Math 341: Probability Sixteenth Lecture (11/5/09)

Steven J Miller Williams College

> Steven.J.Miller@williams.edu
> http://www.williams.edu/go/math/sjmiller/ public_html/341/

Bronfman Science Center
Williams College, November 5, 2009

Summary for the Day

Summary for the day

- Generating Functions:
\diamond Review Definitions.
\diamond Properties.
\diamond Example (Poisson Sums).
- Complex Analysis:
\diamond Warnings, good/bad examples.
\diamond Complex functions and differentiability.
\diamond Definitions.
\diamond Accumulation point theorem.

Generating Functions

Definitions

Generating Function

Given a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$, we define its generating function by

$$
G_{a}(s)=\sum_{n=0}^{\infty} a_{n} s^{n}
$$

for all s where the sum converges.

Useful choice is $a_{n}=\operatorname{Prob}(X=n)$ if $X \in\{0,1,2, \ldots\}$.
Leads to $G_{X}(s)=\mathbb{E}\left[s^{X}\right]$.

Results

Uniqueness Theorem

Let $\left\{a_{m}\right\}_{m=0}^{\infty}$ and $\left\{b_{m}\right\}_{m=0}^{\infty}$ be two sequences of numbers with generating functions $G_{a}(s)$ and $G_{b}(s)$ which converge for $|s|<r$. Then the two sequences are equal (i.e., $a_{i}=b_{i}$ for all i) if and only if $G_{a}(s)=G_{b}(s)$ for all $|s|<r$. We may recover the sequence from the generating function by differentiating: $a_{m}=\frac{1}{m!} \frac{d^{m} G_{a}(s)}{d s^{m}}$.

Other results:

- $\mathbb{E}[X]=G_{x}^{\prime}(1)$.
- $\operatorname{Var}(X)=G_{x}^{\prime \prime}(1)+G_{x}^{\prime}(1)-G_{x}^{\prime}(1)^{2}$.

Equivalent formulations: t imaginary \Longrightarrow use complex analysis

Probability Generating Function

X r.v., probability generating function is $G_{X}(s)=\mathbb{E}\left[s^{X}\right]$.

Moment Generating Function

X r.v., moment generating function is $M_{X}(t)=\mathbb{E}\left[e^{t X}\right]$.

Key results:

- $M_{X}(t)=G_{X}\left(e^{t}\right)$.
- X, Y independent: $G_{X+Y}(s)=G_{X}(s) G_{Y}(s)$ and $M_{X+Y}(t)=M_{X}(t) M_{Y}(t)$.

Theorem: Let X be a random variable with moments μ_{k}^{\prime}.
(1)

$$
M_{X}(t)=1+\mu_{1}^{\prime} t+\frac{\mu_{2}^{\prime} t^{2}}{2!}+\frac{\mu_{3}^{\prime} t^{3}}{3!}+\cdots ;
$$

in particular, $\mu_{k}^{\prime}=d^{k} M_{X}(t) /\left.d t^{k}\right|_{t=0}$.
(2) α, β constants: $M_{\alpha X+\beta}(t)=e^{\beta t} M_{X}(\alpha t)$. Also
$M_{X+\beta}(t)=e^{\beta t} M_{X}(t), M_{\alpha X}(t)=M_{X}(\alpha t)$, $M_{(X+\beta) / \alpha}(t)=e^{\beta t / \alpha} M_{X}(t / \alpha)$.
(3) X_{i}^{\prime} 's indep. r.v., MGF $M_{X_{i}}(t)$ converge for $|t|<r$ then $M_{X_{1}+\cdots+X_{N}}(t)=M_{X_{1}}(t) M_{X_{2}}(t) \cdots M_{X_{N}}(t)$; if i.i.d.r.v. equals $M_{X}(t)^{N}$.

