Math 341: Probability Eighth Lecture (10/6/09)

Steven J Miller Williams College

$$
\begin{gathered}
\text { Steven.J.Miller@williams.edu } \\
\text { http://www.williams.edu/go/math/sjmiller/ } \\
\text { public_html/341/ }
\end{gathered}
$$

Bronfman Science Center Williams College, October 6, 2009

Independence

Independence

Independence of events

Two events A and B are independent if $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.

As $\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \mathbb{P}(B)$, if $\mathbb{P}(B)>0$ this is equivalent to $\mathbb{P}(A \mid B)=\mathbb{P}(A)$, or that knowledge of one happening does not affect knowledge of the other happening.

Independence (continued)

Independence of random variables

Two random variables X and Y are independent if for all x, y :

- Discrete case: events $\{X=x\}$ and $\{Y=y\}$ are independent.
- Continuous case: events $\{X \leq x\}$ and $\{Y \leq y\}$ are independent.

Non-trivial example (from book): Toss a coin with probability p of heads N times, where N is a Poisson random variable with parameter λ. Then the number of heads and the number of tails are independent random variables.

Main result

Key Lemma

Let $g, h: \mathbb{R} \rightarrow \mathbb{R}$ and assume X and Y are independent random variables. Then $g(X)$ and $h(Y)$ are independent.

- The proof involves real analysis, specifically properties of the σ-fields.
- Assume g, h continuous and strictly increasing (so g^{-1}, h^{-1} exist) and X, Y continuous random variables.
- Then $\{g(X) \leq a\}$ and $\{h(Y) \leq b\}$ are the same as $\left\{X \leq g^{-1}(a)\right\}$ and $\left\{Y \leq h^{-1}(b)\right\}$.
- As latter two sets are independent (due to independence of X, Y), we see $g(X)$ and $h(Y)$ independent.

Sections 3.3 \& 4.3:

Expectation

Definition

Expectation (mean value, average)

X random variable with density / mass function f_{X}, then expected value is

- Discrete case: $\mathbb{E}[X]:=\sum_{x} x f_{X}(x)$ if sum converges absolutely.
- Continuous case: $\mathbb{E}[X]:=\int_{-\infty}^{\infty} x f_{X}(x) d x$ if integral converges absolutely.

Notation:

- Often use integral notation for both.
- Set $\mathbb{E}[g(X)]$ equal to $\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$ if exists.

Definition (continued)

Moments

Let X be a random variable. We define

- $k^{\text {th }}$ moment: $m_{k}:=\mathbb{E}\left[X^{k}\right]$ (if converges absolutely).

Assume X has a finite mean, which we denote by μ (so $\mu=\mathbb{E}[X]$). We define

- $k^{\text {th }}$ centered moment: $\sigma_{k}:=\mathbb{E}\left[(X-\mu)^{k}\right]$ (if converges absolutely).

Definition (continued)

Moments

Let X be a random variable. We define

- $k^{\text {th }}$ moment: $m_{k}:=\mathbb{E}\left[X^{k}\right]$ (if converges absolutely).

Assume X has a finite mean, which we denote by μ (so $\mu=\mathbb{E}[X])$. We define

- $k^{\text {th }}$ centered moment: $\sigma_{k}:=\mathbb{E}\left[(X-\mu)^{k}\right]$ (if converges absolutely).
- Be alert: Some books write μ_{k}^{\prime} for m_{k} and μ_{k} for σ_{k}.
- Call σ_{2} the variance, write it as σ^{2}.
- Note $\sigma^{2}=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$.

Clicker Questions

Prime divisors

Number of prime divisors

Let N be a large number. If we choose an integer of size approximately N, on average about how many distinct prime factors do we expect N to have (as $N \rightarrow \infty$)? It might be useful to recall the Prime Number Theorem: The number of primes at most x is about $x / \log x$.

Prime divisors

Number of prime divisors

Let N be a large number. If we choose an integer of size approximately N, on average about how many distinct prime factors do we expect N to have (as $N \rightarrow \infty$)? It might be useful to recall the Prime Number Theorem: The number of primes at most x is about $x / \log x$.

- (a) At most 10.
- (b) Around $\log \log \log N$.
- (c) Around $\log \log N$.
- (d) Around $\log N$.
- (e) Around $\log N \log \log N$.
- (f) Around $(\log N)^{2}$.
- (g) This is an open question.

Fermat Primes

Fermat Primes

If $F_{n}=2^{2^{n}}+1$ is prime, we say F_{n} is a Fermat prime. About how many Fermat primes are there less than x as $x \rightarrow \infty$?

Fermat Primes

Fermat Primes

If $F_{n}=2^{2^{n}}+1$ is prime, we say F_{n} is a Fermat prime.
About how many Fermat primes are there less than x as $x \rightarrow \infty$?

- (a) 5
- (b) 10
- (c) Between 11 and 20.
- (d) Between 21 and 100.
-(e) $\log \log \log x$.
-(f) $\log \log x$.
- (g) $\log x$.
- (h) More than $\log x$.
- (i) This is an open problem.

$3 x+1$ Problem

$3 x+1$: Iterating to the fixed point

Define the $3 x+1$ map by $a_{n+1}=\frac{3 a_{n}+1}{2^{k}}$ where $2^{k}| | 3 a_{n}+1$. Choose a large integer N and randomly choose a starting seed a_{0} around N. About how many iterations are needed until we reach 1 (equivalently, about how large is the smallest n such that $a_{n}=1$) ?

$3 x+1$ Problem

$3 x+1$: Iterating to the fixed point

Define the $3 x+1$ map by $a_{n+1}=\frac{3 a_{n}+1}{2^{k}}$ where $2^{k}| | 3 a_{n}+1$. Choose a large integer N and randomly choose a starting seed a_{0} around N. About how many iterations are needed until we reach 1 (equivalently, about how large is the smallest n such that $a_{n}=1$) ?

There is a constant C so that the answer is about

- (a) At most 10.
- (b) Around $C \log \log \log N$.
- (c) Around $C \log \log N$.
- (d) Around $C \log N$.
- (e) Around $C \log N \log \log N$.
- (f) Around $C(\log N)^{2}$.
- (a) This is an open question.

