Summary for the Day o	Complex Analysis	Integral Transforms	Central Limit Theorem

Math 341: Probability Seventeenth Lecture (11/10/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, November 10, 2009

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem

Summary for the Day

Summary for the Day ●	Complex Analysis	Integral Transforms 00000	Central Limit Theorem
Summary for th	ne dav		

- Complex Analysis:
 - Definitions.
 - Accumulation point theorem.
- Integral Transforms.
 - Laplace and Fourier.
 - Schwartz space and Inversion.
 - Complex Analysis Theorem.
- Central Limit Theorem:
 - Statement and standardization.
 - Poisson example.
 - Proof with MGFs.

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem

Complex Analysis

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem
o	●○○	00000	
Holomorphic =	Analytic		

Holomorphic, analytic

Let *U* be an open subset of \mathbb{C} , and let *f* be a complex function.

- We say *f* is holomorphic on *U* if *f* is differentiable at every point *z* ∈ *U*.
- We say *f* is analytic on *U* if *f* has a series expansion that converges and agrees with *f* on *U*. This means that for any *z*₀ ∈ *U*, for *z* close to *z*₀ we can choose *a_n*'s such that

$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n.$$

Summary for the Day o	Complex Analysis ●○○	Integral Transforms	Central Limit Theorem

Holomorphic = **Analytic**

Holomorphic equals Analytic

Let f be a complex function and U an open set. Then f is holomorphic on U if and only if f is analytic on U, and the series expansion for f is its Taylor series.

- If *f* is differentiable once, it is infinitely differentiable and *f* agrees with its Taylor series expansion!
- Very different than what happens in the case of functions of a real variable.

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem
o	○●○	00000	
Limit points			

We say *z* is a limit (or an accumulation) point of a sequence $\{z_n\}_{n=0}^{\infty}$ if there exists a subsequence $\{z_{n_k}\}_{k=0}^{\infty}$ converging to *z*.

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem
o	○●○	00000	
Limit points			

We say *z* is a limit (or an accumulation) point of a sequence $\{z_n\}_{n=0}^{\infty}$ if there exists a subsequence $\{z_{n_k}\}_{k=0}^{\infty}$ converging to *z*.

• If
$$z_n = 1/n$$
, then 0 is a limit point.

 If z_n = cos(πn) then there are two limit points, namely 1 and -1. (If z_n = cos(n) then *every* point in [-1, 1] is a limit point of the sequence, though this is harder to show.)

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem
o	○●○	00000	
Limit points			

We say *z* is a limit (or an accumulation) point of a sequence $\{z_n\}_{n=0}^{\infty}$ if there exists a subsequence $\{z_{n_k}\}_{k=0}^{\infty}$ converging to *z*.

- If z_n = (1 + (-1)ⁿ)ⁿ + 1/n, then 0 is a limit point. We can see this by taking the subsequence {z₁, z₃, z₅, z₇, ...}; note the subsequence {z₀, z₂, z₄, ...} diverges to infinity.
- Let *z_n* denote the number of distinct prime factors of *n*. Then every positive integer is a limit point!

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem
o	○●○	00000	
Limit points			

We say *z* is a limit (or an accumulation) point of a sequence $\{z_n\}_{n=0}^{\infty}$ if there exists a subsequence $\{z_{n_k}\}_{k=0}^{\infty}$ converging to *z*.

- If $z_n = n^2$ then there are no limit points, as $\lim_{n\to\infty} z_n = \infty$.
- *z*₀ any odd, positive integer, set

$$z_{n+1} = \begin{cases} 3z_n + 1 & ext{if } z_n ext{ is odd} \\ z_n/2 & ext{if } z_n ext{ is even.} \end{cases}$$

Conjectured that 1 is always a limit point.

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem
	000		

Accumulation points and functions

Theorem

Let *f* be an analytic function on an open set *U*, with infinitely many zeros z_1, z_2, z_3, \ldots . If $\lim_{n\to\infty} z_n \in U$, then *f* is identically zero on *U*. In other words, if a function is zero along a sequence in *U* whose accumulation point is also in *U*, then that function is identically zero in *U*.

