Continuous Systems Ti	rafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus

Math/Stat 341 and Math 433 Probability and Mathematical Modeling II: Continuous Systems

Steven J Miller Williams College

sjml@williams.edu

http://www.williams.edu/Mathematics/sjmiller/public_html/341

Lawrence 231 Williams College, February 23, 2015

Continuous Systems	Trafalgar 00000000	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
Goal					

- Understand continuous models.
- Solve continuous deterministic systems.
- Introduce stochastic processes.
- Discuss General Solutions.
- Zeckendorf Decompositions.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus

Continuous Systems

Continuous Systems ●○○○○	Trafalgar oooooooo	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
Differential E	quations:	: I: First Order			

Lots of differential equations can study.

Consider f'(x) = af(x) with initial condition f(0) = C.

Continuous Systems ●○○○○	Trafalgar ୦୦୦୦୦୦୦୦	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000

Differential Equations: I: First Order

Lots of differential equations can study.

Consider f'(x) = af(x) with initial condition f(0) = C.

Special case: a = 1 solution $f(x) = Ce^{x}...$

Continuous Systems ●○○○○	Trafalgar ooooooooo	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000

Differential Equations: I: First Order

Lots of differential equations can study.

Consider f'(x) = af(x) with initial condition f(0) = C.

Special case: a = 1 solution $f(x) = Ce^{x}...$

Solution: $f(x) = Ce^{ax}$ (f(0) = C yields unique soln).

Continuous Systems ●○○○○	Trafalgar 00000000	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000

Differential Equations: I: First Order

Lots of differential equations can study.

Consider f'(x) = af(x) with initial condition f(0) = C.

Special case: a = 1 solution $f(x) = Ce^{x}...$

Solution: $f(x) = Ce^{ax}$ (f(0) = C yields unique soln).

Check: $f(x) = Ce^{ax}$ then $f'(x) = aCe^{ax} = af(x)$.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
0000					

What about f''(x) = af'(x) + bf(x)?

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
0000					

What about f''(x) = af'(x) + bf(x)?

Similar to our difference equations! Try exponential!

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
0000					

What about f''(x) = af'(x) + bf(x)?

Similar to our difference equations! Try exponential!

 $f(\mathbf{x}) = \mathbf{e}^{\rho \mathbf{x}} (\mathbf{e}^{\rho \mathbf{x}} = (\mathbf{e}^{\rho})^{\mathbf{x}}$ like r^{n} from before) yields $\rho^{2} \mathbf{e}^{\rho \mathbf{x}} = \mathbf{a} \rho \mathbf{e}^{\rho \mathbf{x}} + \mathbf{b} \mathbf{e}^{\rho \mathbf{x}}.$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
0000					

What about f''(x) = af'(x) + bf(x)?

Similar to our difference equations! Try exponential!

$$f(\mathbf{x}) = \mathbf{e}^{\rho \mathbf{x}} (\mathbf{e}^{\rho \mathbf{x}} = (\mathbf{e}^{\rho})^{\mathbf{x}}$$
 like r^{n} from before) yields
 $\rho^{2} \mathbf{e}^{\rho \mathbf{x}} = \mathbf{a} \rho \mathbf{e}^{\rho \mathbf{x}} + \mathbf{b} \mathbf{e}^{\rho \mathbf{x}}.$

Yields characteristic equation

$$\rho^2 - a\rho - b = 0$$
 with roots ρ_1, ρ_2 ,

general solution (if $\rho_1 \neq \rho_2$)

$$f(\mathbf{x}) = \alpha \mathbf{e}^{\rho_1 \mathbf{x}} + \beta \mathbf{e}^{\rho_2 \mathbf{x}}.$$

Continuous Systems	Trafalgar 00000000	Zeckendorf Decompositions	Summary O	Homework Problems	Bonus 000				
Differential Equations: III: System									

In general have several variables and/or related quantities.

Consider a system involving f(x) and g(x):

$$\begin{array}{rcl} f'(x) & = & af(x) + bg(x) \\ g'(x) & = & cf(x) + dg(x). \end{array}$$

How do we solve?

Continuous Systems ○○●○○	Trafalgar oooooooo	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
Differential F	quations	III: System			

In general have several variables and/or related quantities.

Consider a system involving f(x) and g(x):

$$f'(x) = af(x) + bg(x)$$

 $g'(x) = cf(x) + dg(x).$

How do we solve? Think back to similar examples.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
00000					

$$f'(x) = af(x) + bg(x)$$

 $g'(x) = cf(x) + dg(x).$

In linear algebra solved for one variable in terms of others.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
00000					

$$f'(x) = af(x) + bg(x)$$

 $g'(x) = cf(x) + dg(x).$

In linear algebra solved for one variable in terms of others.

$$g(x) = \frac{1}{b}f'(x) - \frac{a}{b}f(x),$$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
00000					

$$f'(x) = af(x) + bg(x)$$

 $g'(x) = cf(x) + dg(x).$

In linear algebra solved for one variable in terms of others.

