Akxk .

Can justify term-by-term differentiation of series for eAx ,
see importance of matrix exponential.
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Differential Equations: III: Matrix Formulation for Syste m

V ′(x) = AV (x), V (x) =

(

f (x)
g(x)

)

, A =

(

a b
c d

)

.

Formally looks like f ′(x) = af (x), guess solution is
V (x) = eAx V (0), where

eAx = I + Ax +
1
2!

A2x2 +
1
3!

A3x3 + · · · =

∞
∑

k=0

1
k !

Akxk .

Can justify term-by-term differentiation of series for eAx ,
see importance of matrix exponential.

Mentioned Baker-Campbell-Hausdorf formula; in general
product of matrices is hard but

(

eAx
)′
= AeAx = eAxA.
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Application: Battle of Trafalgar

Modified from Mathematics in Warfare by F. W. Lancaseter.
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Battle of Trafalgar

Wikipedia: “The battle was the most decisive naval victory of the war.

Twenty-seven British ships of the line led by Admiral Lord Nelson aboard

HMS Victory defeated thirty-three French and Spanish ships of the line under

French Admiral Pierre-Charles Villeneuve off the southwest coast of Spain,

just west of Cape Trafalgar, in Caños de Meca.
23
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The Square Law: I

Forces r(t) and b(t), effective fighting values N and M:

b′(t) = −Nr(t)
r ′(t) = −Mb(t).
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The Square Law: I

Forces r(t) and b(t), effective fighting values N and M:

b′(t) = −Nr(t)
r ′(t) = −Mb(t).

Can solve using techniques from before: what do you
expect solution to look like?
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The Square Law: I

Forces r(t) and b(t), effective fighting values N and M:

b′(t) = −Nr(t)
r ′(t) = −Mb(t).

Can solve using techniques from before: what do you
expect solution to look like?

If take derivatives again find

b′′(t) = −Nr ′(t)
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The Square Law: I

Forces r(t) and b(t), effective fighting values N and M:

b′(t) = −Nr(t)
r ′(t) = −Mb(t).

Can solve using techniques from before: what do you
expect solution to look like?

If take derivatives again find

b′′(t) = −Nr ′(t) = NMb(t),
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The Square Law: I

Forces r(t) and b(t), effective fighting values N and M:

b′(t) = −Nr(t)
r ′(t) = −Mb(t).

Can solve using techniques from before: what do you
expect solution to look like?

If take derivatives again find

b′′(t) = −Nr ′(t) = NMb(t), yields

b(t) = β1e
√

NMt +β2e−
√

NMt , r(t) = α1e
√

NMt +α2e−
√

NMt .
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The Square Law: I

Forces r(t) and b(t), effective fighting values N and M:

b′(t) = −Nr(t)
r ′(t) = −Mb(t).

Can solve using techniques from before: what do you
expect solution to look like?

If take derivatives again find

b′′(t) = −Nr ′(t) = NMb(t), yields

b(t) = β1e
√

NMt +β2e−
√

NMt , r(t) = α1e
√

NMt +α2e−
√

NMt .

b′(t)/b(t) = r ′(t)/r(t) yields Nr(t)2 = Mb(t)2 (square law).
29
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Trafalgar

Nelson outnumbered – how could he win?
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Trafalgar

Nelson outnumbered – how could he win?
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Analysis of Nelson’s Plan: I
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Analysis of Nelson’s Plan: II
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Analysis of Nelson’s Plan: III
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Battle of Trafalgar

Wikipedia: “The battle was the most decisive naval victory of the war.

Twenty-seven British ships of the line led by Admiral Lord Nelson aboard

HMS Victory defeated thirty-three French and Spanish ships of the line under

French Admiral Pierre-Charles Villeneuve off the southwest coast of Spain,

just west of Cape Trafalgar, in Caños de Meca.”
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Battle of Trafalgar

Wikipedia: “The battle was the most decisive naval victory of the war.

