Math 341: Probability Thirteenth Lecture (10/27/09)

Steven J Miller Williams College

$$
\begin{gathered}
\text { Steven.J.Miller@williams.edu } \\
\text { http://www.williams.edu/go/math/sjmiller/ } \\
\text { public_html/341/ }
\end{gathered}
$$

Bronfman Science Center Williams College, October 27, 2009

Summary for the Day

Summary for the day

- Change of variable formulas:
\diamond Review of Jacobians.
\diamond Joint density of functions of random variables.
- Sums of random variables:
\diamond Convolution.
\diamond Properties of convolution.
\diamond Poisson example.
- Distributions from Normal:
\diamond Sample mean and variance.
\diamond Central Limit Theorem and Testing.
\diamond Pepys' Problem.

Section 4.7

Functions of Random Variables

One-dimension

Change of variable formula

g a strictly increasing function with inverse $h, Y=g(X)$ then $f_{Y}(y)=f_{X}(h(y)) h^{\prime}(y)$.

One-dimension

Change of variable formula

g a strictly increasing function with inverse $h, Y=g(X)$ then $f_{Y}(y)=f_{X}(h(y)) h^{\prime}(y)$.

Proof:
$\mathbb{P}(Y \leq y)=\mathbb{P}(g(X) \leq y)=\mathbb{P}\left(X \leq g^{-1}(y)\right)=$
$F_{X}\left(g^{-1}(y)\right)=F_{X}(h(y))$.
$f_{Y}(y)=F_{X}^{\prime}(h(y)) h^{\prime}(y)=f_{X}(h(y)) h^{\prime}(y)$.
As $g(h(y))=y, g^{\prime}(h(y)) h^{\prime}(y)=1$ or $h^{\prime}(y)=1 / g^{\prime}(h(y))$.

Review of Jacobian

Definition of the Jacobian

Given variables $\left(x_{1}, x_{2}\right)$ that are transformed to $\left(y_{1}, y_{2}\right)$ by

$$
T\left(x_{1}, x_{2}\right)=\left(y_{1}\left(x_{1}, x_{2}\right), y_{2}\left(x_{1}, x_{2}\right)\right)
$$

and inverse mapping

$$
T^{-1}\left(y_{1}, y_{2}\right)=\left(x_{1}\left(y_{1}, y_{2}\right), x_{2}\left(y_{1}, y_{2}\right)\right) .
$$

The Jacobian is defined by

$$
J\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{1}} \\
\frac{\partial x_{1}}{\partial y_{2}} & \frac{\partial x_{1}}{\partial y_{2}}
\end{array}\right| .
$$

Review of Jacobian

- Note $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.
- Use: $d x_{1} d x_{2} \rightarrow|J| d y_{1} d y_{2}$ (tells us how the volume element is transformed).

Example of Jacobian

Polar Coordinates

$$
x_{1}(r, \theta)=r \cos \theta, \quad x_{2}(r, \theta)=r \sin \theta .
$$

Calculating gives

$$
J=\left|\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right|=r .
$$

Thus $d x_{1} d x_{2} \rightarrow r d r d \theta$.

Change of Variable Theorem

Theorem

$f_{X_{1}, X_{2}}$ joint density of X_{1} and $X_{2},\left(Y_{1}, Y_{2}\right)=T\left(X_{1}, X_{2}\right)$ with Jacobian J. For points in the range of T,

$$
f_{y_{1}, y_{2}}\left(y_{1}, y_{2}\right)=f_{x_{1}, x_{2}}\left(x_{1}\left(y_{1}, y_{2}\right), x_{2}\left(y_{1}, y_{2}\right)\right)\left|J\left(y_{1}, y_{2}\right)\right| .
$$

Example: X_{1}, X_{2} independent Exponential (λ). Find the joint density of $Y_{1}=X_{1}+X_{2}, Y_{2}=X_{1} / X_{2}$. Answer is

$$
f_{Y_{1}, y_{2}}\left(y_{1}, y_{2}\right)=\lambda^{2} y_{1} e^{-\lambda y_{1}} \cdot \frac{1}{\left(1+y_{2}\right)^{2}} .
$$

If instead had $Y_{1}=X_{1}+X_{2}$ and $Y_{3}=X_{1}-X_{2}$, would find

$$
f_{y_{1}, y_{3}}\left(y_{1}, y_{3}\right)=\frac{\lambda^{2}}{2} e^{-\lambda y_{1}} \text { for }\left|y_{3}\right| \leq y .
$$

Strange Example

Let X_{1}, X_{2} be independent Exponential (λ). Compute the conditional density of $X_{1}+X_{2}$ given $X_{1}=X_{2}$.