$$g(x) = \frac{1}{b}f'(x) - \frac{a}{b}f(x), \text{ substitute:}$$
$$\left[\frac{1}{b}f'(x) - \frac{a}{b}f(x)\right]' = cf(x) + d\left[\frac{1}{b}f'(x) - \frac{a}{b}f(x)\right]$$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
00000					

$$f'(x) = af(x) + bg(x)$$

 $g'(x) = cf(x) + dg(x).$

In linear algebra solved for one variable in terms of others.

$$g(x) = \frac{1}{b}f'(x) - \frac{a}{b}f(x), \text{ substitute:}$$

$$\begin{bmatrix} \frac{1}{b}f'(x) - \frac{a}{b}f(x) \end{bmatrix}' = cf(x) + d\begin{bmatrix} \frac{1}{b}f'(x) - \frac{a}{b}f(x) \end{bmatrix}$$

$$f''(x) = (a+d)f'(x) + (cb-ad)f(x),$$

reducing to previously solved problem!

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
00000					

$$V'(x) = AV(x), \quad V(x) = \begin{pmatrix} f(x) \\ g(x) \end{pmatrix}, \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
00000					

$$V'(x) = AV(x), \quad V(x) = \begin{pmatrix} f(x) \\ g(x) \end{pmatrix}, \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Formally looks like f'(x) = af(x), guess solution is $V(x) = e^{Ax}V(0)$, where

$$e^{Ax} = I + Ax + \frac{1}{2!}A^2x^2 + \frac{1}{3!}A^3x^3 + \cdots = \sum_{k=0}^{\infty} \frac{1}{k!}A^kx^k.$$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
00000					

$$V'(x) = AV(x), \quad V(x) = \begin{pmatrix} f(x) \\ g(x) \end{pmatrix}, \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Formally looks like f'(x) = af(x), guess solution is $V(x) = e^{Ax}V(0)$, where

$$e^{Ax} = I + Ax + \frac{1}{2!}A^2x^2 + \frac{1}{3!}A^3x^3 + \cdots = \sum_{k=0}^{\infty} \frac{1}{k!}A^kx^k.$$

Can justify term-by-term differentiation of series for e^{Ax} , see importance of matrix exponential.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
00000					

$$V'(x) = AV(x), \quad V(x) = \begin{pmatrix} f(x) \\ g(x) \end{pmatrix}, \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Formally looks like f'(x) = af(x), guess solution is $V(x) = e^{Ax}V(0)$, where

$$e^{Ax} = I + Ax + \frac{1}{2!}A^2x^2 + \frac{1}{3!}A^3x^3 + \cdots = \sum_{k=0}^{\infty} \frac{1}{k!}A^kx^k.$$

Can justify term-by-term differentiation of series for e^{Ax} , see importance of matrix exponential.

Mentioned Baker-Campbell-Hausdorf formula; in general product of matrices is hard but $(e^{Ax})' = Ae^{Ax} = e^{Ax}A$.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus

Application: Battle of Trafalgar

Modified from Mathematics in Warfare by F. W. Lancaseter.

D	tile of Trofe	lasan				
Co r 00	ntinuous Systems	Trafalgar ●○○○○○○○	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000

Wikipedia: "The battle was the most decisive naval victory of the war. Twenty-seven British ships of the line led by Admiral Lord Nelson aboard HMS Victory defeated thirty-three French and Spanish ships of the line under French Admiral Pierre-Charles Villeneuve off the southwest coast of Spain, just west of Cape Trafalgar, in Caños de Meca.

Continuous Systems	Trafalgar ○●○○○○○○	Zeckendorf Decompositions	Summary O	Homework Problems	Bonus 000
The Square I	aw: I				

$$b'(t) = -Nr(t)$$

$$r'(t) = -Mb(t).$$

Continuous Systems	Trafalgar ○●○○○○○○	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
The Square I	_aw: I				

$$b'(t) = -Nr(t)$$

$$r'(t) = -Mb(t).$$

Can solve using techniques from before: what do you expect solution to look like?

Continuous Systems	Trafalgar ○●○○○○○○	Zeckendorf Decompositions	Summary O	Homework Problems	Bonus 000
The Square L	.aw: I				

$$p'(t) = -Nr(t)$$

 $r'(t) = -Mb(t).$

Can solve using techniques from before: what do you expect solution to look like?

If take derivatives again find

b''(t) = -Nr'(t)

Continuous Systems	Trafalgar ○●○○○○○○	Zeckendorf Decompositions	Summary O	Homework Problems	Bonus 000
The Square L	.aw: I				

$$p'(t) = -Nr(t)$$

 $r'(t) = -Mb(t).$

Can solve using techniques from before: what do you expect solution to look like?

If take derivatives again find

$$b''(t) = -Nr'(t) = NMb(t),$$

00000	0000000	000000000000000000000000000000000000000	0	00	000
The Square L	.aw: I				

$$p'(t) = -Nr(t)$$

 $r'(t) = -Mb(t).$

Can solve using techniques from before: what do you expect solution to look like?

If take derivatives again find

$$b''(t) = -Nr'(t) = NMb(t)$$
, yields

$$b(t) = \beta_1 e^{\sqrt{NM}t} + \beta_2 e^{-\sqrt{NM}t}, \quad r(t) = \alpha_1 e^{\sqrt{NM}t} + \alpha_2 e^{-\sqrt{NM}t}.$$

Continuous Systems	Trafalgar ○●○○○○○○	Zeckendorf Decompositions	Summary O	Homework Problems	Bonus 000
The Square I	_aw: I				

$$p'(t) = -Nr(t)$$

 $r'(t) = -Mb(t).$

Can solve using techniques from before: what do you expect solution to look like?

