Introduction	Section 1.3	Section 1.4

Math 341: Probability Second Lecture (9/15/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, September 15, 2009

Introduction	Section 1.3	Section 1.4

Section 1.2 Events as Sets

- Sample Space (Ω): all possible outcomes. Example: toss coin thrice: {*HHH*,...,*TTT*}; toss until get head: {*H*, *TH*, *TTH*,...}.
- Events: Subsets of sample space Ω. Example: at least 2 of 3 tosses a head: {*HHT*, *HTH*, *THH*, *HHH*}.
- Complement: $A^c = \Omega A$.

• Field:

◊ A, B ∈ F then A ∪ B and A ∩ B in Fx.◊ A ∈ F then A^c ∈ F.◊ φ ∈ F (so Ω ∈ F).◊ if also A_i ∈ F implies ∪_{i=1}[∞] A_i ∈ F then a σ-field.

Introduction	Section 1.3	Section 1.4

Section 1.3 Probability

Probability Measure

Finitely additive: disjoint union then $\mathbb{P}(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mathbb{P}(A_i)$; countably additive if the $\{A_i\}$ pairwise disjoint implies $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$.

Probability Space

A triple $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space if Ω is a sample space with σ -field \mathcal{F} and a probability measure \mathbb{P} satisfying

•
$$\mathbb{P}(\varphi) = 0$$
, $\mathbb{P}(\Omega) = 1$.

• \mathbb{P} is countably additive: for a disjoint union, $\mathbb{P}(\bigcup_{i=1}^{\infty}(A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i).$

Lemma: For a probability space (Ω, F, P) we have
Law of total probability: P(A^c) = 1 - P(A).
A ⊂ B implies P(A) ≤ P(B) = P(A) + P(B - A).
P(A ∪ B) = P(A) + P(B) - P(A ∩ B).
P(∪_{i=1}ⁿA_i) = ∑_{i=1}ⁿ P(A_i) - ∑_{i<j} P(A_i ∩ A_j) + ··· + (-1)ⁿ⁺¹P(A₁ ∩ ··· ∩ A_n) (Inclusion - Exclusion Principle, do square-free, PNT hard).

Lemma: $A_1 \subset A_2 \subset \cdots$ and $B_1 \supset B_2 \supset \cdots$, then

• If
$$A = \bigcup_{i=1}^{\infty} A_i$$
 then $\mathbb{P}(A) = \lim_{n \to \infty} \mathbb{P}(\bigcup_{i=1}^n A_i)$.

• If $B = \bigcap_{i=1}^{\infty} B_i$ then $\mathbb{P}(B) = \lim_{n \to \infty} \mathbb{P}(\bigcap_{i=1}^{n} B_i)$.

Introduction	Section 1.3	Section 1.4
O	○⊙●	000000
Clicker Question		

What is the probability that a 'randomly' chosen integer is square-free?

Introduction	Section 1.3	Section 1.4
o	○○●	000000
Clicker Question		

What is the probability that a 'randomly' chosen integer is square-free? Specifically, if we choose $n \in \{1, ..., N\}$ uniformly, as $N \to \infty$ what is this probability?

Introduction	Section 1.3	Section 1.4
o	○○●	000000
Clickor Question		

What is the probability that a 'randomly' chosen integer is square-free? Specifically, if we choose $n \in \{1, ..., N\}$ uniformly, as $N \to \infty$ what is this probability? Note $e \approx 2.7$, $e^2 \approx 7.4$, $e^3 \approx 20$, $\pi \approx 3$, $\pi^2 \approx 10$, $\pi^3 \approx 30$, $\sqrt{2} \approx 1.4$, $\sqrt{3} \approx 1.7$.

