Introduction	Mechanics 000000	Gambling oooooo	Clicker Qs 00000	Hoops Game

Math 341: Probability First Lecture

Steven J Miller Williams College

sjm1@williams.edu

http://www.williams.edu/Mathematics/sjmiller/public_html/317

Williams College

Introduction	Mechanics	Gambling 000000	Clicker Qs	Hoops Game

Introduction and Objectives

Introduction 0000	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game
Introductio	n / Objectives			

Probability theory: model the real world, predict likelihood of events.

One of the three most important quantitative classes (statistics, programming).

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game

Introduction / Objectives

Probability theory: model the real world, predict likelihood of events.

One of the three most important quantitative classes (statistics, programming).

Objectives

- Obviously learn probability.
- Emphasize techniques / asking the right questions.
- Model problems and analyze model.
- Elegant solutions vs brute force (parameters in closed form versus numerical solutions).
- Looking at equations and getting a sense: log −5 Method: ^{p±pq}/_{p+q±2pq}.

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs 00000	Hoops Game

Types of Problems

- Biology: will a species survive?
- Physics / Chemistry / Number Theory: Random Matrix Theory.
- Gambling: Double-plus-one.
- Economics: Stock market / economy.
- Finance: Monte Carlo integration.
- Marketing: Movie schedules.
- Cryptography: Markov Chain Monte Carlo.
- 8 ever 9 never (bridge).

Introduction	Mechanics	Gambling	Clicker Qs	Hoops Game
○○○●	000000	000000	00000	
My (applied) e	experiences			

- Marketing: parameters for linear programming (SilverScreener).
- Data integrity: detecting fraud with Benford's Law (IRS, Iranian elections).
- Sabermetrics: Pythagorean Won-Loss Theorem.

Introduction	Mechanics ●○○○○○	Gambling 000000	Clicker Qs	Hoops Game

Course Mechanics

Introduction	Mechanics 00000	Gambling 000000	Clicker Qs 00000	Hoops Game
Grading / Adn	ninistrative			

- Move at fast pace: Class Participation: 5%. HW: 15%. Midterm: 40% (if there are two exams only best counts). Final exam: 40%. You may also do a project for 10% of your grade (which reduces all other categories proportionally).
- Pre-reqs: Calc III, basic combinatorics / set theory, linear algebra.

Office hours / feedback

- TBD and when I'm in my office (schedule online)
- Feedback ephsmath@gmail.com, password williams1793 (though Google may have disabled).

- Webpage: numerous handouts, additional comments each day (mix of review and optional advanced material).
- Clickers: see how well we can estimate probabilities, always anonymous.
- Probability Lifesaver: opportunity to help write a book, lots of worked examples.
- Creating HW problems: mix of ones you can solve and ones you want to learn about.
- Gather and analyze some data set of interest.
- PREPARE FOR CLASS! Must do readings before each class.

Introduction	Mechanics ○○○●○○	Gambling	Clicker Qs	Hoops Game
Being Prep	ared			
Never	know when an	opportunity pr	esents itself	
			TOPL	
		1 ad		
		hàd		

S. J. Miller at the Sarnak 61st Dinner (copyright C. J. Mozzochi, Princeton N.J)

Introduction 0000	Mechanics	Gambling 000000	Clicker Qs	Hoops Game
Being Prepa	ared			

• Your Job:

- Be prepared for class: do reading, think about material.
- Come to me, the TAs and each other with questions.
- My/TAs Job:
 - Provide resources, guiding questions.
 - ◊ Be available.

Introduction	Mechanics ○○○○●○	Gambling	Clicker Qs	Hoops Game
Other: Advice	from Jeff Mi	iller		

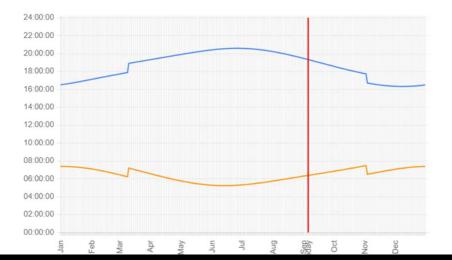
• Party less than the person next to you.

Introduction	Mechanics ○○○○●○	Gambling 000000	Clicker Qs	Hoops Game
Other: Advice	e from Jeff Mi	ller		

- Party less than the person next to you.
- Take advantage of office hours / mentoring.

Introduction	Mechanics	Gambling 000000	Clicker Qs	Hoops Game
Other: Advic	e from Jeff M	iller		

- Party less than the person next to you.
- Take advantage of office hours / mentoring.
- Learn to manage your time: no one else wants to.