If take derivatives again find

$$b''(t) = -Nr'(t) = NMb(t)$$
, yields

$$\boldsymbol{b}(\boldsymbol{t}) = \beta_1 \boldsymbol{e}^{\sqrt{NM}t} + \beta_2 \boldsymbol{e}^{-\sqrt{NM}t}, \quad \boldsymbol{r}(\boldsymbol{t}) = \alpha_1 \boldsymbol{e}^{\sqrt{NM}t} + \alpha_2 \boldsymbol{e}^{-\sqrt{NM}t}.$$

b'(t)/b(t) = r'(t)/r(t) yields $Nr(t)^2 = Mb(t)^2$ (square law).

Continuous Systems	Trafalgar ○○●○○○○○	Zeckendorf Decompositions	Summary O	Homework Problems	Bonus 000
Trafalgar					

Nelson outnumbered - how could he win?

Continuous Systems	Trafalgar ○○●○○○○○	Zeckendorf Decompositions	Summary O	Homework Problems	Bonus 000
Trafalgar					

Nelson outnumbered - how could he win?

31

Continuous Systems	Trafalgar ○○○●○○○○	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
Analysis of N	elson's P	Plan: I			

Nelson assumed for the purpose of framing his plan of attack that his own force would consist of forty sail of the line, against forty-six of the com-

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
	00000000				

Analysis of Nelson's Plan: II

If for the purpose of comparison we suppose the total forces had engaged under the conditions described by Villeneuve as "the usage of former days," we have:—

Strength	of combined	fleet,	46^{2}	 = 2116
**	British	**	40^{2}	 = 1600
Balance i	n favour of	enemy	,	 516

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
	00000000				

Analysis of Nelson's Plan: III

Dealing with the position arithmetically, we have:— Strength of British (in arbitrary n^2 units), $32^2 + 8^2 = 1088$ And combined fleet, $23^2 + 23^2 = 1058$ British advantage 30

Continuous Systems	Trafalgar ○○○○○●○	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
Battle of Tra	algar				

Wikipedia: "The battle was the most decisive naval victory of the war. Twenty-seven British ships of the line led by Admiral Lord Nelson aboard HMS Victory defeated thirty-three French and Spanish ships of the line under French Admiral Pierre-Charles Villeneuve off the southwest coast of Spain, just west of Cape Trafalgar, in Caños de Meca."

Continuous Systems	Trafalgar ○○○○○●○	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
Battle of Tra	algar				

Wikipedia: "The battle was the most decisive naval victory of the war. Twenty-seven British ships of the line led by Admiral Lord Nelson aboard HMS Victory defeated thirty-three French and Spanish ships of the line under French Admiral Pierre-Charles Villeneuve off the southwest coast of Spain, just west of Cape Trafalgar, in Caños de Meca.The Franco-Spanish fleet lost twenty-two ships, without a single British vessel being lost."
Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
	0000000				

AfterMATH of Battle of Trafalgar

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
	0000000				

AfterMATH of Battle of Trafalgar: English expectation

British: 0 of 27 ships, 1,666 dead or wounded. Franco-Spanish: 22 of 33 ships, 13,781 captured, dead or wounded.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
	0000000				

AfterMATH of Battle of Trafalgar: Issues & Remedies with Model

Biggest issue is deterministic.

Make fighting effectiveness random variables!

Leads to stochastic differential equations.

http://en.wikipedia.org/wiki/
Stochastic_differential_equation.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus

Introduction to Zeckendorf Decompositions

Continuous Systems	Trafalgar oooooooo	Zeckendorf Decompositions	Summary O	Homework Problems	Bonus 000
Previous Res	ults				

Continuous Systems	Trafalgar 00000000	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
Previous Res	ults				

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Continuous Systems	Trafalgar 00000000	Zeckendorf Decompositions ●○○○○○○○○○○	Summary O	Homework Problems	Bonus 000
Previous Res	sults				

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: 51 =?

Continuous Systems	Trafalgar 00000000	Zeckendorf Decompositions ●○○○○○○○○○○	Summary O	Homework Problems	Bonus 000
Previous Res	sults				

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 17 = F_8 + 17$.

Continuous Systems	Trafalgar oooooooo	Zeckendorf Decompositions ●○○○○○○○○○○	Summary o	Homework Problems	Bonus 000					
Previous Res	Previous Results									

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 13 + 4 = F_8 + F_6 + 4$.

Continuous Systems	Trafalgar oooooooo	Zeckendorf Decompositions ●○○○○○○○○○○	Summary o	Homework Problems	Bonus 000					
Previous Res	Previous Results									

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + 1$.

Continuous Systems	Trafalgar 00000000	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
Previous Res	sults				

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$.

Continuous Systems	Trafalgar 00000000	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
Previous Res	ults				

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$. Example: $83 = 55 + 21 + 5 + 2 = F_9 + F_7 + F_4 + F_2$. Observe: $51 \text{ miles} \approx 82.1 \text{ kilometers}$.

