Section 2.1

Math 341: Probability Fourth Lecture (9/22/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, September 22, 2009

Clicker Question	Section 2.1	Section 2.3

Clicker Questions

Clicker Question	Section 2.1	Section 2.3
00	00	00

Question

You start off with \$13; if a fair coin lands heads you receive \$1, else you lose \$1. What is the probability you reach \$64 before you reach \$0?

Clicker Question	Section 2.1	Section 2.3
000	00	00

Question

You start off with \$13; if a fair coin lands heads you receive \$1, else you lose \$1. What is the probability you reach \$64 before you reach \$0?

- (a) About 1%
- (b) About 5%
- (c) About 10%
- (d) About 15%
- (e) About 20%
- (f) About 25%
- (g) About 50%
- (h) About 80%
- (i) About 90%

Clicker Question	Section 2.1	Section 2.3
000	00	00

Question

You start off with \$32; if a fair coin lands heads you receive \$1, else you lose \$1. What is the probability you reach \$64 before you reach \$0?

Clicker Question	Section 2.1	Section 2.3
000	00	00

Question

You start off with \$32; if a fair coin lands heads you receive \$1, else you lose \$1. What is the probability you reach \$64 before you reach \$0?

- (a) About 1%
- (b) About 5%
- (c) About 10%
- (d) About 15%
- (e) About 20%
- (f) About 25%
- (g) About 50%
- (h) About 80%
- (i) About 90%

Clicker Question ○○●	Section 2.1	Section 2.3
Gambler's Ruin		

Question

You start off with \$k; if a fair coin lands heads you receive \$1, else you lose \$1. What is the probability you reach \$N before you reach \$0?

Clicker Question ○○●	Section 2.1	Section 2.3
Gambler's Ruin		

Question

You start off with \$k; if a fair coin lands heads you receive \$1, else you lose \$1. What is the probability you reach \$N before you reach \$0?

Lemma

If $N = 2^n$, then the probability is $\frac{k}{N}$.

Clicker Question ○○●	Section 2.1	Section 2.3
Gambler's Ruin		

Question

You start off with \$k; if a fair coin lands heads you receive \$1, else you lose \$1. What is the probability you reach \$N before you reach \$0?

Lemma

If $N = 2^n$, then the probability is $\frac{k}{N}$.

Conjecture

The probability is $\frac{k}{N}$ for any positive integers $k \leq N$.

Challenge problem: can you prove this conjecture *elementarily* for general *N*?

Clicker Question	Section 2.1	Section 2.3

Section 2.1 Random Variables

Clicker Question	Section 2.1 ●○	Section 2.3
Definition		

Random Variables

Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. A random variable is a function *X* from the sample space Ω to the real numbers with the property that $\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}$ for each *x*.

Clicker Question	Section 2.1 ●○	Section 2.3

Definition

Random Variables

Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. A random variable is a function *X* from the sample space Ω to the real numbers with the property that $\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}$ for each *x*.

Example: Ω : tosses of a fair coin five times, $\mathcal{F} = 2^{\Omega}$, the set of all subsets of Ω , and let $X(\omega)$ denote the number of heads in ω . As there are $2^5 = 32$ elements, there are 2^{32} or about 4,000,000,000 elements in \mathcal{F} . Each element of \mathcal{F} is a subset of Ω , and each subset of Ω is an element of \mathcal{F} . If we write $F = \{\omega_1, \ldots, \omega_k\}$ for an element of \mathcal{F} , then $\mathbb{P}(F) = \sum_{i=1}^{k} \mathbb{P}(\omega_i)$. A straightforward computation shows that X has the desired property; this is clear as all subsets of Ω are in \mathcal{F} ! If x = 1 then $\{\omega \in \Omega : X(\omega) \leq 1\} = \{TTTTT, TTTTH, TTTHT, TTHTT, TTTTT, HTTTT\}$. If instead we took x = 4, then the set would be all outcomes except HHHHH.

Clicker	Question

Section 2.1

Distribution Function

Distribution Function

The distribution function of a random variable $X : \Omega \to \mathbb{R}$ is the function $F : \mathbb{R} \to [0, 1]$ given by $F(x) = \mathbb{P}(X \le x)$. In other words, it's the probability of observing a value of X of at most x.

Distribution Function

Distribution Function

The distribution function of a random variable $X : \Omega \to \mathbb{R}$ is the function $F : \mathbb{R} \to [0, 1]$ given by $F(x) = \mathbb{P}(X \le x)$. In other words, it's the probability of observing a value of X of at most x.

Example: Consider the previous problem concerning five tosses of a fair coin. We have F(0) = 1/32, F(1) = 6/32, F(2) = 16/32, F(3) = 26/32, F(4) = 31/32 and F(5) = 32/32. Our function is supposed to be defined for all real *x*, so what we really have is the following: F(x) = 0 if x < 0, F(x) = 1/32 if $0 \le x < 1$, F(x) = 6/32 if $1 \le x < 2$, and so on.

Clicker Question	Section 2.1	Section 2.3

Discrete and Continuous Random Variables

Clicker Question	Section 2.1	Section 2.3 ●○

Definitions

Discrete Random Variables

A random variable X is discrete if it takes values in a countable subset $\{x_1, x_2, ...\}$ of \mathbb{R} . It has probability mass function $f : \mathbb{R} \to [0, 1]$ given by $f(x) = \mathbb{P}(X = x)$.

Clicker Question	Section 2.1	Section 2.3 ●○

Definitions

Discrete Random Variables

A random variable X is discrete if it takes values in a countable subset $\{x_1, x_2, ...\}$ of \mathbb{R} . It has probability mass function $f : \mathbb{R} \to [0, 1]$ given by $f(x) = \mathbb{P}(X = x)$.

Example: Toss a fair coin until the first head is obtained. Then $\Omega = \{H, TH, TTH, ...\}$. Let *X* be the number of tosses needed to obtain the first head. Then *X* is discrete, taking on the values $\{1, 2, 3, ...\}$, with the probability *X* equals *n* just $1/2^n$.

Clicker Question	Section 2.1	Section 2.3 ○●

Definitions (cont)

Continuous Random Variables

A random variable X is continuous if its distribution function can be written as $F(x) = \int_{-\infty}^{x} f(u) du$ for some integrable function f (which is called the probability density function of X).

Definitions (cont)

Continuous Random Variables

A random variable X is continuous if its distribution function can be written as $F(x) = \int_{-\infty}^{x} f(u) du$ for some integrable function f (which is called the probability density function of X).

Example: Let $\Omega = [0, 1]$ and let \mathcal{F} be the σ -field generated by the open intervals. (This is the standard σ -field.) Let $X(\omega)$ equal ω^2 . If we let Y be uniformly distributed on [0, 1], then we see $\mathbb{P}(X \le x)$ is the same as $\mathbb{P}(Y \le \sqrt{x})$, which is just \sqrt{x} . We are therefore looking for f so that $\sqrt{x} = \int_0^x f(u) du$ for $0 \le x \le 1$. Differentiating both sides gives $\frac{1}{2}x^{-1/2} = f(x)$ (note the integral is $\mathfrak{F}(x) - \mathfrak{F}(0)$ with \mathfrak{F} any anti-derivative of f; differentiating yields the claim as $\mathfrak{F}' = f$). We see that for our random variable X, we may take $f(u) = 1/2\sqrt{u}$ for $0 < u \le 1$ and 0 otherwise.