Twenty-seven British ships of the line led by Admiral Lord Nelson aboard

HMS Victory defeated thirty-three French and Spanish ships of the line under

French Admiral Pierre-Charles Villeneuve off the southwest coast of Spain,

just west of Cape Trafalgar, in Caños de Meca.The Franco-Spanish fleet lost

twenty-two ships, without a single British vessel being lost.”
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AfterMATH of Battle of Trafalgar
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AfterMATH of Battle of Trafalgar: English expectation

British: 0 of 27 ships, 1,666 dead or wounded.
Franco-Spanish: 22 of 33 ships, 13,781 captured, dead or
wounded.
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AfterMATH of Battle of Trafalgar: Issues & Remedies with Mod el

Biggest issue is deterministic.

Make fighting effectiveness random variables!

Leads to stochastic differential equations.

http://en.wikipedia.org/wiki/
Stochastic_differential_equation.
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Introduction to
Zeckendorf Decompositions

40



Continuous Systems Trafalgar Zeckendorf Decompositions Summary Homework Problems Bonus

Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

41



Continuous Systems Trafalgar Zeckendorf Decompositions Summary Homework Problems Bonus

Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =?
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 17 = F8 + 17.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 4 = F8 + F6 + 4.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + 1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.
Example: 83 = 55 + 21 + 5 + 2 = F9 + F7 + F4 + F2.
Observe: 51 miles ≈ 82.1 kilometers.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.
Example: 83 = 55 + 21 + 5 + 2 = F9 + F7 + F4 + F2.
Observe: 51 miles ≈ 82.1 kilometers.
Reason: φ = 1+

√
5

2 ≈ 1.618 and 1 mile ≈ 1.609 km.
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Old Results

Central Limit Type Theorem
As n → ∞, the distribution of number of summands in
Zeckendorf decomposition for m ∈ [Fn,Fn+1) is Gaussian.

500 520 540 560 580 600

0.005

0.010

0.015

0.020

0.025

0.030

Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8, 13, . . . .
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8, 13, . . . .

Key to entire analysis: Fn+1 = Fn + Fn−1.

View as bins of size 1, cannot use two adjacent bins:

[1] [2] [3] [5] [8] [13] · · · .

SMALL ’15, ’16, ...: How does the notion of legal
decomposition affect the sequence and results?
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf: Every positive integer can be written
uniquely as

∑

aiHi with natural constraints on the ai ’s
(e.g. cannot use the recurrence relation to remove
any summand).

Central Limit Type Theorem
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0, 1, . . . , 9} (1 ≤ i < m), am ∈ {1, . . . , 9}.

59



Continuous Systems Trafalgar Zeckendorf Decompositions Summary Homework Problems Bonus

Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0, 1, . . . , 9} (1 ≤ i < m), am ∈ {1, . . . , 9}.
For N ∈ [Hn,Hn+1), first term is anHn = an10n−1.
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0, 1, . . . , 9} (1 ≤ i < m), am ∈ {1, . . . , 9}.
For N ∈ [Hn,Hn+1), first term is anHn = an10n−1.
Ai : the corresponding random variable of ai . The Ai ’s
are independent.
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0, 1, . . . , 9} (1 ≤ i < m), am ∈ {1, . . . , 9}.
For N ∈ [Hn,Hn+1), first term is anHn = an10n−1.
Ai : the corresponding random variable of ai . The Ai ’s
are independent.
For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random
variables with mean 4.5 and variance 8.25.
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0, 1, . . . , 9} (1 ≤ i < m), am ∈ {1, . . . , 9}.
For N ∈ [Hn,Hn+1), first term is anHn = an10n−1.
Ai : the corresponding random variable of ai . The Ai ’s
are independent.
For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random
variables with mean 4.5 and variance 8.25.
Central Limit Theorem: A2 +A3 + · · ·+An → Gaussian
with mean 4.5n + O(1) and variance 8.25n + O(1).
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a
decomposition in [Fn,Fn+1) is of length g.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a
decomposition in [Fn,Fn+1) is of length g.

Bulk: What is P(g) = limn→∞ Pn(g)?
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a
decomposition in [Fn,Fn+1) is of length g.

Bulk: What is P(g) = limn→∞ Pn(g)?

Individual: Similar questions about gaps for a fixed
m ∈ [Fn,Fn+1): distribution of gaps, longest gap.
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New Results: Bulk Gaps: m ∈ [Fn,Fn+1) and φ = 1+
√

5
2

m =
∑k(m)=n

j=1 Fij , νm;n(x) = 1
k(m)−1

∑k(m)
j=2 δ (x − (ij − ij−1)) .