Continuous Systems	Trafalgar oooooooo	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
Previous Res	ults				

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$;

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$. Example: $83 = 55 + 21 + 5 + 2 = F_9 + F_7 + F_4 + F_2$. Observe: 51 miles ≈ 82.1 kilometers. Reason: $\phi = \frac{1+\sqrt{5}}{2} \approx 1.618$ and 1 mile ≈ 1.609 km.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000			

Old Results

Central Limit Type Theorem

As $n \to \infty$, the distribution of number of summands in Zeckendorf decomposition for $m \in [F_n, F_{n+1})$ is Gaussian.

Figure: Number of summands in $[F_{2010}, F_{2011}); F_{2010} \approx 10^{420}$.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000			

1,

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000			

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000			

$$1,\ 2,\ 3,$$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000			

$$1,\ 2,\ 3,\ 5,$$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000			

$$1,\ 2,\ 3,\ 5,\ 8,$$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000			

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

 $1, \ 2, \ 3, \ 5, \ 8, \ 13, \ \ldots$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000			

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

- Key to entire analysis: $F_{n+1} = F_n + F_{n-1}$.
- View as bins of size 1, cannot use two adjacent bins:

[1] [2] [3] [5] [8] [13]

 SMALL '15, '16, ...: How does the notion of legal decomposition affect the sequence and results?

Continuous Systems	Trafalgar oooooooo	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
Generalizatio	ns				

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_nH_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

- Zeckendorf: Every positive integer can be written uniquely as ∑ a_iH_i with natural constraints on the a_i's (e.g. cannot use the recurrence relation to remove any summand).
- Central Limit Type Theorem

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000			

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}.$$

• Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, \dots, 9\} \ (1 \le i < m), a_m \in \{1, \dots, 9\}.$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000			

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}$$

- Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, \dots, 9\} \ (1 \le i < m), a_m \in \{1, \dots, 9\}.$
- For $N \in [H_n, H_{n+1})$, first term is $a_n H_n = a_n 10^{n-1}$.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000			

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}.$$

- Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, \dots, 9\} \ (1 \le i < m), a_m \in \{1, \dots, 9\}.$
- For $N \in [H_n, H_{n+1})$, first term is $a_n H_n = a_n 10^{n-1}$.
- *A_i*: the corresponding random variable of *a_i*. The *A_i*'s are independent.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000			

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}.$$

- Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, \dots, 9\} \ (1 \le i < m), a_m \in \{1, \dots, 9\}.$
- For $N \in [H_n, H_{n+1})$, first term is $a_n H_n = a_n 10^{n-1}$.
- *A_i*: the corresponding random variable of *a_i*. The *A_i*'s are independent.
- For large *n*, the contribution of A_n is immaterial. A_i ($1 \le i < n$) are identically distributed random variables with mean 4.5 and variance 8.25.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000			

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}.$$

- Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, \dots, 9\}$ $(1 \le i < m), a_m \in \{1, \dots, 9\}.$
- For $N \in [H_n, H_{n+1})$, first term is $a_n H_n = a_n 10^{n-1}$.
- *A_i*: the corresponding random variable of *a_i*. The *A_i*'s are independent.
- For large *n*, the contribution of A_n is immaterial. A_i ($1 \le i < n$) are identically distributed random variables with mean 4.5 and variance 8.25.
- Central Limit Theorem: $A_2 + A_3 + \cdots + A_n \rightarrow \text{Gaussian}$ with mean 4.5n + O(1) and variance 8.25n + O(1).

Continuous Systems	Trafalgar 00000000	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
Distribution	of Gaps				

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Continuous Systems	Trafalgar oooooooo	Zeckendorf Decompositions	Summary O	Homework Problems	Bonus 000
Distribution	of Gaps				

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(g)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length *g*.

Continuous Systems	Trafalgar oooooooo	Zeckendorf Decompositions	Summary O	Homework Problems	Bonus 000
Distribution	of Gaps				

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(g)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length *g*.

Bulk: What is $P(g) = \lim_{n \to \infty} P_n(g)$?

Continuous Systems	Trafalgar oooooooo	Zeckendorf Decompositions	Summary O	Homework Problems	Bonus 000
Distribution	of Gaps				

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(g)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length *g*.

Bulk: What is $P(g) = \lim_{n \to \infty} P_n(g)$?

Individual: Similar questions about gaps for a fixed $m \in [F_n, F_{n+1}]$: distribution of gaps, longest gap.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		000000000000			

New Results: Bulk Gaps: $m \in [F_n, F_{n+1})$ and $\phi = rac{1+\sqrt{5}}{2}$

$$m = \sum_{j=1}^{k(m)=n} F_{i_j}, \ \nu_{m;n}(\mathbf{x}) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta(\mathbf{x} - (i_j - i_{j-1})).$$

Theorem (Zeckendorf Gap Distribution)

Gap measures $\nu_{m;n}$ converge to average gap measure where $P(k) = 1/\phi^k$ for $k \ge 2$.

Figure: Distribution of gaps in $[F_{2010}, F_{2011})$; $F_{2010} \approx 10^{420}$.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		000000000000			

New Results: Longest Gap

Fair coin: largest gap tightly concentrated around $\log n / \log 2$.

