Summary for the Day o Chebyshev's Inequality

Clicker Questions

Math 341: Probability Tenth Lecture (10/15/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, October 15, 2009

Summary for the Day $_{\odot}$	Chebyshev's Inequality	Clicker Questions

Summary for the Day

- Common Distributions
- Linearity of Expectation:
 Mean of binomial random variable.
 Fermat primes.
- Chebyshev's Theorem:
 Application: Monte Carlo Integration.
- Questions from the class
- Dependence

Summary for the Day	Chebyshev's Inequality	Clicker Questions
	00	

Chebyshev's Inequality

Chebyshev's Inequality (Statement)

Chebyshev's Inequality

Let *X* be a random variable with finite mean μ and finite variance σ^2 . Then

$$\operatorname{Prob}(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}.$$

Sometimes called Chebyshev's Theorem.

Proof: Letting *f* denote the density of *X*:

$$Prob(|X - \mu| \ge k\sigma) = \int_{|x-\mu|/k\sigma \ge 1} f(x) dx$$

$$\leq \int_{|x-\mu|/k\sigma \ge 1} \left(\frac{x-\mu}{k\sigma}\right)^2 f(x) dx$$

$$\leq \frac{1}{k^2 \sigma^2} \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx$$

$$= \frac{\sigma^2}{k^2 \sigma^2} = \frac{1}{k^2}.$$

Summary for the Day o	Chebyshev's Inequality oo	Clicker Questions

Clicker Questions

Chebyshev's Inequality

Clicker Questions

The *n*-dimensional sphere

Volume of the *n*-dimensional sphere

Consider the *n*-dimensional sphere of radius 1/2 centered at the origin, which lives inside the *n*-dimensional unit cube. Let ρ_n be the ratio of the sphere's volume to that of the cube (i.e., the sphere's volume). How large must *n* be before $\rho_n < .01$ (i.e., before the *n*-dimensional sphere occupies less than 1% of the volume of the *n*-dimensional cube)?

Chebyshev's Inequality

Clicker Questions

The *n*-dimensional sphere

Volume of the *n*-dimensional sphere

Consider the *n*-dimensional sphere of radius 1/2 centered at the origin, which lives inside the *n*-dimensional unit cube. Let ρ_n be the ratio of the sphere's volume to that of the cube (i.e., the sphere's volume). How large must *n* be before $\rho_n < .01$ (i.e., before the *n*-dimensional sphere occupies less than 1% of the volume of the *n*-dimensional cube)?

- (a) 2 (e) 10
- (b) 4 (f) 20
- (c) 6 (g) It is always greater than 1%.
- (d) 8 (h) Beats & is beaten by 1% infinitely often