Sections 3.3 & 4.3

Clicker Questions

Math 341: Probability Eighth Lecture (10/6/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, October 6, 2009

Sections 3.2 & 4.2	Sections 3.3 & 4.3	Clicker Questions

Independence

Sections	3.2	&	4.2	
000				

Clicker Questions

Independence

Independence of events

Two events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

As $\mathbb{P}(A \cap B) = \mathbb{P}(A|B)\mathbb{P}(B)$, if $\mathbb{P}(B) > 0$ this is equivalent to $\mathbb{P}(A|B) = \mathbb{P}(A)$, or that knowledge of one happening does not affect knowledge of the other happening.

Sections	3.2	&	4.2	
000				

Clicker Questions

Independence (continued)

Independence of random variables

Two random variables X and Y are independent if for all x, y:

- Discrete case: events {*X* = *x*} and {*Y* = *y*} are independent.
- Continuous case: events {X ≤ x} and {Y ≤ y} are independent.

Non-trivial example (from book): Toss a coin with probability *p* of heads *N* times, where *N* is a Poisson random variable with parameter λ . Then the number of heads and the number of tails are independent random variables.

Sections 3.2 & 4.2	Sections 3.3 & 4.3	Clicker Questions
000		
Main result		

Key Lemma

Let $g, h : \mathbb{R} \to \mathbb{R}$ and assume X and Y are independent random variables. Then g(X) and h(Y) are independent.

- The proof involves real analysis, specifically properties of the *σ*-fields.
- Assume g, h continuous and strictly increasing (so g⁻¹, h⁻¹ exist) and X, Y continuous random variables.
- Then $\{g(X) \le a\}$ and $\{h(Y) \le b\}$ are the same as $\{X \le g^{-1}(a)\}$ and $\{Y \le h^{-1}(b)\}$.
- As latter two sets are independent (due to independence of X, Y), we see g(X) and h(Y) independent.

Sections	3.2	&	4.2	

Sections 3.3 & 4.3: Expectation

Sections 3.2 & 4.2	Sections 3.3 & 4.3 ●○	Clicker Questions
Definition		

Expectation (mean value, average)

X random variable with density / mass function f_X , then expected value is

- Discrete case: 𝔼[X] := ∑_x xf_x(x) if sum converges absolutely.
- Continuous case: $\mathbb{E}[X] := \int_{-\infty}^{\infty} x f_X(x) dx$ if integral converges absolutely.

Notation:

- Often use integral notation for both.
- Set $\mathbb{E}[g(X)]$ equal to $\int_{-\infty}^{\infty} g(x) f_X(x) dx$ if exists.

Sections 3.2 & 4.2	Sections 3.3 & 4.3	Clicker Questions
	0.	

Definition (continued)

Moments

Let X be a random variable. We define

• k^{th} moment: $m_k := \mathbb{E}[X^k]$ (if converges absolutely).

Assume *X* has a finite mean, which we denote by μ (so $\mu = \mathbb{E}[X]$). We define

*k*th centered moment: *σ_k* := E[(*X* – μ)^k] (if converges absolutely).

Sections 3.2 & 4.2	Sections 3.3 & 4.3	Clicker
	00	

Duestions

Definition (continued)

Moments

Let X be a random variable. We define

• k^{th} moment: $m_k := \mathbb{E}[X^k]$ (if converges absolutely).

Assume *X* has a finite mean, which we denote by μ (so $\mu = \mathbb{E}[X]$). We define

*k*th centered moment: σ_k := E[(X – μ)^k] (if converges absolutely).

- Be alert: Some books write μ'_k for m_k and μ_k for σ_k .
- Call σ_2 the variance, write it as σ^2 .

• Note
$$\sigma^2 = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$
.

Sections 3.2 & 4.2	Sections 3.3 & 4.3	Clicker Questions

Clicker Questions

Sections 3.2 & 4.2	Sections 3.3 & 4.3 00	Clicker Questions ●○○

Prime divisors

Number of prime divisors

Let *N* be a large number. If we choose an integer of size approximately *N*, on average about how many distinct prime factors do we expect *N* to have (as $N \rightarrow \infty$)? It might be useful to recall the Prime Number Theorem: The number of primes at most *x* is about $x/\log x$.

Sections	3.2	&	4.2	

Clicker Questions

Prime divisors

Number of prime divisors

Let *N* be a large number. If we choose an integer of size approximately *N*, on average about how many distinct prime factors do we expect *N* to have (as $N \rightarrow \infty$)? It might be useful to recall the Prime Number Theorem: The number of primes at most *x* is about $x/\log x$.

- (a) At most 10.
- (b) Around log log log N.
- (c) Around log log N.
- (d) Around log N.
- (e) Around log N log log N.
- (f) Around $(\log N)^2$.
- (g) This is an open question.

000	00	000
Earmat Drimaa		

Fermat Primes

If $F_n = 2^{2^n} + 1$ is prime, we say F_n is a Fermat prime. About how many Fermat primes are there less than *x* as $x \to \infty$?

Sections 3.2 & 4.2	Sections 3.3 & 4.3 00	Clicker Questions ○●○
Formet Drimes		

Fermat Primes

If $F_n = 2^{2^n} + 1$ is prime, we say F_n is a Fermat prime. About how many Fermat primes are there less than x as $x \to \infty$?

- (a) 5
- (b) 10
- (c) Between 11 and 20.
- (d) Between 21 and 100.
- (e) $\log \log \log x$.
- (f) log log *x*.
- (g) log *x*.
- (h) More than log x.
- (i) This is an open problem.

Sections	3.2	&	4.2	

Clicker Questions

3x + 1 **Problem**

3x + 1: Iterating to the fixed point

Define the 3x + 1 map by $a_{n+1} = \frac{3a_n+1}{2^k}$ where $2^k || 3a_n + 1$. Choose a large integer *N* and randomly choose a starting seed a_0 around *N*. About how many iterations are needed until we reach 1 (equivalently, about how large is the smallest *n* such that $a_n = 1$)?

Clicker Questions

3x + 1 **Problem**

3x + 1: Iterating to the fixed point

Define the 3x + 1 map by $a_{n+1} = \frac{3a_n+1}{2^k}$ where $2^k || 3a_n + 1$. Choose a large integer *N* and randomly choose a starting seed a_0 around *N*. About how many iterations are needed until we reach 1 (equivalently, about how large is the smallest *n* such that $a_n = 1$)?

There is a constant C so that the answer is about

- (a) At most 10.
- (b) Around C log log log N.
- (c) Around C log log N.
- (d) Around C log N.
- (e) Around $C \log N \log \log N$.
- (f) Around $C(\log N)^2$.
- (a) This is an open question.