One solution is to use Y_{1}, Y_{2} from above; another is to use Y_{1}, Y_{3}.

Note $\left\{X_{1}=X_{2}\right\}$ is a null event, these two describe it differently.

Sections 3.8 and 4.8 Sums of Random Variables

Example

X_{1}, X_{2} independent $\operatorname{Uniform}(0,1)$. What is $X_{1}+X_{2}$?

- Build intuition: extreme examples.
- Consider discrete analogue: die.

Example

X_{1}, X_{2} independent $\operatorname{Uniform}(0,1)$. What is $X_{1}+X_{2}$?

- Build intuition: extreme examples.
- Consider discrete analogue: die.
- Answer: triangle from 0 to 2 with maximum at 1 .

Convolution

Definition

$$
(f * g)(x):=\int_{-\infty}^{\infty} f(t) g(x-t) d t
$$

Interpretation: X and Y with densities f and g then density of $X+Y$ is $f * g$.

Revisit sum of uniforms.

Properties of the convolution

Lemma

- $f * g=g * f$.
- $(\widehat{f * g})(x)=\widehat{f}(x) \cdot \widehat{g}(x)$, where

$$
\widehat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi}
$$

is the Fourier transform.

- $f * \delta=f$ where δ is the Dirac delta functional.
- $f *(g * h)=(f * g) * h$.

Example

$X_{1}, X_{2} \operatorname{Poisson}\left(\lambda_{1}\right)$ and $\operatorname{Poisson}\left(\lambda_{2}\right)$, then $X_{1}+X_{2}$ is Poisson $\left(\lambda_{1}+\lambda_{2}\right)$

Proof: Evaluate convolution, using binomial theorem.

Section 4.10
 Distributions from the Normal

Standard results and definitions

- $X \sim N(0,1)$ then X^{2} is chi-square with 1 degree of freedom.
- Sample mean: $\bar{X}:=\frac{1}{N} \sum_{i=1}^{n} X_{i}$.
- Sample variance: $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.

Main theorem

Sums of normal random variables

Let X_{1}, \ldots, X_{n} be i.i.d. $N\left(\mu, \sigma^{2}\right)$. Then

- $\bar{X}=N\left(\mu, \sigma^{2} / n\right)$.
- $(n-1) S^{2}$ is a chi-square with $n-1$ degrees of freedom. (Easier proof with convolutions?)
- \bar{X} and S^{2} are independent.
- Central Limit Theorem: $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$.

Clicker

Questions

Pepys' Problem

Problem Statement

Alice and Bob decide wager on the rolls of die. Alice rolls $6 n$ fair die and wins if she gets at least n sixes, while Bob wins if she fails. What n should Alice choose to maximize her chance of winning?

Pepys' Problem

Problem Statement

Alice and Bob decide wager on the rolls of die. Alice rolls $6 n$ fair die and wins if she gets at least n sixes, while Bob wins if she fails. What n should Alice choose to maximize her chance of winning?

- (a) 1
- (b) 2
- (c) 6
- (d) 10
- (e) 20
- (f) 341
- (g) The larger n is, the greater chance she has of winning.

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

$\{\mathrm{n}=, 100$, Histogram Plot: (\#6s - expected)/StDev\}

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

$\{\mathrm{n}=, 120$, Histogram Plot: (\#6s - expected)/StDev\}

Pepys' Problem (continued): 1000 simulations, binsize = . 25

$$
\{\mathrm{n}=, 130, \text { Histogram Plot: }(\# 6 \mathrm{~s}-\text { expected }) / \mathrm{StDev}\}
$$

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

$\{\mathrm{n}=, 150$, Histogram Plot: (\#6s - expected)/StDev\}

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): 1000 simulations, binsize = . 25

Pepys' Problem (continued): probability versus n