Theorem (Zeckendorf Gap Distribution)
Gap measures νm;n converge to average gap measure
where P(k) = 1/φk for k ≥ 2.

5 10 15 20 25 30

0.1

0.2

0.3

0.4

5 10 15 20 25

0.5

1.0

1.5

2.0

Figure: Distribution of gaps in [F2010,F2011); F2010 ≈ 10420.
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New Results: Longest Gap

Fair coin: largest gap tightly concentrated around
log n/ log 2.

Theorem (Longest Gap)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest
gap less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)·logφ

• µn =
log

(

φ2

φ2+1)
n
)

logφ
+ γ

logφ
− 1

2 + Small Error.

• If f (n) grows slower (resp. faster ) than log n/ logφ,
then Prob(Ln(m) ≤ f (n)) goes to 0 (resp. 1).
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies
among P distinct people is

(C+P−1
P−1

)

.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies
among P distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies
among P distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies
among P distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies
among P distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):

74



Continuous Systems Trafalgar Zeckendorf Decompositions Summary Homework Problems Bonus

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Number of sols to x1 + · · ·+ xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.
If xi ≥ ci same as y1 + · · ·+ yP = C − (c1 + · · ·+ cP).

75



Continuous Systems Trafalgar Zeckendorf Decompositions Summary Homework Problems Bonus

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Number of sols to x1 + · · ·+ xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.
If xi ≥ ci same as y1 + · · ·+ yP = C − (c1 + · · ·+ cP).

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf
decomposition of N has exactly k summands}.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Number of sols to x1 + · · ·+ xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.
If xi ≥ ci same as y1 + · · ·+ yP = C − (c1 + · · ·+ cP).

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf
decomposition of N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · ·+ Fik−1 + Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Number of sols to x1 + · · ·+ xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.
If xi ≥ ci same as y1 + · · ·+ yP = C − (c1 + · · ·+ cP).

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf
decomposition of N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · ·+ Fik−1 + Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Number of sols to x1 + · · ·+ xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.
If xi ≥ ci same as y1 + · · ·+ yP = C − (c1 + · · ·+ cP).

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf
decomposition of N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · ·+ Fik−1 + Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−2k+1 + k−1

k−1

)

=
(n−k

k−1

)

.
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Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)
As n → ∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Sketch of proof: Use Stirling’s formula,

n! ≈ nne−n
√

2πn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.

Continuous to assist discrete: n! = Γ(n + 1), where

Γ(s) =

∫ ∞

0
e−xxs−1dx , Re(s) > 0.
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(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in [Fn , Fn+1) is

fn(k) =
(

n−1−k
k

)

/Fn−1. Consider the density for the n + 1 case. Then we have, by Stirling

fn+1(k) =

(

n − k

k

)

1

Fn

=
(n − k)!

(n − 2k)!k !

1

Fn
=

1
√

2π

(n − k)n−k+ 1
2

k(k+ 1
2 )

(n − 2k)n−2k+ 1
2

1

Fn

plus a lower order correction term.

Also we can write Fn = 1
√

5
φn+1 =

φ
√

5
φn for large n, where φ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F1 occurs once to help dealing with uniqueness and F2 = 2). We can now split the
terms that exponentially depend on n.

fn+1(k) =

(

1
√

2π

√

(n − k)

k(n − 2k)

√
5

φ

)(

φ
−n (n − k)n−k

kk (n − 2k)n−2k

)

.

Define

Nn =
1

√
2π

√

(n − k)

k(n − 2k)

√
5

φ
, Sn = φ

−n (n − k)n−k

kk (n − 2k)n−2k
.

Thus, write the density function as
fn+1(k) = NnSn

where Nn is the first term that is of order n−1/2 and Sn is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable k = µ + xσ where µ and σ are the
mean and the standard deviation, and depend on n. The discrete weights of fn(k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fn(k)dk = fn(µ + σx)σdx.