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem
	000		

Accumulation points and functions

Consider $h(x) = x^3 \sin(1/x)$:

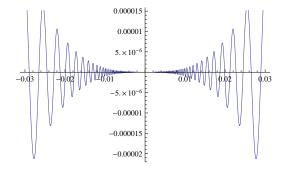


Figure: Plot of $x^3 \sin(1/x)$.

Show $x^3 \sin(1/x)$ is *not* complex differentiable. It will help if you recall $e^{i\theta} = \cos \theta + i \sin \theta$, or $\sin \theta = (e^{i\theta} - e^{-i\theta})/2i$.

Integral Transforms

Summary for the Day o	Complex Analysis	Integral Transforms ●○○○○	Central Limit Theorem
Laplace and Fo	ourier Transform		

General framework: Given K(t, s), consider

$$g(s) = \int_{-\infty}^{\infty} f(t) K(t,s) dt.$$

Summary for the Day o	Complex Analysis	Integral Transforms ●○○○○	Central Limit Theorem

Laplace and Fourier Transform

Laplace Transform

Let $K(t, s) = e^{-ts}$. The Laplace transform of *f*, denoted $\mathcal{L}f$, is given by

$$(\mathcal{L}f)(s) = \int_0^\infty f(t)e^{-st}dt.$$

Given a function g, its inverse Laplace transform, $\mathcal{L}^{-1}g$, is

$$\begin{aligned} (\mathcal{L}^{-1}g)(t) &= \lim_{T\to\infty} \frac{1}{2\pi i} \int_{c-i\tau}^{c+i\tau} e^{st}g(s)ds \\ &= \lim_{T\to\infty} \frac{1}{2\pi i} \int_{-\tau}^{\tau} e^{(c+i\tau)t}g(c+i\tau)id\tau. \end{aligned}$$

Summary for the Day o	Complex Analysis	Integral Transforms	Central Limit Theorem

Laplace and Fourier Transform

Fourier Transform

Let $K(x, y) = e^{-2\pi i x y}$. The Fourier transform of f, denoted $\mathcal{F}f$ or \hat{f} , is $\widehat{f}(y) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x y} dx$,

where $e^{i\theta} = \cos \theta + i \sin \theta$. The inverse Fourier transform of g, $\mathcal{F}^{-1}g$, is

$$(\mathcal{F}^{-1}g)(x) = \int_{-\infty}^{\infty} g(y) e^{2\pi i x y} dy.$$

Other books define the Fourier transform differently, sometimes using $K(x, y) = e^{-ixy}$ or $K(x, y) = e^{-ixy}/\sqrt{2\pi}$.

Summary for the Day o	Complex Analysis	Integral Transforms ●○○○○	Central Limit Theorem
Laplace and Fo	urier Transform		

- Laplace and Fourier transforms are related. Let s = 2πiy and consider functions f(x) which vanish for x ≤ 0. See the Laplace and Fourier transforms are equal.
 - Given a function *f* we can compute its transform. What about the other direction?

Summary for the Day o	Complex Analysis	Integral Transforms ○●○○○	Central Limit Theorem
Schwartz Space			

Schwartz space

The Schwartz space, $S(\mathbb{R})$, is the set of all infinitely differentiable functions *f* such that, for any non-negative integers *m* and *n*,

$$\sup_{x\in\mathbb{R}}\left|(1+x^2)^m\frac{d^nf}{dx^n}\right| < \infty,$$

where $\sup_{x \in \mathbb{R}} |g(x)|$ is the smallest number *B* such that $|g(x)| \leq B$ for all *x* (think 'maximum value' whenever you see supremum).

Summary for the Day o	Complex Analysis	Integral Transforms ○○●○○	Central Limit Theorem
Inversion Theor	em		

Inversion Theorem for Fourier Transform

Let $f \in \mathcal{S}(\mathbb{R})$, the Schwartz space. Then

$$f(\mathbf{x}) = \int_{-\infty}^{\infty} \widehat{f}(\mathbf{y}) e^{2\pi i \mathbf{x} \mathbf{y}} d\mathbf{y}.$$

$$f,g\in\mathcal{S}(\mathbb{R})$$
 with $\widehat{f}=\widehat{g}$ then $f(x)=g(x).$

- Interplay useful in probability: MGF is an integral transform of the density: $M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(t) dt$.
- If f(x) = 0 for $x \le 0$, this is the Laplace transform. Take $t = -2\pi i y$ then it is the Fourier transform. Related to the characteristic function $\phi(t) = \mathbb{E}[e^{itX}]$.

