Math 341: Probability Fifth Lecture (9/24/09)

Steven J Miller Williams College

> Steven.J.Miller@williams.edu
> http://www.williams.edu/go/math/sjmiller/ public_html/341/

Bronfman Science Center Williams College, September 24, 2009

Random Vectors

Joint Distribution

Joint Distribution of a Random Vector

The joint distribution function of a random vector
$\overrightarrow{\mathbf{X}}=\left(X_{1}, \ldots, X_{n}\right)$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is the function $F_{\overrightarrow{\mathrm{x}}}: \mathbb{R}^{n} \rightarrow[0,1]$ given by $F_{\overrightarrow{\mathrm{x}}}(\vec{x})=\mathbb{P}(\overrightarrow{\mathbf{X}} \leq \vec{x})$ for $\vec{x} \in \mathbb{R}^{n}$, where $\vec{x} \leq \vec{y}$ means each $x_{i} \leq y_{i}$, and $\{\overrightarrow{\mathbf{X}} \leq \vec{x}\}=\{\omega \in \Omega: \overrightarrow{\mathbf{X}}(\omega) \leq \vec{x}\}$.

Joint Distribution

Joint Distribution of a Random Vector

The joint distribution function of a random vector
$\overrightarrow{\mathbf{X}}=\left(X_{1}, \ldots, X_{n}\right)$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is the function $F_{\overrightarrow{\mathrm{x}}}: \mathbb{R}^{n} \rightarrow[0,1]$ given by $F_{\overrightarrow{\mathrm{x}}}(\vec{x})=\mathbb{P}(\overrightarrow{\mathbf{X}} \leq \vec{x})$ for $\vec{x} \in \mathbb{R}^{n}$, where $\vec{x} \leq \vec{y}$ means each $x_{i} \leq y_{i}$, and
$\{\overrightarrow{\mathbf{X}} \leq \vec{x}\}=\{\omega \in \Omega: \overrightarrow{\mathbf{X}}(\omega) \leq \vec{x}\}$.

Satisfies the expected properties:

- $\lim _{x_{1}, \ldots, x_{n} \rightarrow-\infty} F_{\overrightarrow{\mathrm{x}}}(\vec{x})=0, \lim _{x_{1}, \ldots, x_{n} \rightarrow \infty} F_{\overrightarrow{\mathrm{x}}}(\vec{x})=1$.
- If $\vec{x} \leq \vec{x}^{\prime}$ then $F_{\overrightarrow{\mathrm{x}}}(\vec{x}) \leq F_{\overrightarrow{\mathrm{x}}}\left(\vec{x}^{\prime}\right)$.
- $F_{\overrightarrow{\mathrm{x}}}$ continuous from above.

Jointly Discrete

Jointly Discrete

X_{1}, \ldots, X_{n} random vectors on $(\Omega, \mathcal{F}, \mathbb{P})$ are jointly discrete if $\overrightarrow{\mathbf{X}}=\left(X_{1}, \ldots, X_{n}\right)$ takes values in a countable subset of \mathbb{R}^{n} and has joint probability mass function $f: \mathbb{R}^{n} \rightarrow[0,1]$ given by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}-x_{n}\right) .
$$

Jointly Discrete

Jointly Discrete

X_{1}, \ldots, X_{n} random vectors on $(\Omega, \mathcal{F}, \mathbb{P})$ are jointly discrete if $\overrightarrow{\mathbf{X}}=\left(X_{1}, \ldots, X_{n}\right)$ takes values in a countable subset of \mathbb{R}^{n} and has joint probability mass function $f: \mathbb{R}^{n} \rightarrow[0,1]$ given by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}-x_{n}\right) .
$$

Jointly continuous defined analogously, with

$$
F_{\overrightarrow{\mathbf{x}}}(\vec{x})=\int_{u_{1}=-\infty}^{x_{1}} \ldots \int_{u_{n}=-\infty}^{x_{n}} f\left(u_{1}, \ldots, u_{n}\right) d u_{1} \cdots d u_{n}
$$

for some integrable function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$.

Marginals

Marginals

Same set-up as above, the $j^{\text {th }}$ marginal $F_{X_{j}}$ is defined by

$$
F_{X_{j}}\left(x_{j}\right):=\lim _{x_{1}, \ldots, x_{j-1}, x_{j-1}, \ldots, x_{n} \rightarrow \infty} F_{\overrightarrow{\mathbf{x}}}(\vec{x}) .
$$

Marginals

Marginals

Same set-up as above, the $j^{\text {th }}$ marginal $F_{X_{j}}$ is defined by

$$
F_{X_{j}}\left(x_{j}\right):=\lim _{x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n} \rightarrow \infty} F_{\overrightarrow{\mathbf{x}}}(\vec{x}) .
$$

Challenge problem: Find a set of marginals that can correspond to at least two different $F_{\overrightarrow{\mathbf{x}}}$'s, or show no set exists.