Using the change of variable, we can write Nn as

Nn =
1

√
2π

√

n − k

k(n − 2k)

φ
√

5

=
1

√
2πn

√

1 − k/n

(k/n)(1 − 2k/n)

√
5

φ

=
1

√
2πn

√

1 − (µ + σx)/n

((µ + σx)/n)(1 − 2(µ + σx)/n)

√
5

φ

=
1

√
2πn

√

1 − C − y

(C + y)(1 − 2C − 2y)

√
5

φ

where C = µ/n ≈ 1/(φ + 2) (note that φ2 = φ + 1) and y = σx/n. But for large n, the y term vanishes since

σ ∼
√

n and thus y ∼ n−1/2. Thus

Nn ≈
1

√
2πn

√

1 − C

C(1 − 2C)

√
5

φ
=

1
√

2πn

√

(φ + 1)(φ + 2)

φ

√
5

φ
=

1
√

2πn

√

5(φ + 2)

φ
=

1
√

2πσ2

since σ2 = n φ
5(φ+2) .
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(Sketch of the) Proof of Gaussianity

For the second term Sn , take the logarithm and once again change variables by k = µ + xσ,

log(Sn) = log

(

φ
−n (n − k)(n−k)

kk (n − 2k)(n−2k)

)

= −n log(φ) + (n − k) log(n − k) − (k) log(k)

− (n − 2k) log(n − 2k)

= −n log(φ) + (n − (µ + xσ)) log(n − (µ + xσ))

− (µ + xσ) log(µ + xσ)

− (n − 2(µ + xσ)) log(n − 2(µ + xσ))

= −n log(φ)

+ (n − (µ + xσ))

(

log(n − µ) + log
(

1 −
xσ

n − µ

))

− (µ + xσ)

(

log(µ) + log
(

1 +
xσ

µ

))

− (n − 2(µ + xσ))

(

log(n − 2µ) + log
(

1 −
xσ

n − 2µ

))

= −n log(φ)

+ (n − (µ + xσ))

(

log
(

n

µ
− 1
)

+ log
(

1 −
xσ

n − µ

))

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ))

(

log
(

n

µ
− 2
)

+ log
(

1 −
xσ

n − 2µ

))

.
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(Sketch of the) Proof of Gaussianity

Note that, since n/µ = φ + 2 for large n, the constant terms vanish. We have log(Sn)

= −n log(φ) + (n − k) log
(

n

µ
− 1

)

− (n − 2k) log
(

n

µ
− 2
)

+ (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 −
xσ

n − 2µ

)

= −n log(φ) + (n − k) log (φ + 1) − (n − 2k) log (φ) + (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 −
xσ

n − 2µ

)

= n(− log(φ) + log
(

φ
2
)

− log (φ)) + k(log(φ2
) + 2 log(φ)) + (n − (µ + xσ)) log

(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 − 2
xσ

n − 2µ

)

= (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 − 2
xσ

n − 2µ

)

.
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(Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of xσ/n.

log(Sn) = (n − (µ + xσ))

(

−
xσ

n − µ
−

1

2

(

xσ

n − µ

)2
+ . . .

)

− (µ + xσ)

(

xσ

µ
−

1

2

(

xσ

µ

)2
+ . . .

)

− (n − 2(µ + xσ))

(

−2
xσ

n − 2µ
−

1

2

(

2
xσ

n − 2µ

)2
+ . . .

)

= (n − (µ + xσ))



−
xσ

n (φ+1)
(φ+2)

−
1

2





xσ

n (φ+1)
(φ+2)





2

+ . . .





− (µ + xσ)





xσ
n

φ+2

−
1

2





xσ
n

φ+2





2

+ . . .





− (n − 2(µ + xσ))



−
2xσ

n φ
φ+2

−
1

2





2xσ

n φ
φ+2





2

+ . . .





=
xσ

n
n

(

−

(

1 −
1

φ + 2

)

(φ + 2)

(φ + 1)
− 1 + 2

(

1 −
2

φ + 2

)

φ + 2

φ

)

−
1

2

(

xσ

n

)2
n
(

−2
φ + 2

φ + 1
+

φ + 2

φ + 1
+ 2(φ + 2) − (φ + 2) + 4

φ + 2

φ

)

+O
(

n (xσ/n)3
)
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(Sketch of the) Proof of Gaussianity

log(Sn) =
xσ

n
n
(

−
φ + 1

φ + 2

φ + 2

φ + 1
− 1 + 2

φ

φ + 2

φ + 2

φ

)

−
1

2

(

xσ

n

)2
n(φ + 2)

(

−
1

φ + 1
+ 1 +

4

φ

)

+O

(

n
(

xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(

3φ + 4

φ(φ + 1)
+ 1

)

+ O

(

n
(

xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(

3φ + 4 + 2φ + 1

φ(φ + 1)

)

+ O

(

n
(

xσ

n

)3
)

= −
1

2
x2

σ
2
(

5(φ + 2)

φn

)

+ O
(

n (xσ/n)3
)

.
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(Sketch of the) Proof of Gaussianity

But recall that

σ
2
=

φn

5(φ + 2)
.

