Math 341: Probability Second Lecture (9/15/09)

Steven J Miller Williams College

> Steven.J.Miller@williams.edu
> http://www.williams.edu/go/math/sjmiller/ public_html/341/

Bronfman Science Center Williams College, September 15, 2009

Section 1.2 Events as Sets

Definitions

- Sample Space (Ω): all possible outcomes. Example: toss coin thrice: $\{H H H, \ldots, T T T\}$; toss until get head: $\{H, T H, T T H, \ldots\}$.
- Events: Subsets of sample space Ω. Example: at least 2 of 3 tosses a head: $\{H H T, H T H, T H H, H H H\}$.
- Complement: $A^{c}=\Omega-A$.
- Field:
$\diamond A, B \in \mathcal{F}$ then $A \cup B$ and $A \cap B$ in $\mathcal{F x}$.
$\diamond A \in \mathcal{F}$ then $A^{c} \in \mathcal{F}$.
$\diamond \varphi \in \mathcal{F}$ (so $\Omega \in \mathcal{F})$.
\diamond if also $A_{i} \in \mathcal{F}$ implies $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$ then a σ-field.

Section 1.3

Probability

Probability Measure

Finitely additive: disjoint union then
$\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)$; countably additive if the $\left\{A_{i}\right\}$ pairwise disjoint implies $\mathbb{P}\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)$.

Probability Space

A triple $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space if Ω is a sample space with σ-field \mathcal{F} and a probability measure \mathbb{P} satisfying

- $\mathbb{P}(\varphi)=0, \mathbb{P}(\Omega)=1$.
- \mathbb{P} is countably additive: for a disjoint union,

$$
\mathbb{P}\left(\cup_{i=1}^{\infty}\left(A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right) .\right.
$$

Basic Lemmas

Lemma: For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ we have

- Law of total probability: $\mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)$.
- $A \subset B$ implies $\mathbb{P}(A) \leq \mathbb{P}(B)=\mathbb{P}(A)+\mathbb{P}(B-A)$.
- $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$.
- $\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i} \cap A_{j}\right)+\cdots+$ $(-1)^{n+1} \mathbb{P}\left(A_{1} \cap \cdots \cap A_{n}\right)$ (Inclusion - Exclusion Principle, do square-free, PNT hard).
Lemma: $A_{1} \subset A_{2} \subset \cdots$ and $B_{1} \supset B_{2} \supset \cdots$, then
- If $A=\cup_{i=1}^{\infty} A_{i}$ then $\mathbb{P}(A)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right)$.
- If $B=\cap_{i=1}^{\infty} B_{i}$ then $\mathbb{P}(B)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\cap_{i=1}^{n} B_{i}\right)$.

Clicker Question

What is the probability that a 'randomly' chosen integer is square-free?

Clicker Question

What is the probability that a 'randomly' chosen integer is square-free? Specifically, if we choose $n \in\{1, \ldots, N\}$ uniformly, as $N \rightarrow \infty$ what is this probability?

Clicker Question

What is the probability that a 'randomly' chosen integer is square-free? Specifically, if we choose $n \in\{1, \ldots, N\}$ uniformly, as $N \rightarrow \infty$ what is this probability?
Note $e \approx 2.7, e^{2} \approx 7.4, e^{3} \approx 20, \pi \approx 3, \pi^{2} \approx 10, \pi^{3} \approx 30$, $\sqrt{2} \approx 1.4, \sqrt{3} \approx 1.7$.

- (A) 0%
(H) does not exist
- (B) 10%
(I) already knew answer
- (C) 45%
- (D) 60%
- (E) 75%
- (F) 90%
- (G) 100%

Section 1.4
 Conditional Probability

Definition

Conditional Probability

If $\mathbb{P}(B)>0$ then the conditional probability of A occurring given B, denoted $\mathbb{P}(A \mid B)$, is

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Interpretation through counting:

$$
\frac{N(A \cap B)}{N(B)}=\frac{N(A \cap B) / N}{N(B) / N} \rightarrow \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} .
$$

Example: roll fair die twice: what is probability of a 7 or an 11 given first roll is 3 ? Ans: $\frac{1 / 36}{6 / 36}=1 / 6$ and $\frac{0 / 36}{6 / 36}=0$.

