Math 341: Probability Third Lecture (9/17/09)

Steven J Miller Williams College

> Steven.J.Miller@williams.edu
> http://www.williams.edu/go/math/sjmiller/ public_html/341/

Bronfman Science Center
Williams College, September 17, 2009

Clicker Questions

Poker hand

Question

A deck has 52 cards, with four aces, four kings, et cetera. How many ways are there to choose 5 cards from the 52 (without repetition) such that at least two cards are aces?

Let $x=\binom{4}{2}\binom{50}{3}$.

- (a) More than x.
- (b) Exactly x.
- (c) Fewer than x.

Poker hand

Question

A deck has 52 cards, with four aces, four kings, et cetera. How many ways are there to choose 5 cards from the 52 (without repetition) such that at least two cards are aces?

Let $x=\binom{4}{2}\binom{50}{3}$.

- (a) More than x.
- (b) Exactly x.
- (c) Fewer than x.
$\binom{4}{2}\binom{50}{3} /\binom{52}{5} \approx .0452$.
$\left(\binom{4}{2}\binom{48}{3}+\binom{4}{3}\binom{48}{2}+\binom{4}{4}\binom{48}{1}\right) /\binom{52}{5} \approx .0417$.

Question

Choose a number randomly from 1 through 9 inclusive, with each number equally likely.

For this question, press 1 for 1,2 for 2 , and so on.

Question

Choose a number from 1 through 9 inclusive; whomever is closest to one-half the class average is excused from one homework problem on the next assignment.

For this question, press 1 for 1,2 for 2 , and so on.

Section 1.5
 Independence

Definition

Independence

A and B are independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B) .
$$

More generally, a family $\left\{A_{i}\right\}_{i \in 1}$ is independent if

$$
\mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} \mathbb{P}\left(A_{i}\right) \quad \text { for any } J \subset I
$$

Definition

Independence

A and B are independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B) .
$$

More generally, a family $\left\{A_{i}\right\}_{i \in 1}$ is independent if

$$
\mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} \mathbb{P}\left(A_{i}\right) \quad \text { for any } J \subset I
$$

Question: If a set of positive integers are pairwise relatively prime, then they are relatively prime. Does a similar result hold for independence, namely if a collection of events are pairwise independent are they independent?

Roulette

Roulette

Consecutive colors

Imagine a simplified roulette game where red occurs 50\% of the time and black occurs 50% of the time, and the spins are independent. What is the probability of getting at least 5 consecutive blacks when the wheel is spun 100 times?

Roulette

Consecutive colors

Imagine a simplified roulette game where red occurs 50% of the time and black occurs 50% of the time, and the spins are independent. What is the probability of getting at least 5 consecutive blacks when the wheel is spun 100 times?

- (a) less than 1%
- (b) about 5%
- (c) about 20%
- (d) about 50\%
- (e) about 80%
- (f) about 95%
- (g) more than 99%

Roulette

Consecutive colors II

Imagine a simplified roulette game where red occurs 50% of the time and black occurs 50% of the time, and the spins are independent. About how many spins do we need to have about a 50% chance of observing at least 5 consecutive blacks?

Roulette

Consecutive colors II

Imagine a simplified roulette game where red occurs 50\% of the time and black occurs 50% of the time, and the spins are independent. About how many spins do we need to have about a 50% chance of observing at least 5 consecutive blacks?

- (a) About 10
- (b) About 20
- (c) About 40
- (d) About 80
- (e) About 200
- (f) More than 500

Roulette

Probability

Figure: Plot of probability we have at least 5 consecutive black spins against the number of spins.

