Generating Functions

Math 341: Probability Fifteenth Lecture (11/3/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, November 3, 2009

Summary for the Day	Section 4.10	Generating Functions

Summary for the Day

2

Summary for the Day	Section 4.10	Generating Functions
●	oo	00000

Summary for the day

- Distributions from Normal:
 - Sample mean and variance.
 - Central Limit Theorem and Testing.
- Generating Functions:
 - Definition.
 - Properties.
 - Applications.

Summary for the Day o	Section 4.10	Generating Functions

Section 4.10 Distributions from the Normal

Summary	/ for	the	Day	

Standard results and definitions

- X ~ N(0, 1) then X² is chi-square with 1 degree of freedom.
- Sample mean: $\overline{X} := \frac{1}{N} \sum_{i=1}^{n} X_i$.
- Sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$.

Summary for the Day o	Section 4.10 ○●	Generating Functions
Main theorem		

Sums of normal random variables

Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$. Then

•
$$\overline{X} = N(\mu, \sigma^2/n).$$

- (n − 1)S² is a chi-square with n − 1 degrees of freedom. (Easier proof with convolutions?)
- \overline{X} and S^2 are independent.
- Central Limit Theorem: $\overline{X} \sim N(\mu, \sigma^2/n)$.

Summary for the Day	Section 4.10	Generating Functions
		00000

Generating Functions

Summary for the Day o	Section 4.10	Generating Functions ●○○○○
Definitions		

Generating Function

Given a sequence $\{a_n\}_{n=0}^{\infty}$, we define its generating function by

$$G_a(s) = \sum_{n=0}^{\infty} a_n s^n$$

~

for all s where the sum converges.

Summary for the Day o	Section 4.10	Generating Functions ●○○○○
Definitions		

Generating Function

Given a sequence $\{a_n\}_{n=0}^{\infty}$, we define its generating function by

$$G_a(s) = \sum_{n=0}^{\infty} a_n s^n$$

for all s where the sum converges.

Examples

•
$$a_n = 1/n!$$
 or $a_n = 2^n$ or $a_n = n!$.

•
$$a_n = (1 - p)^{n-1}p$$
.

• Cookie problem, Goldbach,

Su	mmary	for	the	Day	

Generating Functions

Why generating functions

- Makes algebra easier (example: telescoping sums, diagonalizing matrices).
- Means, variances and moments....

Summary	the	Day	

Generating Functions

Results

Uniqueness Theorem

Let $\{a_m\}_{m=0}^{\infty}$ and $\{b_m\}_{m=0}^{\infty}$ be two sequences of numbers with generating functions $G_a(s)$ and $G_b(s)$ which converge for |s| < r. Then the two sequences are equal (i.e., $a_i = b_i$ for all *i*) if and only if $G_a(s) = G_b(s)$ for all |s| < r. We may recover the sequence from the generating function by differentiating: $a_m = \frac{1}{m!} \frac{d^m G_a(s)}{ds^m}$.

Other results:

•
$$\mathbb{E}[X] = G'_X(1).$$

•
$$\operatorname{Var}(X) = G''_X(1) + G'_X(1) - G'_X(1)^2$$
.

Generating Functions

Equivalent formulations: Why do we need both?

Probability Generating Function

X r.v., probability generating function is $G_X(s) = \mathbb{E}[s^X]$.

Moment Generating Function

X r.v., moment generating function is $M_X(t) = \mathbb{E}[e^{tX}]$.

Equivalent formulations: t imaginary \implies use complex analysis

Probability Generating Function

X r.v., probability generating function is $G_X(s) = \mathbb{E}[s^X]$.

Moment Generating Function

X r.v., moment generating function is $M_X(t) = \mathbb{E}[e^{tX}]$.

Key results:

•
$$M_X(t) = G_X(e^t)$$
.

• X, Y independent: $G_{X+Y}(s) = G_X(s)G_Y(s)$ and $M_{X+Y}(t) = M_X(t)M_Y(t)$.

Summary for the Day	Section 4.10	Generating Functions
		00000

Theorem: Let X be a random variable with moments μ'_k .

$$M_X(t) = 1 + \mu_1' t + rac{\mu_2' t^2}{2!} + rac{\mu_3' t^3}{3!} + \cdots;$$

in particular, $\mu'_k = d^k M_X(t)/dt^k \Big|_{t=0}$.

- $\begin{array}{l} \textcircled{2} \quad \alpha,\beta \text{ constants: } M_{\alpha X+\beta}(t) = e^{\beta t} M_X(\alpha t). \text{ Also} \\ M_{X+\beta}(t) = e^{\beta t} M_X(t), \ M_{\alpha X}(t) = M_X(\alpha t), \\ M_{(X+\beta)/\alpha}(t) = e^{\beta t/\alpha} M_X(t/\alpha). \end{array}$
- Solution X_i 's indep. r.v., MGF $M_{X_i}(t)$ converge for |t| < r then $M_{X_1+\dots+X_N}(t) = M_{X_1}(t)M_{X_2}(t)\cdots M_{X_N}(t)$; if i.i.d.r.v. equals $M_X(t)^N$.

1