Math 341: Probability Sixth Lecture (9/29/09)

Steven J Miller Williams College

> Steven.J.Miller@williams.edu
> http://www.williams.edu/go/math/sjmiller/ public_html/341/

Bronfman Science Center Williams College, September 29, 2009

Clicker Questions

Exponential numbers

Question

Let x and y be any two 341 digit real numbers. What is $e^{x} e^{y}$?

Exponential numbers

Question

Let x and y be any two 341 digit real numbers. What is $e^{x} e^{y}$?

- (a) $e^{x^{y}}$
- (b) $e^{x y}$
- (c) e^{x+y}
- (d) $e^{2 x y}$
- (e) It is undefined.
- (f) None of the above.
- (g) I remember the answer to this from another class with Professor Miller.

Exponential numbers

Question

Let A and B be two 341×341 matrices with real entries. What is $e^{A} e^{B}$?

Exponential numbers

Question

Let A and B be two 341×341 matrices with real entries. What is $e^{A} e^{B}$?

- (a) $e^{A^{B}}$
- (b) $e^{A B}$
- (c) e^{A+B}
- (d) $e^{2 A B}$
- (e) It is undefined.
- (f) None of the above.
- (g) I remember the answer to this from another class with Professor Miller.

Baker, Campbell and Hausdorff formula

Baker, Campbell and Hausdorff formula

Let A and B be two $n \times n$ real matrices, and define the commutator of A and B by $[A, B]=A B-B A$. Then if

$$
e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots
$$

then

$$
e^{A} e^{B}=e^{A+B+\frac{1}{2}[A, B]+\frac{1}{12}([[A, B], B]+[A,[A, B]])+\cdots} .
$$

For more information, see

- http://www.hep.anl.gov/czachos/CBH.pdf
- http://en.wikipedia.org/wiki/

Baker-Campbell-Hausdorff_formula

Section 3.1
 Probability Mass and Density Functions

Definition (discrete)

Probability Mass Function

The Probability Mass Function of a discrete random variable X is a function $f: \mathbb{R} \rightarrow[0,1]$ given by $f(x)=\mathbb{P}(X=x)$.

Definition (discrete)

Probability Mass Function

The Probability Mass Function of a discrete random variable X is a function $f: \mathbb{R} \rightarrow[0,1]$ given by $f(x)=\mathbb{P}(X=x)$.

Lemma: Standard properties:

- $F(x)=\sum_{x_{i} \leq x} f\left(x_{i}\right)$, and $f(x)=F(x)-\lim _{y \rightarrow x^{-}} F(y)$.
- $\{x: f(x) \neq 0\}$ is at most countable.
- $\sum_{i} f\left(x_{i}\right)=1$ where $\left\{x_{1}, x_{2}, \ldots\right\}$ is where f is non-zero.

Definition (continuous)

Probability Density Function

The Probability Density Function of a continuous random variable X is the f such that $F(x)=\int_{-\infty}^{x} f(u) d u$.

Definition (continuous)

Probability Density Function

The Probability Density Function of a continuous random variable X is the f such that $F(x)=\int_{-\infty}^{x} f(u) d u$.

Lemma: Standard Properties:

- $\int_{-\infty}^{\infty} f(x) d x=1$.
- $\mathbb{P}(X=x)=0$ for all $x \in \mathbb{R}$.
- $\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x$.