Poisson Example

- $X_{i} \operatorname{Poiss}\left(\lambda_{i}\right)$:

$$
f(n)=\operatorname{Prob}\left(X_{i}=n\right)=\frac{\lambda_{i}^{n} e^{-\lambda_{i}}}{n!}
$$

for $n \geq 0$, and 0 otherwise.

Poisson Example

- $X_{i} \operatorname{Poiss}\left(\lambda_{i}\right)$:

$$
f(n)=\operatorname{Prob}\left(X_{i}=n\right)=\frac{\lambda_{i}^{n} e^{-\lambda_{i}}}{n!}
$$

for $n \geq 0$, and 0 otherwise.

- Moment generating function is

$$
M_{X}(t)=\sum_{n=0}^{\infty} e^{t n} f(n)=e^{\lambda\left(e^{t}-1\right)}
$$

Poisson Example

- $X_{i} \operatorname{Poiss}\left(\lambda_{i}\right)$:

$$
f(n)=\operatorname{Prob}\left(X_{i}=n\right)=\frac{\lambda_{i}^{n} e^{-\lambda_{i}}}{n!}
$$

for $n \geq 0$, and 0 otherwise.

- Moment generating function is

$$
M_{X}(t)=\sum_{n=0}^{\infty} e^{t n} f(n)=e^{\lambda\left(e^{t}-1\right)}
$$

- Independent then

$$
M_{X_{1}+X_{2}}(t)=M_{X_{1}}(t) M_{X_{2}}(t)=e^{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{t}-1\right)} .
$$

Poisson Example

- $X_{i} \operatorname{Poiss}\left(\lambda_{i}\right):$

$$
f(n)=\operatorname{Prob}\left(X_{i}=n\right)=\frac{\lambda_{i}^{n} e^{-\lambda_{i}}}{n!}
$$

for $n \geq 0$, and 0 otherwise.

- Moment generating function is

$$
M_{X}(t)=\sum_{n=0}^{\infty} e^{t n} f(n)=e^{\lambda\left(e^{t}-1\right)}
$$

- Independent then

$$
M_{X_{1}+X_{2}}(t)=M_{X_{1}}(t) M_{X_{2}}(t)=e^{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{t}-1\right)} .
$$

- Does this imply sum of Poissons is Poisson?

Poisson Example

- $X_{i} \operatorname{Poiss}\left(\lambda_{i}\right):$

$$
f(n)=\operatorname{Prob}\left(X_{i}=n\right)=\frac{\lambda_{i}^{n} e^{-\lambda_{i}}}{n!}
$$

for $n \geq 0$, and 0 otherwise.

- Moment generating function is

$$
M_{X}(t)=\sum_{n=0}^{\infty} e^{t n} f(n)=e^{\lambda\left(e^{t}-1\right)}
$$

- Independent then

$$
M_{X_{1}+X_{2}}(t)=M_{X_{1}}(t) M_{X_{2}}(t)=e^{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{t}-1\right)} .
$$

- Does this imply sum of Poissons is Poisson?Yes because...

Uniqueness Theorem

Uniqueness of moment generating functions for discrete random variables

X and Y discrete random variables on $\{0,1,2, \ldots\}$) with MGFs $M_{X}(t)$ and $M_{Y}(t)$ converging for $|t|<\delta$. Then X and Y have the same distribution iff $M_{X}(t)=M_{Y}(t)$ for $|t|<\delta$.

Uniqueness Theorem

Uniqueness of moment generating functions for discrete random variables

X and Y discrete random variables on $\{0,1,2, \ldots\}$) with MGFs $M_{X}(t)$ and $M_{Y}(t)$ converging for $|t|<\delta$. Then X and Y have the same distribution iff $M_{X}(t)=M_{Y}(t)$ for $|t|<\delta$.

- Proof: follows from uniqueness of generating functions as $M_{X}(t)=G_{X}\left(e^{t}\right)$.
- Proof: If only take on finite values, consider

$$
p_{1} x_{1}^{k}+\cdots+p_{m} x_{m}^{k}=q_{1} y_{1}^{k}+\cdots+q_{n} y_{n}^{k} .
$$

Warning!