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem
		00000	

Key Results from Complex Analysis

Theorem

Assume the MGFs $M_X(t)$ and $M_Y(t)$ exist in a neighborhood of zero (i.e., there is some δ such that both functions exist for $|t| < \delta$). If $M_X(t) = M_Y(t)$ in this neighborhood, then $F_X(u) = F_Y(u)$ for all u. As the densities are the derivatives of the cumulative distribution functions, we have f = g.

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem
		00000	

Key Results from Complex Analysis

Theorem

Let $\{X_i\}_{i \in I}$ be a sequence of random variables with MGFs $M_{X_i}(t)$. Assume there is a $\delta > 0$ such that when $|t| < \delta$ we have $\lim_{i\to\infty} M_{X_i}(t) = M_X(t)$ for some MGF $M_X(t)$, and all MGFs converge for $|t| < \delta$. Then there exists a unique cumulative distribution function F whose moments are determined from $M_X(t)$ and for all x where $F_X(x)$ is continuous, $\lim_{n\to\infty} F_{X_i}(x) = F_X(x)$.

Summary for the Day o	Complex Analysis	Integral Transforms	Central Limit Theorem

Key Results from Complex Analysis

Theorem: *X* and *Y* continuous random variables on $[0, \infty)$ with continuous densities *f* and *g*, all of whose moments are finite and agree, and

- $\exists C > 0$ st $\forall c \leq C$, $e^{(c+1)t}f(e^t)$ and $e^{(c+1)t}g(e^t)$ are Schwartz functions.
- The (not necessarily integral) moments

$$\mu'_{r_n}(f) = \int_0^\infty x^{r_n} f(x) dx$$
 and $\mu'_{r_n}(g) = \int_0^\infty x^{r_n} g(x) dx$

agree for some sequence of non-negative real numbers $\{r_n\}_{n=0}^{\infty}$ which has a finite accumulation point (i.e., $\lim_{n\to\infty} r_n = r < \infty$).

Then f = g (in other words, knowing all these moments uniquely determines the probability density).

Summary for the Day o	Complex Analysis	Integral Transforms ○○○○●	Central Limit Theorem
Application to equ	ual integral mom	ents	

Return to the two densities causing trouble:

$$\begin{array}{rcl} f_1(x) & = & \displaystyle \frac{1}{\sqrt{2\pi x^2}} \, e^{-(\log^2 x)/2} \\ f_2(x) & = & \displaystyle f_1(x) \left[1 + \sin(2\pi \log x) \right]. \end{array}$$

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem
		00000	

Application to equal integral moments

Return to the two densities causing trouble:

$$\begin{array}{rcl} f_1(x) & = & \displaystyle \frac{1}{\sqrt{2\pi x^2}} \, e^{-(\log^2 x)/2} \\ f_2(x) & = & \displaystyle f_1(x) \left[1 + \sin(2\pi \log x) \right]. \end{array}$$

- Same integral moments: $e^{k^2/2}$.
- Have the correct decay.
- Using complex analysis (specifically, contour integration), we can calculate the (a + ib)thmoments:

For
$$f_1$$
 : $e^{(a+ib)^2/2}$

For
$$f_2$$
: $\mathbf{e}^{(a+ib)^2/2} + \frac{i}{2} \left(\mathbf{e}^{(a+i(b-2\pi))^2/2} - \mathbf{e}^{(a+i(b+2\pi))^2/2} \right)$

Summary for the Day o	Complex Analysis	Integral Transforms	Central Limit Theorem

Application to equal integral moments

Return to the two densities causing trouble:

$$\begin{array}{lll} f_1(x) & = & \frac{1}{\sqrt{2\pi x^2}} \, e^{-(\log^2 x)/2} \\ f_2(x) & = & f_1(x) \left[1 + \sin(2\pi \log x) \right]. \end{array}$$

- No sequence of real moments having an accumulation point where they agree.
- *a*thmoment of *f*₂ is

$$e^{a^2/2} + e^{(a-2i\pi)^2/2} \left(1 - e^{4ia\pi}
ight),$$

and this is never zero unless *a* is a half-integer.

