Section 2.5

Math 341: Probability Fifth Lecture (9/24/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, September 24, 2009

Random Vectors

Joint Distribution

Joint Distribution of a Random Vector

The joint distribution function of a random vector $\overrightarrow{\mathbf{X}} = (X_1, \dots, X_n)$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is the function $F_{\overrightarrow{\mathbf{X}}} : \mathbb{R}^n \to [0, 1]$ given by $F_{\overrightarrow{\mathbf{X}}}(\overrightarrow{\mathbf{X}}) = \mathbb{P}(\overrightarrow{\mathbf{X}} \leq \overrightarrow{\mathbf{X}})$ for $\overrightarrow{\mathbf{X}} \in \mathbb{R}^n$, where $\overrightarrow{\mathbf{X}} \leq \overrightarrow{\mathbf{Y}}$ means each $x_i \leq y_i$, and $\{\overrightarrow{\mathbf{X}} \leq \overrightarrow{\mathbf{X}}\} = \{\omega \in \Omega : \overrightarrow{\mathbf{X}}(\omega) \leq \overrightarrow{\mathbf{X}}\}.$

Joint Distribution

Joint Distribution of a Random Vector

The joint distribution function of a random vector $\overrightarrow{\mathbf{X}} = (X_1, \dots, X_n)$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is the function $F_{\overrightarrow{\mathbf{X}}} : \mathbb{R}^n \to [0, 1]$ given by $F_{\overrightarrow{\mathbf{X}}}(\overrightarrow{\mathbf{X}}) = \mathbb{P}(\overrightarrow{\mathbf{X}} \leq \overrightarrow{\mathbf{X}})$ for $\overrightarrow{\mathbf{X}} \in \mathbb{R}^n$, where $\overrightarrow{\mathbf{X}} \leq \overrightarrow{\mathbf{y}}$ means each $x_i \leq y_i$, and $\{\overrightarrow{\mathbf{X}} \leq \overrightarrow{\mathbf{X}}\} = \{\omega \in \Omega : \overrightarrow{\mathbf{X}}(\omega) \leq \overrightarrow{\mathbf{X}}\}.$

Satisfies the expected properties:

•
$$\lim_{x_1,...,x_n\to-\infty} F_{\overrightarrow{\mathbf{X}}}(\overrightarrow{\mathbf{X}}) = 0$$
, $\lim_{x_1,...,x_n\to\infty} F_{\overrightarrow{\mathbf{X}}}(\overrightarrow{\mathbf{X}}) = 1$.
• If $\overrightarrow{\mathbf{X}} \leq \overrightarrow{\mathbf{X}}'$ then $F_{\overrightarrow{\mathbf{Y}}}(\overrightarrow{\mathbf{X}}) \leq F_{\overrightarrow{\mathbf{Y}}}(\overrightarrow{\mathbf{X}}')$.

• $F_{\vec{X}}$ continuous from above.

Jointly Discrete

Jointly Discrete

 X_1, \ldots, X_n random vectors on $(\Omega, \mathcal{F}, \mathbb{P})$ are jointly discrete if $\mathbf{X} = (X_1, \ldots, X_n)$ takes values in a countable subset of \mathbb{R}^n and has joint probability mass function $f : \mathbb{R}^n \to [0, 1]$ given by

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \mathbb{P}(\mathbf{X}_1 = \mathbf{x}_1,\ldots,\mathbf{X}_n - \mathbf{x}_n).$$

Jointly Discrete

Jointly Discrete

 X_1, \ldots, X_n random vectors on $(\Omega, \mathcal{F}, \mathbb{P})$ are jointly discrete if $\mathbf{X} = (X_1, \ldots, X_n)$ takes values in a countable subset of \mathbb{R}^n and has joint probability mass function $f : \mathbb{R}^n \to [0, 1]$ given by

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \mathbb{P}(\mathbf{X}_1 = \mathbf{x}_1,\ldots,\mathbf{X}_n - \mathbf{x}_n).$$

Jointly continuous defined analogously, with

$$F_{\overrightarrow{\mathbf{X}}}(\overrightarrow{\mathbf{X}}) = \int_{u_1=-\infty}^{x_1} \cdots \int_{u_n=-\infty}^{x_n} f(u_1,\ldots,u_n) du_1 \cdots du_n$$

for some integrable function $f : \mathbb{R}^n \to [0, \infty)$.

Marginals

Marginals

Same set-up as above, the j^{th} marginal F_{X_i} is defined by

$$F_{X_j}(x_j) := \lim_{x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n \to \infty} F_{\overrightarrow{\mathbf{X}}}(\overrightarrow{\mathbf{X}}).$$

Marginals

Marginals

Same set-up as above, the j^{th} marginal F_{X_i} is defined by

$$F_{X_j}(x_j) := \lim_{x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n \to \infty} F_{\overrightarrow{\mathbf{X}}}(\overrightarrow{\mathbf{X}}).$$

Challenge problem: Find a set of marginals that can correspond to at least two different $F_{\vec{X}}$'s, or show no set exists.

