Math 341: Probability Tenth Lecture (10/15/09)

Steven J Miller Williams College

> Steven.J.Miller@williams.edu
> http://www.williams.edu/go/math/sjmiller/ public_html/341/

Bronfman Science Center Williams College, October 15, 2009

Summary for the Day

Summary for the day

- Common Distributions
- Linearity of Expectation:
\diamond Mean of binomial random variable.
\diamond Fermat primes.
- Chebyshev's Theorem:
\diamond Application: Monte Carlo Integration.
- Questions from the class
- Dependence

Chebyshev's Inequality

Chebyshev's Inequality (Statement)

Chebyshev's Inequality

Let X be a random variable with finite mean μ and finite variance σ^{2}. Then

$$
\operatorname{Prob}(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

Sometimes called Chebyshev's Theorem.

Chebyshev's Inequality (Proof)

Proof: Letting f denote the density of X :

$$
\begin{aligned}
\operatorname{Prob}(|X-\mu| \geq k \sigma) & =\int_{|x-\mu| / k \sigma \geq 1} f(x) d x \\
& \leq \int_{|x-\mu| / k \sigma \geq 1}\left(\frac{x-\mu}{k \sigma}\right)^{2} f(x) d x \\
& \leq \frac{1}{k^{2} \sigma^{2}} \int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x \\
& =\frac{\sigma^{2}}{k^{2} \sigma^{2}}=\frac{1}{k^{2}} .
\end{aligned}
$$

Clicker Questions

The n-dimensional sphere

Volume of the n-dimensional sphere

Consider the n-dimensional sphere of radius $1 / 2$ centered at the origin, which lives inside the n-dimensional unit cube. Let ρ_{n} be the ratio of the sphere's volume to that of the cube (i.e., the sphere's volume). How large must n be before $\rho_{n}<.01$ (i.e., before the n-dimensional sphere occupies less than 1% of the volume of the n-dimensional cube)?

The n-dimensional sphere

Volume of the n-dimensional sphere

Consider the n-dimensional sphere of radius $1 / 2$ centered at the origin, which lives inside the n-dimensional unit cube. Let ρ_{n} be the ratio of the sphere's volume to that of the cube (i.e., the sphere's volume). How large must n be before $\rho_{n}<.01$ (i.e., before the n-dimensional sphere occupies less than 1% of the volume of the n-dimensional cube)?

- (a) 2
(e) 10
- (b) 4
(f) 20
- (c) 6
(g) It is always greater than 1%.
- (d) 8
(h) Beats \& is beaten by 1% infinitely often