• Only way this can vanish is if $1 = e^{4ia\pi}$.

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem

Central Limit Theorem

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem
			0000

Normalization of a random variable

Normalization (standardization) of a random variable

Let X be a random variable with mean μ and standard deviation σ , both of which are finite. The normalization, Y, is defined by

$$\mathsf{Y} := \frac{\mathsf{X} - \mathbb{E}[\mathsf{X}]}{\operatorname{StDev}(\mathsf{X})} = \frac{\mathsf{X} - \mu}{\sigma}$$

Note that

$$\mathbb{E}[Y] = 0$$
 and $StDev(Y) = 1$.

Summary	the	Day	

Complex Analysis

Integral Transforms

Central Limit Theorem

Statement of the Central Limit Theorem

Normal distribution

A random variable *X* is normally distributed (or has the normal distribution, or is a Gaussian random variable) with mean μ and variance σ^2 if the density of *X* is

$$f(\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\mathbf{x}-\mu)^2}{2\sigma^2}\right).$$

We often write $X \sim N(\mu, \sigma^2)$ to denote this. If $\mu = 0$ and $\sigma^2 = 1$, we say *X* has the standard normal distribution.

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem
			0000

Statement of the Central Limit Theorem

Central Limit Theorem

Let X_1, \ldots, X_N be independent, identically distributed random variables whose moment generating functions converge for $|t| < \delta$ for some $\delta > 0$ (this implies all the moments exist and are finite). Denote the mean by μ and the variance by σ^2 , let

$$\overline{X}_N = \frac{X_1 + \dots + X_N}{N}$$

and set

$$Z_N = rac{\overline{X}_N - \mu}{\sigma/\sqrt{N}}.$$

Then as $N \to \infty$, the distribution of Z_N converges to the standard normal.

Summary for the Day o	Complex Analysis	Integral Transforms	Central Limit Theorem ○●○○

Statement of the Central Limit Theorem

Why are there only tables of values of standard normal?

Summary for the Day	Complex Analysis	Integral Transforms	Central Limit Theorem
o		00000	○●○○
Statement of th	ne Central Limit Th	eorem	

Why are there only tables of values of standard normal?

Answer: normalization. Similar to log tables (only need one from change of base formula).

Moment generating function of normal distributions

Let *X* be a normal random variable with mean μ and variance σ^2 . Its moment generating function satisfies

$$M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}.$$

In particular, if Z has the standard normal distribution, its moment generating function is

$$M_Z(t) = e^{t^2/2}.$$

Moment generating function of normal distributions

Let *X* be a normal random variable with mean μ and variance σ^2 . Its moment generating function satisfies

$$M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}.$$

In particular, if Z has the standard normal distribution, its moment generating function is

$$M_Z(t) = e^{t^2/2}.$$

Proof: Complete the square.

Summary for the Day o	Complex Analysis	Integral Transforms	Central Limit Theorem

Poisson Example of the CLT

Example

Let X, X_1, \ldots, X_N be Poisson random variables with parameter λ . Let

$$\overline{X}_N = \frac{X_1 + \cdots + X_N}{N}, \quad Y = \frac{\overline{X} - \mathbb{E}[\overline{X}]}{\operatorname{StDev}(\overline{X})}$$

Then as $N \to \infty$, Y converges to having the standard normal distribution.

Summary for the Day o	Complex Analysis	Central Limit Theorem ○○○●

Poisson Example of the CLT

Example

Let X, X_1, \ldots, X_N be Poisson random variables with parameter λ . Let

$$\overline{X}_N = \frac{X_1 + \cdots + X_N}{N}, \quad Y = \frac{\overline{X} - \mathbb{E}[\overline{X}]}{\operatorname{StDev}(\overline{X})}$$

Then as $N \rightarrow \infty$, Y converges to having the standard normal distribution.

Moment generating function: $M_X(t) = \exp(\lambda(e^t - 1))$.