Introduction	Mechanics	Gambling 000000	Clicker Qs	Hoops Game
Other: Advid	ce from Jeff M	iller		

- Party less than the person next to you.
- Take advantage of office hours / mentoring.
- Learn to manage your time: no one else wants to.

Happy to do practice interviews, adjust deadlines....

Introduction	Mechanics ○○○○●	Gambling 000000	Clicker Qs	Hoops Game
Mans				

Year distribution of sunrise and sunset times in North Adams, MA – 2019 https://sunrise – sunset.org/us/north – adams – ma

16

Maps

Gambling

Clicker Qs

Hoops Game

Who America is rooting for in the Super Bowl:

Introduction	Mechanics 000000	Gambling ●○○○○○	Clicker Qs	Hoops Game

Gambling

Introduction	Mechanics 000000	Gambling ○●○○○○	Clicker Qs	Hoops Game
Football Wag	jer			

2007: Friend of a favorite student bet \$500 at 1000:1 odds on Patriots going undefeated and winning the Superbowl.

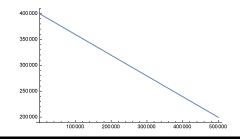
Football Wa	iger			
Introduction	Mechanics 000000	Gambling ○●○○○○	Clicker Qs 00000	Hoops Game

2007: Friend of a favorite student bet \$500 at 1000:1 odds on Patriots going undefeated and winning the Superbowl.

Introduction	Mechanics 000000	Gambling 00000	Clicker Qs	Hoops Game
Football Wag	er			

2008: In third quarter, Pats leading, Vegas offers to buy back the bet at 300:1, told no....

WHAT WAS THE BETTOR'S MISTAKE?

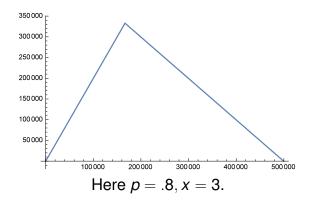

Introduction	Mechanics 000000	Gambling ○○●○○○	Clicker Qs	Hoops Game
Hedging				

Pats win with probability p, Giants q = 1 - p.

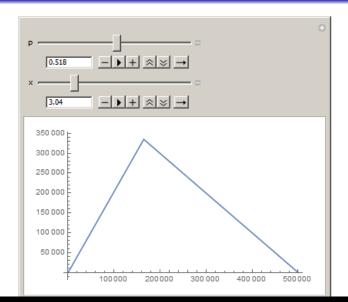
Bet \$1 bet on Giants, if they win get x. Already bet \$500 on Patriots, now bet \$*B* on the Giants.

Expected Winning:

$$f(p, x, B) = p \cdot 500000 + (1 - p)Bx - 500 - B.$$



By hedging can ensure some winnings:


$$g(p, x, B) = \min(500000, Bx) - 500 - B.$$

Introduction 0000	Mechanics 000000	Gambling ○○○○●○	Clicker Qs	Hoops Game
Mathematica	Code			


f[p_, x_, B_] := 500000 p + (1 - p) B x - 500 - B g[p_, x_, B_] := Min[500000, B x] - 500 - B Plot[f[.8, 3, B], {B, 0, 500000}] Plot[g[.8, 3, B], {B, 0, 500000}] Manipulate[Plot[g[p, x, B], {B, 0, 500000}], {p, 0, 1}, {x, 1, 10}]

Introduction	Mechanics 000000	Gambling ○○○○●○	Clicker Qs	Hoops Game
Mathematica	1 Code			

Introduction	Mechanics	Gambling	Clicker Qs	Hoops Game
		00000		

Sabermetrics Club at Williams....

http://fivethirtyeight.com/features/

a-head-coach-botched-the-end-of-the-super-bowl-and-it-wasnt-pete-carroll/

Introduction 0000	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game

Clicker Problems

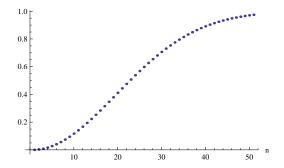
Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game
Birthday Prob	lem I			

Birthday Problem

How large must N be for there to be at least a 50% probability that two of the N people share a birthday?

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game
Rirthday D	roblom I			

Birthday Problem


How large must N be for there to be at least a 50% probability that two of the N people share a birthday?

- (A) 11 people
- (B) 22 people
- (C) 33 people
- (D) 44 people
- (E) 90 people
- (F) 180 people
- (G) 365 people
- (H) 500 people.