- (A) 0% (H) does not exist
- (B) 10% (I) already knew answer
- (C) 45%
- (D) 60%
- (E) 75%
- (F) 90%
- (G) 100%

Introduction	Section 1.3	Section 1.4

Section 1.4 Conditional Probability

Introduction o	Section 1.3	Section 1.4 ●○○○○○

Definition

Conditional Probability

If $\mathbb{P}(B) > 0$ then the conditional probability of *A* occurring given *B*, denoted $\mathbb{P}(A|B)$, is

$$\mathbb{P}(A|B) = rac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Interpretation through counting:

$$rac{N(A\cap B)}{N(B)} \;=\; rac{N(A\cap B)/N}{N(B)/N} \; o\; rac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}.$$

Example: roll fair die twice: what is probability of a 7 or an 11 given first roll is 3? Ans: $\frac{1/36}{6/36} = 1/6$ and $\frac{0/36}{6/36} = 0$.

Introduction	Section 1.3	Section 1.4
O	000	○●○○○○
Definitions (cont)		

Partition

A family of events B_1, \ldots, B_n is a partition of Ω if the $\{B_i\}$'s are disjoint and $\bigcup_{i=1}^n B_i = \Omega$.

Always explore conditions. Countable union? Uncountable?

Introduction	Section 1.3	Section 1.4
O	000	○○●○○○

Partition Lemmas

Lemma

If $0 < \mathbb{P}(B) < 1$ then for any event A we have

 $\mathbb{P}(A) = \mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|B^c)\mathbb{P}(B^c).$

If the $\{B_i\}$ form a pairwise disjoint partition, then

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i)\mathbb{P}(B_i).$$

Always explore conditions in a theorem! Only useful if easier to compute $\mathbb{P}(A|B_i)$ and $\mathbb{P}(B_i)$ then $\mathbb{P}(A \cap B_i)!$

Clicker question

Question

A rare disease affects 1 in 10⁵ people. A test is developed; if the person has the disease the test indicates positive 99% of the time; if the person does not have the disease then the test shows positive 1% of the time. *If your test comes back positive, what is the (approximate) probability you are infected?*

Introduction o	Section 1.3	Section 1.4
Clicker question		

Question

A rare disease affects 1 in 10⁵ people. A test is developed; if the person has the disease the test indicates positive 99% of the time; if the person does not have the disease then the test shows positive 1% of the time. *If your test comes back positive, what is the (approximate) probability you are infected?*

- (a) 1 / 1,000,000 (one in a million).
- (b) 1 / 100,000.
- (c) 1 / 10,000.
- (d) 1 / 1000.
- (e) 1 / 100.
- (f) 1 / 10. (g) remember answer from book

Introduction Section 1.3

$$\odot \odot \odot$$
Solution to the Clicker Question
Let $A = \{ill\}$ and $B = \{+\}$.
 $\mathbb{P}(A|B)\mathbb{P}(B) = \mathbb{P}(A \cap B) = \mathbb{P}(B|A)\mathbb{P}(B)$, so

$$\mathbb{P}(\mathrm{ill}|+)\mathbb{P}(+) = \mathbb{P}(+|\mathrm{ill})\mathbb{P}(\mathrm{ill})$$

$$\begin{split} \mathbb{P}(\mathrm{ill}|+) &= \frac{\mathbb{P}(+|\mathrm{ill})\mathbb{P}(\mathrm{ill})}{\mathbb{P}(+)} \\ &= \frac{\mathbb{P}(+|\mathrm{ill})\mathbb{P}(\mathrm{ill})}{\mathbb{P}(+|\mathrm{ill})\mathbb{P}(\mathrm{ill}) + \mathbb{P}(+|\mathrm{healthy})\mathbb{P}(\mathrm{healthy})} \\ &= \frac{\frac{99}{100} \cdot 10^{-5}}{\frac{99}{100} \cdot 10^{-5} + \frac{1}{100} \cdot (1 - 10^{-5})} \end{split}$$

.

Note in this problem conditional probabilities are readily computed.

Note the probability you test positive but are healthy is 1/1011. Note if we have a population of size 10^5 then we expect one person to be sick (and there is essentially a 100% chance he'll start). There are about 10^3 healthy people who test positive. Thus the number of size to healthy should be about 1/1000.

Question for thought: Is it better to improve the 99/100 or the 1/100?