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Clicker Questions
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Gambler’s Ruin

Question
You start off with $13; if a fair coin lands heads you
receive $1, else you lose $1. What is the probability you
reach $64 before you reach $0?
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Gambler’s Ruin

Question
You start off with $13; if a fair coin lands heads you
receive $1, else you lose $1. What is the probability you
reach $64 before you reach $0?

(a) About 1%
(b) About 5%
(c) About 10%
(d) About 15%
(e) About 20%
(f) About 25%
(g) About 50%
(h) About 80%
(i) About 90%
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Gambler’s Ruin

Question
You start off with $32; if a fair coin lands heads you
receive $1, else you lose $1. What is the probability you
reach $64 before you reach $0?
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Gambler’s Ruin

Question
You start off with $32; if a fair coin lands heads you
receive $1, else you lose $1. What is the probability you
reach $64 before you reach $0?

(a) About 1%
(b) About 5%
(c) About 10%
(d) About 15%
(e) About 20%
(f) About 25%
(g) About 50%
(h) About 80%
(i) About 90%
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Gambler’s Ruin

Question
You start off with $k; if a fair coin lands heads you receive
$1, else you lose $1. What is the probability you reach $N
before you reach $0?
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Gambler’s Ruin

Question
You start off with $k; if a fair coin lands heads you receive
$1, else you lose $1. What is the probability you reach $N
before you reach $0?

Lemma

If N = 2n, then the probability is k
N .
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Gambler’s Ruin

Question
You start off with $k; if a fair coin lands heads you receive
$1, else you lose $1. What is the probability you reach $N
before you reach $0?

Lemma

If N = 2n, then the probability is k
N .

Conjecture

The probability is k
N for any positive integers k ≤ N.

Challenge problem: can you prove this conjecture
elementarily for general N?
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Section 2.1
Random Variables
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Definition

Random Variables
Consider a probability space (Ω,ℱ ,ℙ). A random variable
is a function X from the sample space Ω to the real
numbers with the property that {! ∈ Ω : X (!) ≤ x} ∈ ℱ
for each x .
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Definition

Random Variables
Consider a probability space (Ω,ℱ ,ℙ). A random variable
is a function X from the sample space Ω to the real
numbers with the property that {! ∈ Ω : X (!) ≤ x} ∈ ℱ
for each x .

Example: Ω: tosses of a fair coin five times, ℱ = 2Ω, the set of all
subsets of Ω, and let X(!) denote the number of heads in !. As there
are 25 = 32 elements, there are 232 or about 4,000,000,000 elements
in ℱ . Each element of ℱ is a subset of Ω, and each subset of Ω is an
element of ℱ . If we write F = {!1, . . . , !k} for an element of ℱ , then
ℙ(F ) =

∑k
i=1 ℙ(!i). A straightforward computation shows that X has

the desired property; this is clear as all subsets of Ω are in ℱ ! If x = 1
then {! ∈ Ω : X(!) ≤ 1} = {TTTTT , TTTTH, TTTHT , TTHTT ,
THTTT , HTTTT}. If instead we took x = 4, then the set would be all
outcomes except HHHHH.
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Distribution Function

Distribution Function
The distribution function of a random variable X : Ω → ℝ is the
function F : ℝ → [0,1] given by F (x) = ℙ(X ≤ x). In other
words, it’s the probability of observing a value of X of at most x .
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Distribution Function

Distribution Function
The distribution function of a random variable X : Ω → ℝ is the
function F : ℝ → [0,1] given by F (x) = ℙ(X ≤ x). In other
words, it’s the probability of observing a value of X of at most x .

Example: Consider the previous problem concerning five
tosses of a fair coin. We have F (0) = 1/32, F (1) = 6/32,
F (2) = 16/32, F (3) = 26/32, F (4) = 31/32 and F (5) = 32/32.
Our function is supposed to be defined for all real x , so what we
really have is the following: F (x) = 0 if x < 0, F (x) = 1/32 if
0 ≤ x < 1, F (x) = 6/32 if 1 ≤ x < 2, and so on.
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Discrete and Continuous
Random Variables
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Definitions

Discrete Random Variables
A random variable X is discrete if it takes values in a countable
subset {x1, x2, . . . } of ℝ. It has probability mass function
f : ℝ → [0,1] given by f (x) = ℙ(X = x).
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Definitions

Discrete Random Variables
A random variable X is discrete if it takes values in a countable
subset {x1, x2, . . . } of ℝ. It has probability mass function
f : ℝ → [0,1] given by f (x) = ℙ(X = x).

Example: Toss a fair coin until the first head is obtained. Then
Ω = {H,TH,TTH, . . . }. Let X be the number of tosses needed
to obtain the first head. Then X is discrete, taking on the values
{1,2,3, . . . }, with the probability X equals n just 1/2n.
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Definitions (cont)

Continuous Random Variables
A random variable X is continuous if its distribution function can
be written as F (x) =

∫ x
−∞

f (u)du for some integrable function f
(which is called the probability density function of X ).

18



Clicker Question Section 2.1 Section 2.3

Definitions (cont)

Continuous Random Variables
A random variable X is continuous if its distribution function can
be written as F (x) =

∫ x
−∞

f (u)du for some integrable function f
(which is called the probability density function of X ).

Example: Let Ω = [0, 1] and let ℱ be the �-field generated by the
open intervals. (This is the standard �-field.) Let X(!) equal !2. If we
let Y be uniformly distributed on [0, 1], then we see ℙ(X ≤ x) is the
same as ℙ(Y ≤

√
x), which is just

√
x . We are therefore looking for f

so that
√

x =
∫ x

0 f (u)du for 0 ≤ x ≤ 1. Differentiating both sides gives
1
2x−1/2 = f (x) (note the integral is F(x)− F(0) with F any
anti-derivative of f ; differentiating yields the claim as F′ = f ). We see
that for our random variable X , we may take f (u) = 1/2

√
u for

0 < u ≤ 1 and 0 otherwise.
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