Theorem (Longest Gap)

As $n \to \infty$, the probability that $m \in [F_n, F_{n+1})$ has longest gap less than or equal to f(n) converges to

$$\operatorname{Prob}\left(L_n(m) \leq f(n)\right) \approx e^{-e^{\log n - f(n) \cdot \log \phi}}$$

•
$$\mu_n = \frac{\log\left(\frac{\phi^2}{\phi^2+1}n\right)}{\log\phi} + \frac{\gamma}{\log\phi} - \frac{1}{2} + \text{Small Error.}$$

• If f(n) grows **slower** (resp. **faster**) than $\log n / \log \phi$, then $\operatorname{Prob}(L_n(m) \le f(n))$ goes to **0** (resp. **1**).

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		000000000000			

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		000000000000			

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		000000000000			

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets. **Example:** 8 cookies and 5 people (C = 8, P = 5):

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		000000000000			

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets. **Example:** 8 cookies and 5 people (C = 8, P = 5):

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		000000000000			

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets. **Example:** 8 cookies and 5 people (C = 8, P = 5):

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		000000000000			

Reinterpreting the Cookie Problem

Number of sols to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$. If $x_i \ge c_i$ same as $y_1 + \cdots + y_P = C - (c_1 + \cdots + c_P)$.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		000000000000			

Reinterpreting the Cookie Problem

Number of sols to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$. If $x_i \ge c_i$ same as $y_1 + \cdots + y_P = C - (c_1 + \cdots + c_P)$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of *N* has exactly *k* summands $\}$.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		000000000000			

Reinterpreting the Cookie Problem

Number of sols to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$. If $x_i \ge c_i$ same as $y_1 + \cdots + y_P = C - (c_1 + \cdots + c_P)$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of *N* has exactly *k* summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n$, $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n$, $i_j - i_{j-1} \ge 2$.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		000000000000			

Reinterpreting the Cookie Problem

Number of sols to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$. If $x_i \ge c_i$ same as $y_1 + \cdots + y_P = C - (c_1 + \cdots + c_P)$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of *N* has exactly *k* summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0.$$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		000000000000			

Reinterpreting the Cookie Problem

Number of sols to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$. If $x_i \ge c_i$ same as $y_1 + \cdots + y_P = C - (c_1 + \cdots + c_P)$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of *N* has exactly *k* summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0.$$

Cookie counting $\Rightarrow p_{n,k} = \binom{n-2k+1+k-1}{k-1} = \binom{n-k}{k-1}.$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		0000000000000			

Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of the number of summands in Zeckendorf's Theorem is a Gaussian.

Sketch of proof: Use Stirling's formula,

$$n! \approx n^n \mathrm{e}^{-n} \sqrt{2\pi n}$$

to approximates binomial coefficients, after a few pages of algebra find the probabilities are approximately Gaussian.

Continuous to assist discrete: $n! = \Gamma(n+1)$, where

$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx, \quad \operatorname{Re}(s) > 0.$$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		0000000000000			

The probability density for the number of Fibonacci numbers that add up to an integer in $[F_n, F_{n+1})$ is $f_n(k) = \binom{n-1-k}{k}/F_{n-1}$. Consider the density for the n+1 case. Then we have, by Stirling

$$f_{n+1}(k) = \binom{n-k}{k} \frac{1}{F_n}$$

= $\frac{(n-k)!}{(n-2k)!k!} \frac{1}{F_n} = \frac{1}{\sqrt{2\pi}} \frac{(n-k)^{n-k+\frac{1}{2}}}{k^{(k+\frac{1}{2})}(n-2k)^{n-2k+\frac{1}{2}}} \frac{1}{F_n}$

plus a lower order correction term.

Also we can write $F_n = \frac{1}{\sqrt{5}}\phi^{n+1} = \frac{\phi}{\sqrt{5}}\phi^n$ for large *n*, where ϕ is the golden ratio (we are using relabeled Fibonacci numbers where $1 = F_1$ occurs once to help dealing with uniqueness and $F_2 = 2$). We can now split the terms that exponentially depend on *n*.

$$f_{n+1}(k) = \left(\frac{1}{\sqrt{2\pi}}\sqrt{\frac{(n-k)}{k(n-2k)}}\frac{\sqrt{5}}{\phi}\right) \left(\phi^{-n}\frac{(n-k)^{n-k}}{k^k(n-2k)^{n-2k}}\right).$$

Define

$$N_n = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{(n-k)}{k(n-2k)}} \frac{\sqrt{5}}{\phi}, \quad S_n = \phi^{-n} \frac{(n-k)^{n-k}}{k^k (n-2k)^{n-2k}}.$$

Thus, write the density function as

$$f_{n+1}(k) = N_n S_n$$

where N_n is the first term that is of order $n^{-1/2}$ and S_n is the second term with exponential dependence on n.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		0000000000000			