Introduction	Mechanics	Gambling	Clicker Qs	Hoops Game
0000	000000	000000	○●○○○	
Rirthday Pr	oblem I			

Birthday Problem

How large must N be for there to be at least a 50% probability that two of the N people share a birthday?

Introduction	Mechanics	Gambling	Clicker Qs	Hoops Game
0000	000000	000000	○○●○○	
Birthday Pro	oblem II			

How large must N be for there to be at least a 50% probability that two of N Plutonians share a birthday?

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs ○○●○○	Hoops Game
Birthday Prol	olem II			

How large must *N* be for there to be at least a 50% probability that two of *N* Plutonians share a birthday? 'Recall' one Plutonian year is about 248 Earth years (or 90,520 days).


Introduction	Mechanics	Gambling	Clicker Qs	Hoops Game
0000	000000	000000	○○●○○	
Birthday Pro	oblem II			

How large must *N* be for there to be at least a 50% probability that two of *N* Plutonians share a birthday? 'Recall' one Plutonian year is about 248 Earth years (or 90,520 days).

- (A) 110 people
- (B) 220 people
- (C) 330 people
- (D) 440 people
- (E) 1,000 people
- (F) 5,000 people
- (G) 10,000 people
- (H) 20,000 people
- (I) more than 30,000 people.

How large must *N* be for there to be at least a 50% probability that two of *N* Plutonians share a birthday? 'Recall' one Plutonian year is about 248 Earth years (or 90,520 days).

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game
Voting: Demo	cratic Primaries	S		

During the Democratic primaries in 2008, Clinton and Obama received exactly the same number of votes in Syracuse, NY. How probable was this?

Introduction	Mechanics	Gambling	Clicker Qs	Hoops Game
0000	000000	000000	○○○●○	
Voting: Demo	ocratic Prima	ries		

During the Democratic primaries in 2008, Clinton and Obama received exactly the same number of votes in Syracuse, NY. How probable was this? (Note: they each received 6001 votes.)

- (A) 1 / 10
- (B) 1 / 100
- (C) 1 / 1,000
- (D) 1 / 10,000
- (E) 1 / 100,000
- (F) 1 / 1,000,000 (one in a million)
- (G) 1 / 1,000,000,000 (one in a billion).

Introduction	Mechanics	Gambling	Clicker Qs	Hoops Game
			00000	

Voting: Democratic Primaries (continued)

Syracuse University mathematics Professor Hyune-Ju Kim said the result was less than one in a million, according to the Syracuse Post-Standard, which quoted the professor as saying, "It's almost impossible." Her comments were reprinted widely, as the Associated Press picked up the story. (Carl Bialik, WSJ, 2/12/08)

Introduction	Mechanics	Gambling	Clicker Qs	Hoops Game
			00000	

Voting: Democratic Primaries (continued)

Syracuse University mathematics Professor Hyune-Ju Kim said the result was less than one in a million, according to the Syracuse Post-Standard, which quoted the professor as saying, "It's almost impossible." Her comments were reprinted widely, as the Associated Press picked up the story. (Carl Bialik, WSJ, 2/12/08)

Far greater than 1/137! What's going on?

Introduction	Mechanics	Gambling	Clicker Qs	Hoops Game
			00000	

Voting: Democratic Primaries (continued)

Syracuse University mathematics Professor Hyune-Ju Kim said the result was less than one in a million, according to the Syracuse Post-Standard, which quoted the professor as saying, "It's almost impossible." Her comments were reprinted widely, as the Associated Press picked up the story. (Carl Bialik, WSJ, 2/12/08)

Far greater than 1/137! What's going on?

Prof. Kim's calculation ... was based on the assumption that Syracuse voters were likely to vote in equal proportions to the state as a whole, which went for Ms. Clinton, its junior senator, 57%-40%. Prof. Kim said she had little time to make the calculation, so she made the questionable assumption ... for simplicity.

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game

From Shooting Hoops to the Geometric Series Formula

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game ○●○○○○
Simpler Game	: Hoops			

Game of hoops: first basket wins, alternate shooting.

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game ○○●○○○

Simpler Game: Hoops: Mathematical Formulation

Bird and **Magic** (I'm old!) alternate shooting; first basket wins.

- **Bird** always gets basket with probability *p*.
- Magic always gets basket with probability q.

Let *x* be the probability **Bird** wins – what is *x*?