Dream theorem: A probability distribution is uniquely determined by its moments.

Warning!

Dream theorem: A probability distribution is uniquely determined by its moments.

Exist distinct probability distributions with same moments. Standard example: for $x \geq 0$,

$$
\begin{aligned}
f_{1}(x) & =\frac{1}{\sqrt{2 \pi x^{2}}} e^{-\left(\log ^{2} x\right) / 2} \\
f_{2}(x) & =f_{1}(x)[1+\sin (2 \pi \log x)]
\end{aligned}
$$

Warning!

Dream theorem: A probability distribution is uniquely determined by its moments.

Exist distinct probability distributions with same moments. Standard example: for $x \geq 0$,

$$
\begin{aligned}
f_{1}(x) & =\frac{1}{\sqrt{2 \pi x^{2}}} e^{-\left(\log ^{2} x\right) / 2} \\
f_{2}(x) & =f_{1}(x)[1+\sin (2 \pi \log x)]
\end{aligned}
$$

Plan of attack:

- Explore what goes wrong with the functions.
- Discuss properties needed to prevent this. Soln involves complex analysis, tells us when a MGF uniquely determines a distribution.

Complex Analysis

Warning from Real Analysis

Consider the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
g(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Using the definition of the derivative and L'Hopital's rule, we can show that f is infinitely differentiable, and all of its derivatives at the origin vanish.

Warning from Real Analysis

Consider the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
g(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Using the definition of the derivative and L'Hopital's rule, we can show that f is infinitely differentiable, and all of its derivatives at the origin vanish.

Ridiculous! Taylor series (which converges for all x !) only agrees with the function when $x=0$.

Warning from Real Analysis

Consider the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
g(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Using the definition of the derivative and L'Hopital's rule, we can show that f is infinitely differentiable, and all of its derivatives at the origin vanish.

Ridiculous! Taylor series (which converges for all x !) only agrees with the function when $x=0$.

A Taylor series does not uniquely determine a function! Both $\sin x$ and $\sin x+g(x)$ have the same Taylor series about $x=0$.

Complex Analysis Definitions

Complex variable, complex function

Any complex number z can be written as $z=x+i y$, with x and y real. A complex function is a map from \mathbb{C} to \mathbb{C}; in other words $f(z) \in \mathbb{C}$. Frequently one writes $x=\mathfrak{R e}(z)$, $y=\mathfrak{I m}(z)$, and $f(z)=u(x, y)+i v(x, y)$ with u and v functions from \mathbb{R}^{2} to \mathbb{R}.

Complex Analysis Definitions

Differentiable

f is differentiable at z_{0} means

$$
\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}
$$

exists, h tends to zero along any path in the complex plane. Write $f^{\prime}\left(z_{0}\right)$ if exists. If f is differentiable, then f satisfies the Cauchy-Riemann equations:

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}
$$

(one direction easy: send $h \rightarrow 0$ along the paths \widetilde{h} and $\widetilde{i h}$, with $\widetilde{h} \in \mathbb{R})$.

Complex Analysis Definitions

Many of the theorems below deal with open sets. We briefly review their definition and give some examples.

Open set, closed set

A subset U of \mathbb{C} is an open set if for any $z_{0} \in U$ there is a δ such that whenever $\left|z-z_{0}\right|<\delta$ then $z \in U$ (note δ is allowed to depend on z_{0}). A set C is closed if its complement, $\mathbb{C} \backslash C$, is open.

Examples of Open Sets, Closed Sets

Open sets:
(1) $U_{1}=\{z:|z|<r\}$ for any $r>0$. This is usually called the ball of radius r centered at the origin.
(2) $U_{2}=\{z: \mathfrak{R e}(z)>0\}$.

Closed sets:
(1) $C_{1}=\{z:|z| \leq r\}$.
(2) $C_{2}=\{z: \mathfrak{R e}(z) \geq 0\}$.

