Math 341: Probability Fifteenth Lecture (11/3/09)

Steven J Miller Williams College

$$
\begin{gathered}
\text { Steven.J.Miller@williams.edu } \\
\text { http://www.williams.edu/go/math/sjmiller/ } \\
\text { public_html/341/ }
\end{gathered}
$$

Bronfman Science Center
Williams College, November 3, 2009

Summary for the Day

Summary for the day

- Distributions from Normal:
\diamond Sample mean and variance.
\diamond Central Limit Theorem and Testing.
- Generating Functions:
\diamond Definition.
\diamond Properties.
\diamond Applications.

Section 4.10
 Distributions from the Normal

Standard results and definitions

- $X \sim N(0,1)$ then X^{2} is chi-square with 1 degree of freedom.
- Sample mean: $\bar{X}:=\frac{1}{N} \sum_{i=1}^{n} X_{i}$.
- Sample variance: $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.

Main theorem

Sums of normal random variables

Let X_{1}, \ldots, X_{n} be i.i.d. $N\left(\mu, \sigma^{2}\right)$. Then

- $\bar{X}=N\left(\mu, \sigma^{2} / n\right)$.
- $(n-1) S^{2}$ is a chi-square with $n-1$ degrees of freedom. (Easier proof with convolutions?)
- \bar{X} and S^{2} are independent.
- Central Limit Theorem: $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$.

Generating Functions

Definitions

Generating Function

Given a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$, we define its generating function by

$$
G_{a}(s)=\sum_{n=0}^{\infty} a_{n} s^{n}
$$

for all s where the sum converges.

Definitions

Generating Function

Given a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$, we define its generating function by

$$
G_{a}(s)=\sum_{n=0}^{\infty} a_{n} s^{n}
$$

for all s where the sum converges.

Examples

- $a_{n}=1 / n!$ or $a_{n}=2^{n}$ or $a_{n}=n!$.
- $a_{n}=(1-p)^{n-1} p$.
- Cookie problem, Goldbach,

Why generating functions

- Makes algebra easier (example: telescoping sums, diagonalizing matrices).
- Means, variances and moments....

Results

Uniqueness Theorem

Let $\left\{a_{m}\right\}_{m=0}^{\infty}$ and $\left\{b_{m}\right\}_{m=0}^{\infty}$ be two sequences of numbers with generating functions $G_{a}(s)$ and $G_{b}(s)$ which converge for $|s|<r$. Then the two sequences are equal (i.e., $a_{i}=b_{i}$ for all i) if and only if $G_{a}(s)=G_{b}(s)$ for all $|s|<r$. We may recover the sequence from the generating function by differentiating: $a_{m}=\frac{1}{m!} \frac{d^{m} G_{a}(s)}{d s^{m}}$.

Other results:

- $\mathbb{E}[X]=G_{x}^{\prime}(1)$.
- $\operatorname{Var}(X)=G_{x}^{\prime \prime}(1)+G_{x}^{\prime}(1)-G_{x}^{\prime}(1)^{2}$.

Equivalent formulations: Why do we need both?

Probability Generating Function

X r.v., probability generating function is $G_{X}(s)=\mathbb{E}\left[s^{X}\right]$.

Moment Generating Function

X r.v., moment generating function is $M_{X}(t)=\mathbb{E}\left[e^{t X}\right]$.

Equivalent formulations: t imaginary \Longrightarrow use complex analysis

Probability Generating Function

X r.v., probability generating function is $G_{X}(s)=\mathbb{E}\left[s^{X}\right]$.

Moment Generating Function

X r.v., moment generating function is $M_{X}(t)=\mathbb{E}\left[e^{t X}\right]$.

Key results:

- $M_{X}(t)=G_{X}\left(e^{t}\right)$.
- X, Y independent: $G_{X+Y}(s)=G_{X}(s) G_{Y}(s)$ and $M_{X+Y}(t)=M_{X}(t) M_{Y}(t)$.

Theorem: Let X be a random variable with moments μ_{k}^{\prime}.
a

$$
M_{X}(t)=1+\mu_{1}^{\prime} t+\frac{\mu_{2}^{\prime} t^{2}}{2!}+\frac{\mu_{3}^{\prime} t^{3}}{3!}+\cdots
$$

in particular, $\mu_{k}^{\prime}=d^{k} M_{X}(t) /\left.d t^{k}\right|_{t=0}$.
(2) α, β constants: $M_{\alpha X+\beta}(t)=e^{\beta t} M_{X}(\alpha t)$. Also
$M_{X+\beta}(t)=e^{\beta t} M_{X}(t), M_{\alpha X}(t)=M_{X}(\alpha t)$, $M_{(X+\beta) / \alpha}(t)=e^{\beta t / \alpha} M_{X}(t / \alpha)$.
(3) X_{i} 's indep. r.v., MGF $M_{X_{i}}(t)$ converge for $|t|<r$ then $M_{X_{1}+\cdots+x_{N}}(t)=M_{X_{1}}(t) M_{X_{2}}(t) \cdots M_{X_{N}}(t)$; if i.i.d.r.v. equals $M_{X}(t)^{N}$.