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs 00000	Hoops Game
Solving the	Hoop Game			

Introduction	Mechanics	Gambling	Clicker Qs	Hoops Game
0000	000000	000000	00000	○○○●○○
Solving the	Hoop Game			

Break into cases:

• Bird wins on 1st shot: *p*.

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game
Solving the H	oop Game			

- **Bird** wins on 1st shot: *p*.
- Bird wins on 2^{nd} shot: $(1 p)(1 q) \cdot p$.

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game ○○○●○○
Solving the	Hoop Game			

- Bird wins on 1st shot: *p*.
- Bird wins on 2^{nd} shot: $(1 p)(1 q) \cdot p$.
- Bird wins on 3^{rd} shot: $(1-p)(1-q) \cdot (1-p)(1-q) \cdot p$.

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game
Solving the	Hoop Game			

- Bird wins on 1st shot: *p*.
- Bird wins on 2^{nd} shot: $(1 p)(1 q) \cdot p$.
- **Bird** wins on 3^{rd} shot: $(1-p)(1-q) \cdot (1-p)(1-q) \cdot p$.
- Bird wins on nth shot:

$$(1-p)(1-q) \cdot (1-p)(1-q) \cdots (1-p)(1-q) \cdot p.$$

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game ○○○●○○
Solving the	e Hoop Game			
Classic	c solution involv	es the geome	tric series.	

Break into cases:

- Bird wins on 1st shot: p.
- Bird wins on 2^{nd} shot: $(1 p)(1 q) \cdot p$.
- Bird wins on 3^{rd} shot: $(1-p)(1-q) \cdot (1-p)(1-q) \cdot p$.
- Bird wins on nth shot:

$$(1-p)(1-q) \cdot (1-p)(1-q) \cdots (1-p)(1-q) \cdot p.$$

Let r = (1 - p)(1 - q). Then

$$c = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins})$$

= $p + rp + r^2p + r^3p + \cdots$
= $p(1 + r + r^2 + r^3 + \cdots)$

,

the geometric series.

48

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game ○○○○●○
Solving the	e Hoop Game: 1	The Power of P	erspective	
Showe	d			

$$x = \text{Prob}(\text{Bird wins}) = p(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Introduction	Mechanics	Gambling	Clicker Qs	Hoops Game
0000	000000	000000		○○○○●○
Solving the	Hoop Game: 1	The Power of P	erspective	

Showed

$$x = \text{Prob}(\text{Bird wins}) = p(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

 $\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p} + \mathbf{p}$

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game ○○○○●○
Solving the	Hoop Game: 1	The Power of P	erspective	

Showed

$$x = \text{Prob}(\text{Bird wins}) = p(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

$$x = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = p + (1 - p)(1 - q)$$

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs 00000	Hoops Game

Solving the Hoop Game: The Power of Perspective

Showed

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p}(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{\mathsf{Bird}} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)\mathbf{x}$$

Introduction	Mechanics 000000	Gambling 000000	Clicker Qs	Hoops Game ○○○○●○
Solving the	Hoop Game: 1	The Power of P	erspective	

Showed

$$x = \text{Prob}(\text{Bird wins}) = p(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)\mathbf{x} = \mathbf{p} + r\mathbf{x}.$$

Introduction	Mechanics	Gambling	Clicker Qs	Hoops Game
0000	000000	000000	00000	○○○○●○

Solving the Hoop Game: The Power of Perspective

Showed

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p}(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)\mathbf{x} = \mathbf{p} + r\mathbf{x}.$$

Thus

$$(1-r)\mathbf{x} = \mathbf{p}$$
 or $\mathbf{x} = \frac{\mathbf{p}}{1-r}$.

Introduction	Mechanics	Gambling 000000	Clicker Qs	Hoops Game

Solving the Hoop Game: The Power of Perspective

Showed

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p}(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)\mathbf{x} = \mathbf{p} + r\mathbf{x}.$$

Thus

$$(1-r)x = p \text{ or } x = \frac{p}{1-r}$$

As $x = p(1 + r + r^2 + r^3 + \cdots)$, find

$$1 + r + r^2 + r^3 + \cdots = \frac{1}{1 - r}$$

55

Introduction	Mechanics	Gambling	Clicker Qs	Hoops Game
0000	000000	000000		○○○○○●
Lessons fro	om Hoop Probl	em		

o Power of Perspective: Memoryless process.

 Can circumvent algebra with deeper understanding! (Hard)

Output of a problem not always what expect.

 Importance of knowing more than the minimum: connections.

♦ Math is fun!