For a set that is neither open nor closed, consider $S=U_{1} \cup C_{2}$.

Holomorphic = Analytic

Holomorphic, analytic

Let U be an open subset of \mathbb{C}, and let f be a complex function.

- We say f is holomorphic on U if f is differentiable at every point $z \in U$.
- We say f is analytic on U if f has a series expansion that converges and agrees with f on U. This means that for any $z_{0} \in U$, for z close to z_{0} we can choose a_{n} 's such that

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} .
$$

Holomorphic = Analytic

Holomorphic equals Analytic

Let f be a complex function and U an open set. Then f is holomorphic on U if and only if f is analytic on U, and the series expansion for f is its Taylor series.

- If f is differentiable once, it is infinitely differentiable and f agrees with its Taylor series expansion!
- Very different than what happens in the case of functions of a real variable.

Limit points

Limit or accumulation point

We say z is a limit (or an accumulation) point of a sequence $\left\{z_{n}\right\}_{n=0}^{\infty}$ if there exists a subsequence $\left\{z_{n_{k}}\right\}_{k=0}^{\infty}$ converging to z.

Limit points

Limit or accumulation point

We say z is a limit (or an accumulation) point of a sequence $\left\{z_{n}\right\}_{n=0}^{\infty}$ if there exists a subsequence $\left\{z_{n_{k}}\right\}_{k=0}^{\infty}$ converging to z.

- If $z_{n}=1 / n$, then 0 is a limit point.
- If $z_{n}=\cos (\pi n)$ then there are two limit points, namely 1 and -1 . (If $z_{n}=\cos (n)$ then every point in $[-1,1]$ is a limit point of the sequence, though this is harder to show.)

Limit points

Limit or accumulation point

We say z is a limit (or an accumulation) point of a sequence $\left\{z_{n}\right\}_{n=0}^{\infty}$ if there exists a subsequence $\left\{z_{n_{k}}\right\}_{k=0}^{\infty}$ converging to z.

- If $z_{n}=\left(1+(-1)^{n}\right)^{n}+1 / n$, then 0 is a limit point. We can see this by taking the subsequence $\left\{z_{1}, z_{3}, z_{5}, z_{7}, \ldots\right\}$; note the subsequence $\left\{z_{0}, z_{2}, z_{4}, \ldots\right\}$ diverges to infinity.
- Let z_{n} denote the number of distinct prime factors of n. Then every positive integer is a limit point!

Limit points

Limit or accumulation point

We say z is a limit (or an accumulation) point of a sequence $\left\{z_{n}\right\}_{n=0}^{\infty}$ if there exists a subsequence $\left\{z_{n_{k}}\right\}_{k=0}^{\infty}$ converging to z.

- If $z_{n}=n^{2}$ then there are no limit points, as $\lim _{n \rightarrow \infty} z_{n}=\infty$.
- z_{0} any odd, positive integer, set

$$
z_{n+1}= \begin{cases}3 z_{n}+1 & \text { if } z_{n} \text { is odd } \\ z_{n} / 2 & \text { if } z_{n} \text { is even } .\end{cases}
$$

Conjectured that 1 is always a limit point.

Accumulation points and functions

Theorem

Let f be an analytic function on an open set U, with infinitely many zeros $z_{1}, z_{2}, z_{3}, \ldots$. If $\lim _{n \rightarrow \infty} z_{n} \in U$, then f is identically zero on U. In other words, if a function is zero along a sequence in U whose accumulation point is also in U, then that function is identically zero in U.

Accumulation points and functions

Consider $h(x)=x^{3} \sin (1 / x)$:

Figure: Plot of $x^{3} \sin (1 / x)$.

Show $x^{3} \sin (1 / x)$ is not complex differentiable. It will help if you recall $e^{i \theta}=\cos \theta+i \sin \theta$, or $\sin \theta=\left(e^{i \theta}-e^{-i \theta}\right) / 2$.

