Clicker Questions

Independence

Roulette

# Math 341: Probability Third Lecture (9/17/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public\_html/341/

> Bronfman Science Center Williams College, September 17, 2009

2

## **Clicker Questions**

| Clicker | Questions |
|---------|-----------|
| 000     |           |

### **Poker hand**

## Question

A deck has 52 cards, with four aces, four kings, et cetera. How many ways are there to choose 5 cards from the 52 (without repetition) such that at least two cards are aces?

Let 
$$x = \binom{4}{2}\binom{50}{3}$$
.

- (a) More than x.
- (b) Exactly x.
- (c) Fewer than x.



| Clicker | Questions |
|---------|-----------|
| 000     |           |

### **Poker hand**

## Question

A deck has 52 cards, with four aces, four kings, et cetera. How many ways are there to choose 5 cards from the 52 (without repetition) such that at least two cards are aces?

Let 
$$x = \binom{4}{2}\binom{50}{3}$$
.

- (a) More than x.
- (b) Exactly x.
- (c) Fewer than x.

 $\binom{4}{2}\binom{50}{3}/\binom{52}{5} \approx .0452.$ 

$$\left(\binom{4}{2}\binom{48}{3} + \binom{4}{3}\binom{48}{2} + \binom{4}{4}\binom{48}{1}\right) / \binom{52}{5} \approx .0417.$$

## Question

Choose a number randomly from 1 through 9 inclusive, with each number equally likely.

For this question, press 1 for 1, 2 for 2, and so on.



## Question

Choose a number from 1 through 9 inclusive; whomever is closest to one-half the class average is excused from one homework problem on the next assignment.

For this question, press 1 for 1, 2 for 2, and so on.



Clicker Questions

Section 1.5 Independence

| Clicker | Questions |
|---------|-----------|
|         |           |

#### Definition

## Independence

A and B are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

More generally, a family  $\{A_i\}_{i \in I}$  is independent if

$$\mathbb{P}\left(\bigcap_{i\in J}A_i\right) = \prod_{i\in J}\mathbb{P}(A_i) \text{ for any } J\subset I.$$



#### Definition

## Independence

A and B are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

More generally, a family  $\{A_i\}_{i \in I}$  is independent if

$$\mathbb{P}\left(\bigcap_{i\in J}A_i\right) = \prod_{i\in J}\mathbb{P}(A_i) \text{ for any } J\subset I.$$

Question: If a set of positive integers are pairwise relatively prime, then they are relatively prime. Does a similar result hold for independence, namely if a collection of events are pairwise independent are they independent?

| Clicker | Questions |
|---------|-----------|
|         |           |

## Roulette

10

| Clicker Questions | Independence | Roulette |
|-------------------|--------------|----------|
| 000               | o            | ●○○      |
|                   |              |          |

#### Roulette

### **Consecutive colors**

Imagine a simplified roulette game where red occurs 50% of the time and black occurs 50% of the time, and the spins are independent. What is the probability of getting at least 5 consecutive blacks when the wheel is spun 100 times?

| Clicker | Questions |
|---------|-----------|
|         |           |

Independence

#### Roulette

## **Consecutive colors**

Imagine a simplified roulette game where red occurs 50% of the time and black occurs 50% of the time, and the spins are independent. What is the probability of getting at least 5 consecutive blacks when the wheel is spun 100 times?

- (a) less than 1%
- (b) about 5%
- (c) about 20%
- (d) about 50%
- (e) about 80%
- (f) about 95%
- (g) more than 99%

| Clicker | Questions |
|---------|-----------|
|         |           |

Independence

Roulette ○●○

#### **Roulette**

### **Consecutive colors II**

Imagine a simplified roulette game where red occurs 50% of the time and black occurs 50% of the time, and the spins are independent. About how many spins do we need to have about a 50% chance of observing at least 5 consecutive blacks?

| Clicker | Questions |
|---------|-----------|
|         |           |

Independence

#### Roulette

## **Consecutive colors II**

Imagine a simplified roulette game where red occurs 50% of the time and black occurs 50% of the time, and the spins are independent. About how many spins do we need to have about a 50% chance of observing at least 5 consecutive blacks?

- (a) About 10
- (b) About 20
- (c) About 40
- (d) About 80
- (e) About 200
- (f) More than 500

| Clicker Questions | Independence<br>o | Roulette<br>○○● |
|-------------------|-------------------|-----------------|
| Basila ()         |                   |                 |

#### Roulette

#### Probability



**Figure:** Plot of probability we have at least 5 consecutive black spins against the number of spins.