Definitions (cont)

Partition

A family of events B_{1}, \ldots, B_{n} is a partition of Ω if the $\left\{B_{i}\right\}$'s are disjoint and $\cup_{i=1}^{n} B_{i}=\Omega$.

Always explore conditions. Countable union? Uncountable?

Partition Lemmas

Lemma

If $0<\mathbb{P}(B)<1$ then for any event A we have

$$
\mathbb{P}(A)=\mathbb{P}(A \mid B) \mathbb{P}(B)+\mathbb{P}\left(A \mid B^{c}\right) \mathbb{P}\left(B^{c}\right)
$$

If the $\left\{B_{i}\right\}$ form a pairwise disjoint partition, then

$$
\mathbb{P}(A)=\sum_{i=1}^{n} \mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right) .
$$

Always explore conditions in a theorem!
Only useful if easier to compute $\mathbb{P}\left(A \mid B_{i}\right)$ and $\mathbb{P}\left(B_{i}\right)$ then $\mathbb{P}\left(A \cap B_{i}\right)$!

Clicker question

Question

A rare disease affects 1 in 10^{5} people. A test is developed; if the person has the disease the test indicates positive 99% of the time; if the person does not have the disease then the test shows positive 1% of the time. If your test comes back positive, what is the (approximate) probability you are infected?

Clicker question

Question

A rare disease affects 1 in 10^{5} people. A test is developed; if the person has the disease the test indicates positive 99% of the time; if the person does not have the disease then the test shows positive 1% of the time. If your test comes back positive, what is the (approximate) probability you are infected?

- (a) 1 / 1,000,000 (one in a million).
-(b) $1 / 100,000$.
- (c) $1 / 10,000$.
- (d) $1 / 1000$.
- (e) $1 / 100$.
- (f) $1 / 10$.
(g) remember answer from book

Solution to the Clicker Question

$$
\begin{aligned}
& \text { Let } A=\{\text { ill }\} \text { and } B=\{+\} . \\
& \mathbb{P}(A \mid B) \mathbb{P}(B)=\mathbb{P}(A \cap B)=\mathbb{P}(B \mid A) \mathbb{P}(B) \text {, so } \\
& \qquad \mathbb{P}(\text { ill } \mid+) \mathbb{P}(+)=\mathbb{P}(+\mid \text { ill }) \mathbb{P}(\text { ill })
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{P}(\mathrm{ill} \mid+) & =\frac{\mathbb{P}(+\mid \mathrm{ill}) \mathbb{P}(\mathrm{ill})}{\mathbb{P}(+)} \\
& =\frac{\mathbb{P}(+\mid \mathrm{ill}) \mathbb{P}(\text { ill })}{\mathbb{P}(+\mid \mathrm{ill}) \mathbb{P}(\mathrm{ill})+\mathbb{P}(+\mid \text { healthy }) \mathbb{P}(\text { healthy })} \\
& =\frac{\frac{99}{100} \cdot 10^{-5}}{\frac{99}{100} \cdot 10^{-5}+\frac{1}{100} \cdot\left(1-10^{-5}\right)}
\end{aligned}
$$

Comments

Note in this problem conditional probabilities are readily computed.

Note the probability you test positive but are healthy is $1 / 1011$. Note if we have a population of size 10^{5} then we expect one person to be sick (and there is essentially a 100% chance he'll start). There are about 10^{3} healthy people who test positive. Thus the number of size to healthy should be about $1 / 1000$.

Question for thought: Is it better to improve the 99/100 or the $1 / 100$?

