Math 341: Probability Fourth Lecture (9/22/09)

Steven J Miller Williams College

> Steven.J.Miller@williams.edu
> http://www.williams.edu/go/math/sjmiller/ public_html/341/

Bronfman Science Center Williams College, September 22, 2009

Clicker Questions

Gambler's Ruin

Question

You start off with $\$ 13$; if a fair coin lands heads you receive $\$ 1$, else you lose $\$ 1$. What is the probability you reach $\$ 64$ before you reach $\$ 0$?

Gambler's Ruin

Question

You start off with $\$ 13$; if a fair coin lands heads you receive $\$ 1$, else you lose $\$ 1$. What is the probability you reach $\$ 64$ before you reach $\$ 0$?

- (a) About 1\%
- (b) About 5\%
- (c) About 10\%
- (d) About 15\%
- (e) About 20\%
- (f) About 25\%
- (g) About 50\%
- (h) About 80%
- (i) About 90\%

Gambler's Ruin

Question

You start off with $\$ 32$; if a fair coin lands heads you receive $\$ 1$, else you lose $\$ 1$. What is the probability you reach $\$ 64$ before you reach $\$ 0$?

Gambler's Ruin

Question

You start off with $\$ 32$; if a fair coin lands heads you receive $\$ 1$, else you lose $\$ 1$. What is the probability you reach $\$ 64$ before you reach $\$ 0$?

- (a) About 1\%
- (b) About 5\%
- (c) About 10\%
- (d) About 15\%
- (e) About 20\%
- (f) About 25\%
- (g) About 50\%
- (h) About 80%
- (i) About 90\%

Gambler's Ruin

Question

You start off with \$k; if a fair coin lands heads you receive $\$ 1$, else you lose $\$ 1$. What is the probability you reach $\$ \mathrm{~N}$ before you reach $\$ 0$?

Gambler's Ruin

Question

You start off with $\$ k$; if a fair coin lands heads you receive $\$ 1$, else you lose $\$ 1$. What is the probability you reach $\$ \mathrm{~N}$ before you reach $\$ 0$?

Lemma

If $N=2^{n}$, then the probability is $\frac{k}{N}$.

Gambler's Ruin

Question

You start off with $\$ k$; if a fair coin lands heads you receive $\$ 1$, else you lose \$1. What is the probability you reach \$N before you reach $\$ 0$?

Lemma

If $N=2^{n}$, then the probability is $\frac{k}{N}$.

Conjecture

The probability is $\frac{k}{N}$ for any positive integers $k \leq N$.
Challenge problem: can you prove this conjecture elementarily for general N ?

Section 2.1

Random Variables

Definition

Random Variables

Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. A random variable is a function X from the sample space Ω to the real numbers with the property that $\{\omega \in \Omega: X(\omega) \leq x\} \in \mathcal{F}$ for each x.

Definition

Random Variables

Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. A random variable is a function X from the sample space Ω to the real numbers with the property that $\{\omega \in \Omega: X(\omega) \leq x\} \in \mathcal{F}$ for each x.

Example: Ω : tosses of a fair coin five times, $\mathcal{F}=2^{\Omega}$, the set of all subsets of Ω, and let $X(\omega)$ denote the number of heads in ω. As there are $2^{5}=32$ elements, there are 2^{32} or about $4,000,000,000$ elements in \mathcal{F}. Each element of \mathcal{F} is a subset of Ω, and each subset of Ω is an element of \mathcal{F}. If we write $F=\left\{\omega_{1}, \ldots, \omega_{k}\right\}$ for an element of \mathcal{F}, then $\mathbb{P}(F)=\sum_{i=1}^{k} \mathbb{P}\left(\omega_{i}\right)$. A straightforward computation shows that X has the desired property; this is clear as all subsets of Ω are in \mathcal{F} If $x=1$ then $\{\omega \in \Omega: X(\omega) \leq 1\}=\{$ TTTTT, TTTTH, TTTHT, TTHTT, THTTT, HTTTT $\}$. If instead we took $x=4$, then the set would be all outcomes except НННHH.

Distribution Function

Distribution Function

The distribution function of a random variable $X: \Omega \rightarrow \mathbb{R}$ is the function $F: \mathbb{R} \rightarrow[0,1]$ given by $F(x)=\mathbb{P}(X \leq x)$. In other words, it's the probability of observing a value of X of at most x.

Distribution Function

Distribution Function

The distribution function of a random variable $X: \Omega \rightarrow \mathbb{R}$ is the function $F: \mathbb{R} \rightarrow[0,1]$ given by $F(x)=\mathbb{P}(X \leq x)$. In other words, it's the probability of observing a value of X of at most x.

Example: Consider the previous problem concerning five tosses of a fair coin. We have $F(0)=1 / 32, F(1)=6 / 32$, $F(2)=16 / 32, F(3)=26 / 32, F(4)=31 / 32$ and $F(5)=32 / 32$. Our function is supposed to be defined for all real x, so what we really have is the following: $F(x)=0$ if $x<0, F(x)=1 / 32$ if $0 \leq x<1, F(x)=6 / 32$ if $1 \leq x<2$, and so on.

Discrete and Continuous

Definitions

Discrete Random Variables

A random variable X is discrete if it takes values in a countable subset $\left\{x_{1}, x_{2}, \ldots\right\}$ of \mathbb{R}. It has probability mass function $f: \mathbb{R} \rightarrow[0,1]$ given by $f(x)=\mathbb{P}(X=x)$.

Definitions

Discrete Random Variables

A random variable X is discrete if it takes values in a countable subset $\left\{x_{1}, x_{2}, \ldots\right\}$ of \mathbb{R}. It has probability mass function $f: \mathbb{R} \rightarrow[0,1]$ given by $f(x)=\mathbb{P}(X=x)$.

Example: Toss a fair coin until the first head is obtained. Then $\Omega=\{H, T H, T T H, \ldots\}$. Let X be the number of tosses needed to obtain the first head. Then X is discrete, taking on the values $\{1,2,3, \ldots\}$, with the probability X equals n just $1 / 2^{n}$.

Definitions (cont)

Continuous Random Variables

A random variable X is continuous if its distribution function can be written as $F(x)=\int_{-\infty}^{x} f(u) d u$ for some integrable function f (which is called the probability density function of X).

Definitions (cont)

Continuous Random Variables

A random variable X is continuous if its distribution function can be written as $F(x)=\int_{-\infty}^{x} f(u) d u$ for some integrable function f (which is called the probability density function of X).

Example: Let $\Omega=[0,1]$ and let \mathcal{F} be the σ-field generated by the open intervals. (This is the standard σ-field.) Let $X(\omega)$ equal ω^{2}. If we let Y be uniformly distributed on $[0,1]$, then we see $\mathbb{P}(X \leq x)$ is the same as $\mathbb{P}(Y \leq \sqrt{x})$, which is just \sqrt{x}. We are therefore looking for f so that $\sqrt{x}=\int_{0}^{x} f(u) d u$ for $0 \leq x \leq 1$. Differentiating both sides gives $\frac{1}{2} x^{-1 / 2}=f(x)$ (note the integral is $\mathfrak{F}(x)-\mathfrak{F}(0)$ with \mathfrak{F} any anti-derivative of f; differentiating yields the claim as $\mathfrak{F}^{\prime}=f$). We see that for our random variable X, we may take $f(u)=1 / 2 \sqrt{u}$ for $0<u \leq 1$ and 0 otherwise.