Model the distribution as centered around the mean by the change of variable $k = \mu + x\sigma$ where μ and σ are the mean and the standard deviation, and depend on *n*. The discrete weights of $f_n(k)$ will become continuous. This requires us to use the change of variable formula to compensate for the change of scales:

$$f_n(k)dk = f_n(\mu + \sigma x)\sigma dx$$

Using the change of variable, we can write Nn as

$$\begin{split} N_n &= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{n-k}{k(n-2k)}} \frac{\phi}{\sqrt{5}} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-k/n}{(k/n)(1-2k/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-(\mu+\sigma x)/n}{((\mu+\sigma x)/n)(1-2(\mu+\sigma x)/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C-y}{(C+y)(1-2C-2y)}} \frac{\sqrt{5}}{\phi} \end{split}$$

where $C = \mu/n \approx 1/(\phi + 2)$ (note that $\phi^2 = \phi + 1$) and $y = \sigma x/n$. But for large *n*, the *y* term vanishes since $\sigma \sim \sqrt{n}$ and thus $y \sim n^{-1/2}$. Thus

$$N_n \approx \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C}{C(1-2C)}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{(\phi+1)(\phi+2)}{\phi}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{5(\phi+2)}{\phi}} = \frac{1}{\sqrt{2\pi\sigma^2}} \sqrt{\frac{1-C}{2}} \sqrt{\frac{1-C}{2}}$$

since $\sigma^2 = n \frac{\phi}{5(\phi+2)}$.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000000			

For the second term S_n , take the logarithm and once again change variables by $k = \mu + x\sigma$,

$$\begin{split} \log(\mathbb{S}_n) &= & \log\left(\phi^{-n}\frac{(n-k)^{(n-k)}}{k^k(n-2k)^{(n-2k)}}\right) \\ &= & -n\log(\phi) + (n-k)\log(n-k) - (k)\log(k) \\ &- (n-2k)\log(n-2k) \\ &= & -n\log(\phi) + (n-(\mu+x\sigma))\log(n-(\mu+x\sigma)) \\ &- (\mu+x\sigma)\log(\mu+x\sigma) \\ &- (n-2(\mu+x\sigma))\log(n-2(\mu+x\sigma)) \\ &= & -n\log(\phi) \\ &+ (n-(\mu+x\sigma))\left(\log(n-\mu) + \log\left(1-\frac{x\sigma}{n-\mu}\right)\right) \\ &- (\mu+x\sigma)\left(\log(\mu) + \log\left(1+\frac{x\sigma}{\mu}\right)\right) \\ &- (n-2(\mu+x\sigma))\left(\log(n-2\mu) + \log\left(1-\frac{x\sigma}{n-2\mu}\right)\right) \\ &= & -n\log(\phi) \\ &+ (n-(\mu+x\sigma))\left(\log\left(\frac{n}{\mu}-1\right) + \log\left(1-\frac{x\sigma}{n-\mu}\right)\right) \\ &- (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) \\ &- (n-2(\mu+x\sigma))\left(\log\left(\frac{n}{\mu}-2\right) + \log\left(1-\frac{x\sigma}{n-2\mu}\right)\right) \end{split}$$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000000			

Note that, since $n/\mu = \phi + 2$ for large *n*, the constant terms vanish. We have log(S_n)

$$= -n\log(\phi) + (n-k)\log\left(\frac{n}{\mu}-1\right) - (n-2k)\log\left(\frac{n}{\mu}-2\right) + (n-(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-2\mu}\right)$$

$$= -n\log(\phi) + (n-k)\log(\phi+1) - (n-2k)\log(\phi) + (n-(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-2\mu}\right)$$

$$= n(-\log(\phi) + \log\left(\phi^2\right) - \log(\phi)) + k(\log(\phi^2) + 2\log(\phi)) + (n-(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1-2\frac{x\sigma}{n-2\mu}\right)$$

$$= (n-(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1+\frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1+\frac{x\sigma}{\mu}\right)$$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		0000000000000			

Finally, we expand the logarithms and collect powers of $x\sigma/n$.

$$\begin{split} \log(S_n) &= (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n - \mu} - \frac{1}{2} \left(\frac{x\sigma}{n - \mu} \right)^2 + \dots \right) \\ &- (\mu + x\sigma) \left(\frac{x\sigma}{\mu} - \frac{1}{2} \left(\frac{x\sigma}{\mu} \right)^2 + \dots \right) \\ &- (n - 2(\mu + x\sigma)) \left(-2 \frac{x\sigma}{n - 2\mu} - \frac{1}{2} \left(2 \frac{x\sigma}{n - 2\mu} \right)^2 + \dots \right) \\ &= (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n \frac{(\phi+1)}{(\phi+2)}} - \frac{1}{2} \left(\frac{x\sigma}{n \frac{(\phi+1)}{(\phi+2)}} \right)^2 + \dots \right) \\ &- (\mu + x\sigma) \left(\frac{x\sigma}{\frac{\phi}{\phi+2}} - \frac{1}{2} \left(\frac{x\sigma}{\frac{\phi}{\phi+2}} \right)^2 + \dots \right) \\ &- (n - 2(\mu + x\sigma)) \left(-\frac{2x\sigma}{n \frac{\phi}{\phi+2}} - \frac{1}{2} \left(\frac{2x\sigma}{n \frac{\phi}{\phi+2}} \right)^2 + \dots \right) \\ &= \frac{x\sigma}{n} n \left(- \left(1 - \frac{1}{\phi+2} \right) \frac{(\phi+2)}{(\phi+1)} - 1 + 2 \left(1 - \frac{2}{\phi+2} \right) \frac{\phi+2}{\phi} \right) \\ &- \frac{1}{2} \left(\frac{x\sigma}{n} \right)^2 n \left(-2 \frac{\phi+2}{\phi+1} + \frac{\phi+2}{\phi+1} + 2(\phi+2) - (\phi+2) + 4 \frac{\phi+2}{\phi} \right) \\ &+ O \left(n(x\sigma/n)^3 \right) \end{split}$$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		00000000000000			

