Sections 3.3 & 4.3

Clicker Questions

Math 341: Probability Ninth Lecture (10/8/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, October 8, 2009

Sections 3.3 & 4.3: Expectation

Definition

Moments

Let *X* be a random variable. We define

• k^{th} moment: $m_k := \mathbb{E}[X^k]$ (if converges absolutely).

Assume *X* has a finite mean, which we denote by μ (so $\mu = \mathbb{E}[X]$). We define

*k*th centered moment: σ_k := E[(X – μ)^k] (if converges absolutely).

- Be alert: Some books write μ'_k for m_k and μ_k for σ_k .
- Call σ_2 the variance, write it as σ^2 or Var(X).

• Note
$$\operatorname{Var}(X) = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$
.

Key Results

- Linearity: $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$.
- Independence: X, Y independent then
 E[XY] = E[X]E[Y]. If RHS holds say uncorrelated.
- Variance: Var(aX + bY) = a²Var(X) + b²Var(Y) if uncorrelated. In general:

$$\operatorname{CoVar}(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

$$\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \operatorname{Var}(X_i) + 2\sum_{1 \le i < j \le n} \operatorname{CoVar}(X_i, X_j).$$

5

Clicker Questions

Prime divisors

Number of prime divisors

Let *N* be a large number. If we choose an integer of size approximately *N*, on average about how many distinct prime factors do we expect *N* to have (as $N \rightarrow \infty$)? It might be useful to recall the Prime Number Theorem: The number of primes at most *x* is about $x/\log x$.

- (a) At most 10.
- (b) Around log log log N.
- (c) Around log log N.
- (d) Around log N.
- (e) Around log N log log N.
- (f) Around $(\log N)^2$.
- (g) This is an open question.

Fermat Primes

Fermat Primes

If $F_n = 2^{2^n} + 1$ is prime, we say F_n is a Fermat prime. About how many Fermat primes are there less than x as $x \to \infty$?

- (a) 5
- (b) 10
- (c) Between 11 and 20.
- (d) Between 21 and 100.
- (e) $\log \log \log x$.
- (f) log log *x*.
- (g) log *x*.
- (h) More than log x.
- (i) This is an open problem.

3x + 1 **Problem**

3x + 1: Iterating to the fixed point

Define the 3x + 1 map by $a_{n+1} = \frac{3a_n+1}{2^k}$ where $2^k || 3a_n + 1$. Choose a large integer *N* and randomly choose a starting seed a_0 around *N*. About how many iterations are needed until we reach 1 (equivalently, about how large is the smallest *n* such that $a_n = 1$)?

3x + 1 **Problem**

3x + 1: Iterating to the fixed point

Define the 3x + 1 map by $a_{n+1} = \frac{3a_n+1}{2^k}$ where $2^k || 3a_n + 1$. Choose a large integer *N* and randomly choose a starting seed a_0 around *N*. About how many iterations are needed until we reach 1 (equivalently, about how large is the smallest *n* such that $a_n = 1$)?

There is a constant C so that the answer is about

- (a) At most 10.
- (b) Around C log log log N.
- (c) Around C log log N.
- (d) Around C log N.
- (e) Around $C \log N \log \log N$.
- (f) Around $C(\log N)^2$.
- (a) This is an open question.