Clicker Question

Section 3.1

Math 341: Probability Sixth Lecture (9/29/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, September 29, 2009

2

Clicker Questions

Question

Let x and y be any two 341 digit real numbers. What is $e^{x}e^{y}$?

Question

Let x and y be any two 341 digit real numbers. What is $e^{x}e^{y}$?

- (a) $e^{x^{y}}$
- (b) *e*^{xy}
- (c) e^{x+y}
 (d) e^{2xy}
- (e) It is undefined.
- (f) None of the above.
- (g) I remember the answer to this from another class with Professor Miller

Question

Let A and B be two 341 \times 341 matrices with real entries. What is $e^A e^B$?

Question

Let A and B be two 341×341 matrices with real entries. What is $e^{A}e^{B}$?

- (a) e^{A^B}
- (b) e^{AB}
 (c) e^{A+B}
 (d) e^{2AB}
- (e) It is undefined.
- (f) None of the above.
- (g) I remember the answer to this from another class with Professor Miller

Baker, Campbell and Hausdorff formula

Baker, Campbell and Hausdorff formula

Let *A* and *B* be two $n \times n$ real matrices, and define the commutator of *A* and *B* by [A, B] = AB - BA. Then if

$$e^{A} = I + A + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} + \cdots$$

then

$$e^{A}e^{B} = e^{A+B+\frac{1}{2}[A,B]+\frac{1}{12}([[A,B],B]+[A,[A,B]])+\cdots}$$

For more information, see

- http://www.hep.anl.gov/czachos/CBH.pdf
- http://en.wikipedia.org/wiki/ Baker-Campbell-Hausdorff_formula

8

Section 3.1 Probability Mass and Density Functions

Definition (discrete)

Probability Mass Function

The Probability Mass Function of a discrete random variable X is a function $f : \mathbb{R} \to [0, 1]$ given by $f(x) = \mathbb{P}(X = x)$.

Definition (discrete)

Probability Mass Function

The Probability Mass Function of a discrete random variable X is a function $f : \mathbb{R} \to [0, 1]$ given by $f(x) = \mathbb{P}(X = x)$.

Lemma: Standard properties:

- $F(x) = \sum_{x_i \leq x} f(x_i)$, and $f(x) = F(x) \lim_{y \to x^-} F(y)$.
- $\{x : f(x) \neq 0\}$ is at most countable.
- $\sum_{i} f(x_i) = 1$ where $\{x_1, x_2, \dots\}$ is where f is non-zero.

Definition (continuous)

Probability Density Function

The Probability Density Function of a continuous random variable *X* is the *f* such that $F(x) = \int_{-\infty}^{x} f(u) du$.

Definition (continuous)

Probability Density Function

The Probability Density Function of a continuous random variable *X* is the *f* such that $F(x) = \int_{-\infty}^{x} f(u) du$.

Lemma: Standard Properties:

•
$$\int_{-\infty}^{\infty} f(x) dx = 1.$$

•
$$\mathbb{P}(X = x) = 0$$
 for all $x \in \mathbb{R}$.

•
$$\mathbb{P}(a \leq X \leq b) = \int_a^b f(x) dx.$$