$$\begin{split} \log(S_n) &= \frac{x\sigma}{n}n\left(-\frac{\phi+1}{\phi+2}\frac{\phi+2}{\phi+1}-1+2\frac{\phi}{\phi+2}\frac{\phi+2}{\phi}\right) \\ &\quad -\frac{1}{2}\left(\frac{x\sigma}{n}\right)^2n(\phi+2)\left(-\frac{1}{\phi+1}+1+\frac{4}{\phi}\right) \\ &\quad +O\left(n\left(\frac{x\sigma}{n}\right)^3\right) \\ &= -\frac{1}{2}\frac{(x\sigma)^2}{n}(\phi+2)\left(\frac{3\phi+4}{\phi(\phi+1)}+1\right)+O\left(n\left(\frac{x\sigma}{n}\right)^3\right) \\ &= -\frac{1}{2}\frac{(x\sigma)^2}{n}(\phi+2)\left(\frac{3\phi+4+2\phi+1}{\phi(\phi+1)}\right)+O\left(n\left(\frac{x\sigma}{n}\right)^3\right) \\ &= -\frac{1}{2}x^2\sigma^2\left(\frac{5(\phi+2)}{\phi n}\right)+O\left(n(x\sigma/n)^3\right). \end{split}$$

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		0000000000000			

But recall that

$$\sigma^2 = \frac{\phi n}{5(\phi+2)}.$$

Also, since $\sigma \sim n^{-1/2}$, $n\left(\frac{x\sigma}{n}\right)^3 \sim n^{-1/2}$. So for large *n*, the $O\left(n\left(\frac{x\sigma}{n}\right)^3\right)$ term vanishes. Thus we are left with

$$\log S_n = -\frac{1}{2}x^2$$
$$S_n = e^{-\frac{1}{2}x^2}$$

Hence, as n gets large, the density converges to the normal distribution:

$$f_n(k)dk = N_n S_n dk$$

= $\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}x^2} \sigma dx$
= $\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx.$

Continuous Systems	Trafalgar oooooooo	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus

Code: Problem and Basic Functions

Problem: Compute Zeckendorf decompositions and look at leading (i.e., first) digits to compare to Benford's law.

Here are some basic functions that we will need.

```
fd[x_] := Floor[10^Mod[Log[10, x], 1]]
fib[n_] := Fibonacci[n+1];
lenfib[n_] := Floor[Log[1.0 fib[n]] / Log[E1.0]]
```

Continuous Systems	Trafalgar 00000000	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000

Code: Main Program

```
zeckdecomp[m_, printcheck_] := Module[{},
   listn = {};
   For [d = 1, d \le 9, d++, digits[d] = 0];
   current = m;
   goldenmean = (1 + Sgrt[5])/2;
   While [current \ge 1].
    (* 1 2 3 5 8 13 21 34 55 89 144 233*)
     If[current ≤ 232.
       If [current \leq 232, newterm = 11];
       If [current \leq 143, newterm = 10];
       If[current ≤ 88, newterm = 9];
       If [current \leq 54, 'newterm = 8];
       If [current \leq 33, newterm = 7];
       If [current \leq 20, newterm = 6];
       If [current \leq 12, newterm = 5];
       If [current \leq 7, newterm = 4];
       If [current \leq 4, newterm = 3];
       If [current \leq 2, newterm = 21;
       If[current ≤ 1, newterm = 1];
      },
```

Continuous Systems	Trafalgar 00000000	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus

Code: Main Program

```
Ł
   x = Floor[(Log[current * Sqrt[5]] / Log[goldenmean]) - 1];
   If [fib[x+1] \leq current, newterm = x+1,
    If [fib[x] \leq current, newterm = x,
     If [fib[x-1] \leq current, newterm = x-1]
    11;
  }]; (* end of if *)
listn = AppendTo[listn, newterm];
d = fd[fib[newterm]];
digits[d] = digits[d]+1;
current = current - fib[newterm];
11;
```

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
		000000000000			

Code: Main Program

```
If[printcheck = 1,
{
    Frint[listn];
    listfib = fib[listn];
    Print[listfib];
    Print["m = ", m, " and sum of terms is ", Sum[listfib[[i]], {i, 1, Length[listfib]}]];
    Print["Difference is ", m - Sum[listfib[[i]], {i, 1, Length[listfib]}]];
    Print["Digits are "];
    For[d = 1, d ≤ 9, d++, Print[d, " ", digits[d]]];
    ];
    Return[listn];
];
```

