Math 341: Probability Ninth Lecture (10/8/09)

Steven J Miller Williams College

> Steven.J.Miller@williams.edu
> http://www.williams.edu/go/math/sjmiller/ public_html/341/

Bronfman Science Center Williams College, October 8, 2009

Sections 3.3 \& 4.3:

Expectation

Definition

Moments

Let X be a random variable. We define

- $k^{\text {th }}$ moment: $m_{k}:=\mathbb{E}\left[X^{k}\right]$ (if converges absolutely).

Assume X has a finite mean, which we denote by μ (so $\mu=\mathbb{E}[X])$. We define

- $k^{\text {th }}$ centered moment: $\sigma_{k}:=\mathbb{E}\left[(X-\mu)^{k}\right]$ (if converges absolutely).
- Be alert: Some books write μ_{k}^{\prime} for m_{k} and μ_{k} for σ_{k}.
- Call σ_{2} the variance, write it as σ^{2} or $\operatorname{Var}(X)$.
- Note $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$.

Key Results

- Linearity: $\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]$.
- Independence: X, Y independent then $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$. If RHS holds say uncorrelated.
- Variance: $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$ if uncorrelated. In general:

$$
\begin{aligned}
\operatorname{CoVar}(X, Y) & =\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) & =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{1 \leq i<j \leq n} \operatorname{CoVar}\left(X_{i}, X_{j}\right) .
\end{aligned}
$$

Clicker Questions

Prime divisors

Number of prime divisors

Let N be a large number. If we choose an integer of size approximately N, on average about how many distinct prime factors do we expect N to have (as $N \rightarrow \infty$)? It might be useful to recall the Prime Number Theorem: The number of primes at most x is about $x / \log x$.

- (a) At most 10.
- (b) Around $\log \log \log N$.
- (c) Around $\log \log N$.
- (d) Around $\log N$.
- (e) Around $\log N \log \log N$.
- (f) Around $(\log N)^{2}$.
- (g) This is an open question.

Fermat Primes

Fermat Primes

If $F_{n}=2^{2^{n}}+1$ is prime, we say F_{n} is a Fermat prime.
About how many Fermat primes are there less than x as $x \rightarrow \infty$?

- (a) 5
- (b) 10
- (c) Between 11 and 20.
- (d) Between 21 and 100.
-(e) $\log \log \log x$.
-(f) $\log \log x$.
- (g) $\log x$.
- (h) More than $\log x$.
- (i) This is an open problem.

$3 x+1$ Problem

$3 x+1$: Iterating to the fixed point

Define the $3 x+1$ map by $a_{n+1}=\frac{3 a_{n}+1}{2^{k}}$ where $2^{k} \| 3 a_{n}+1$. Choose a large integer N and randomly choose a starting seed a_{0} around N. About how many iterations are needed until we reach 1 (equivalently, about how large is the smallest n such that $a_{n}=1$)?

$3 x+1$ Problem

$3 x+1$: Iterating to the fixed point

Define the $3 x+1$ map by $a_{n+1}=\frac{3 a_{n}+1}{2^{k}}$ where $2^{k}| | 3 a_{n}+1$. Choose a large integer N and randomly choose a starting seed a_{0} around N. About how many iterations are needed until we reach 1 (equivalently, about how large is the smallest n such that $a_{n}=1$) ?

There is a constant C so that the answer is about

- (a) At most 10.
- (b) Around $C \log \log \log N$.
- (c) Around $C \log \log N$.
- (d) Around $C \log N$.
- (e) Around $C \log N \log \log N$.
- (f) Around $C(\log N)^{2}$.
- (a) This is an open question.