Also, since σ ∼ n−1/2, n
(

xσ
n

)3
∼ n−1/2. So for large n, the O

(

n
(

xσ
n

)3
)

term vanishes. Thus we are left

with

log Sn = −
1

2
x2

Sn = e−
1
2 x2

.

Hence, as n gets large, the density converges to the normal distribution:

fn(k)dk = NnSndk

=
1

√
2πσ2

e−
1
2 x2

σdx

=
1

√
2π

e−
1
2 x2

dx.

�
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Code: Problem and Basic Functions

Problem: Compute Zeckendorf decompositions and look
at leading (i.e., first) digits to compare to Benford’s law.

Here are some basic functions that we will need.
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Code: Main Program
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Code: Main Program
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Code: Main Program
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Code: Main Program
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Summary
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Summary of Two Lectures

Difference/Differential Equations model world.

Deterministic vs Stochastic.

Prevalence of Central Limit Theorem.

Approximate Continuous with Discrete.

Convert Discrete to Continuous!
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Homework Problems
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Problems to Think About: I: Trafalgar

In the naval battle model with r(t) and b(t), assume M = N = 1
(though it doesn’t matter). If the inial force concentrations are
B0 > R0, how long will the battle rage before Blue defeats Red?

If Red divides its forces into two components R0,1 + R0,2 = R0,1,
which splits Blue into two components B0,1 + B0,2 = B0, how
should this be done to maximize Red’s fighting strength, using
the square law? If you want, assume B0 = 46 and R0 = 40 (or
use 33 and 27, the actual battle numbers).

Redo the last problem, but allow Red to split its forces into k
parts, which split Blue into k parts as well. What is the optimal k
and the optimal splitting for red? Again, if you want choose
specific numbers.
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Problems to Think About: II: Zeckendorf

Construct a sequence of positive integers such that every
number can be written uniquely as a sum of these integers
without ever using three consecutive numbers. Is there a nice
recurrence relation describing this sequence?

Consider the Gamma function Γ(s) =
∫

∞

0 e−xxs−1dx . Where is
the integrand largest when s = n + 1 (so we are looking at
Γ(n + 1) = n!)? Can you use this to approximate n!?

How many ways are there to divide C cookies among P people,
but now we do not require each cookie to be given to a person?
Hint: there is a simple, clean answer.
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Bonus
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Battle of Midway: I
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Battle of Midway: II
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Codebreakers (Passage from Wikipedia entry ‘Battle of Midw ay’)

Cryptanalysts had broken the Japanese Navy’s JN-25b code. Since the early
spring of 1942, the US had been decoding messages stating that there would
soon be an operation at objective “AF”. It was not known where “AF” was, but
Commander Joseph J. Rochefort and his team at Station HYPO were able to
confirm that it was Midway by telling the base there by secure undersea cable
to radio an uncoded false message stating that the water purification system
it depended upon had broken down and that the base needed fresh water.
The code breakers then picked up a Japanese message that “AF was short
on water.” HYPO was also able to determine the date of the attack [deleted],
and to provide Nimitz with a complete IJN order of battle, [deleted] with a very
good picture of where, when, and in what strength the Japanese would
appear. Nimitz knew that the Japanese had negated their numerical
advantage by dividing their ships into four separate task groups, all too widely
separated to be able to support each other. Nimitz calculated that the aircraft
on his three carriers, plus those on Midway Island, gave the U.S. rough parity
with Yamamoto’s four carriers, mainly because American carrier air groups
were larger than Japanese ones. The Japanese, by contrast, remained
almost totally unaware of their opponent’s true strength and dispositions even
after the battle began.
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