Continuous Systems	Trafalgar ୦୦୦୦୦୦୦୦	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus 000
Code: Main F	Program				

zeckdecomp[14531997, 1];

{34, 32, 30, 27, 24, 22, 20, 15, 12, 7, 4}

{9227465, 3524578, 1346269, 317811, 75025, 28657, 10946, 987, 233, 21, 5}

m = 14531997 and sum of terms is 14531997

Difference is 0

Digits are

1 2

23

32

4 0

5 1

6 0

71

8 0

Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
	Trafalgar ooooooooo	Trafalgar Zeckendorf Decompositions 00000000 000000000000000000000000000000000000	Trafalgar Zeckendorf Decompositions Summary 00000000 000000000000 0	Trafalgar Zeckendorf Decompositions Summary Homework Problems 00000000 000000000000000000000000000000000000

Summary

Continuous Systems	Trafalgar 00000000	Zeckendorf Decompositions	Summary ●	Homework Problems	Bonus 000
Summary of	Two Lecti	ures			

- Difference/Differential Equations model world.
- Deterministic vs Stochastic.
- Prevalence of Central Limit Theorem.
- Approximate Continuous with Discrete.
- Convert Discrete to Continuous!

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus

Homework Problems

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
				•0	

Problems to Think About: I: Trafalgar

- In the naval battle model with r(t) and b(t), assume M = N = 1 (though it doesn't matter). If the inial force concentrations are $B_0 > R_0$, how long will the battle rage before Blue defeats Red?
- If Red divides its forces into two components $R_{0,1} + R_{0,2} = R_{0,1}$, which splits Blue into two components $B_{0,1} + B_{0,2} = B_0$, how should this be done to maximize Red's fighting strength, using the square law? If you want, assume $B_0 = 46$ and $R_0 = 40$ (or use 33 and 27, the actual battle numbers).
- Redo the last problem, but allow Red to split its forces into k parts, which split Blue into k parts as well. What is the optimal k and the optimal splitting for red? Again, if you want choose specific numbers.

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
				00	

Problems to Think About: II: Zeckendorf

- Construct a sequence of positive integers such that every number can be written uniquely as a sum of these integers without ever using three consecutive numbers. Is there a nice recurrence relation describing this sequence?
- Consider the Gamma function Γ(s) = ∫₀[∞] e^{-x}x^{s-1}dx. Where is the integrand largest when s = n + 1 (so we are looking at Γ(n + 1) = n!)? Can you use this to approximate n!?
- How many ways are there to divide C cookies among P people, but now we do not require each cookie to be given to a person? *Hint: there is a simple, clean answer.*

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
00000	00000000	000000000000		00	000

Bonus

Continuous Systems	Trafalgar ooooooooo	Zeckendorf Decompositions	Summary o	Homework Problems	Bonus ●○○
Battle of Mid	MaN.				

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
					000

Battle of Midway: II

United States Commander	Empire of Japan s and leaders		Did not participate in		
Chester W. Nimitz Frank Jack Fletcher Raymond Spruance Marc A. Mitscher Thomas C. Kinkaid	Koroku Yamamoto Nobutake Kondő Chůichi Nagumo Tamon Yamaguchi † Ryusaku Yanagimoto †		battle: 2 light carriers 5 battleships 4 heavy cruisers 2 light cruisers 25 curpent chips		
Strength			33 support ships		
3 carriers	carriers 4 carriers		Casualties and losses		
7 heavy cruisers 1 light cruiser 15 destroyers 233 carrier-based aircraft 127 land-based aircraft 16 submarines ^[1]	2 battleships 2 heavy cruisers 1 light cruiser 12 destroyers 248 carrier-based aircraft ^[2] 16 floattolapes	1 carrier sunk 1 destroyer sunk ~150 aircraft destroyed 307 killed ⁽³⁾	4 carriers sunk 1 heavy cruiser sunk 1 heavy cruiser damaged 248 aircraft destroyed ^[4] 3,057 killed ^[5]		

Continuous Systems	Trafalgar	Zeckendorf Decompositions	Summary	Homework Problems	Bonus
					000

Codebreakers (Passage from Wikipedia entry 'Battle of Midway')

Cryptanalysts had broken the Japanese Navy's JN-25b code. Since the early spring of 1942, the US had been decoding messages stating that there would soon be an operation at objective "AF". It was not known where "AF" was, but Commander Joseph J. Rochefort and his team at Station HYPO were able to confirm that it was Midway by telling the base there by secure undersea cable to radio an uncoded false message stating that the water purification system it depended upon had broken down and that the base needed fresh water. The code breakers then picked up a Japanese message that "AF was short on water." HYPO was also able to determine the date of the attack [deleted], and to provide Nimitz with a complete IJN order of battle, [deleted] with a very good picture of where, when, and in what strength the Japanese would appear. Nimitz knew that the Japanese had negated their numerical advantage by dividing their ships into four separate task groups, all too widely separated to be able to support each other. Nimitz calculated that the aircraft on his three carriers, plus those on Midway Island, gave the U.S. rough parity with Yamamoto's four carriers, mainly because American carrier air groups were larger than Japanese ones. The Japanese, by contrast, remained almost totally unaware of their opponent's true strength and dispositions even after the battle began.