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Summary for the day

Complex Analysis:
⋄ Definitions.
⋄ Accumulation point theorem.

Integral Transforms.
⋄ Laplace and Fourier.
⋄ Schwartz space and Inversion.
⋄ Complex Analysis Theorem.

Central Limit Theorem:
⋄ Statement and standardization.
⋄ Poisson example.
⋄ Proof with MGFs.
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Holomorphic = Analytic

Holomorphic, analytic
Let U be an open subset of C, and let f be a complex
function.

We say f is holomorphic on U if f is differentiable at
every point z ∈ U.
We say f is analytic on U if f has a series expansion
that converges and agrees with f on U. This means
that for any z0 ∈ U, for z close to z0 we can choose
an’s such that

f (z) =

∞∑

n=0

an(z − z0)
n.
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Holomorphic = Analytic

Holomorphic equals Analytic
Let f be a complex function and U an open set. Then f is
holomorphic on U if and only if f is analytic on U, and the
series expansion for f is its Taylor series.

If f is differentiable once, it is infinitely differentiable
and f agrees with its Taylor series expansion!
Very different than what happens in the case of
functions of a real variable.
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Limit points

Limit or accumulation point
We say z is a limit (or an accumulation) point of a
sequence {zn}∞n=0 if there exists a subsequence {znk}∞k=0
converging to z.
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Limit points

Limit or accumulation point
We say z is a limit (or an accumulation) point of a
sequence {zn}∞n=0 if there exists a subsequence {znk}∞k=0
converging to z.

If zn = 1/n, then 0 is a limit point.

If zn = cos(πn) then there are two limit points, namely
1 and −1. (If zn = cos(n) then every point in [−1, 1] is
a limit point of the sequence, though this is harder to
show.)
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Limit points

Limit or accumulation point
We say z is a limit (or an accumulation) point of a
sequence {zn}∞n=0 if there exists a subsequence {znk}∞k=0
converging to z.

If zn = (1 + (−1)n)n + 1/n, then 0 is a limit point. We
can see this by taking the subsequence
{z1, z3, z5, z7, . . .}; note the subsequence
{z0, z2, z4, . . . } diverges to infinity.

Let zn denote the number of distinct prime factors of
n. Then every positive integer is a limit point!
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Limit points

Limit or accumulation point
We say z is a limit (or an accumulation) point of a
sequence {zn}∞n=0 if there exists a subsequence {znk}∞k=0
converging to z.

If zn = n2 then there are no limit points, as
limn→∞ zn = ∞.

z0 any odd, positive integer, set

zn+1 =

{
3zn + 1 if zn is odd
zn/2 if zn is even.

Conjectured that 1 is always a limit point.
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Accumulation points and functions

Theorem
Let f be an analytic function on an open set U, with
infinitely many zeros z1, z2, z3, . . . . If limn→∞ zn ∈ U, then f
is identically zero on U. In other words, if a function is
zero along a sequence in U whose accumulation point is
also in U, then that function is identically zero in U.
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Accumulation points and functions

Consider h(x) = x3 sin(1/x):
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Figure: Plot of x3 sin(1/x).

Show x3 sin(1/x) is not complex differentiable. It will help
if you recall eiθ = cos θ + i sin θ, or sin θ = (eiθ − e−iθ)/2i .
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Integral
Transforms
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Laplace and Fourier Transform

General framework: Given K (t , s), consider

g(s) =

∫
∞

−∞

f (t)K (t , s)dt .
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Laplace and Fourier Transform

Laplace Transform

Let K (t , s) = e−ts. The Laplace transform of f , denoted
Lf , is given by

(Lf )(s) =

∫
∞

0
f (t)e−stdt .

Given a function g, its inverse Laplace transform, L−1g, is

(L−1g)(t) = lim
T→∞

1
2πi

∫ c+iT

c−iT
estg(s)ds

= lim
T→∞

1
2πi

∫ T

−T
e(c+iτ)tg(c + iτ)idτ.
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Laplace and Fourier Transform

Fourier Transform

Let K (x , y) = e−2πixy . The Fourier transform of f , denoted
F f or f̂ , is

f̂ (y) =

∫
∞

−∞

f (x)e−2πixydx ,

where eiθ = cos θ + i sin θ. The inverse Fourier transform
of g, F−1g, is

(F−1g)(x) =

∫
∞

−∞

g(y)e2πixy dy .

Other books define the Fourier transform differently,
sometimes using K (x , y) = e−ixy or K (x , y) = e−ixy/

√
2π.
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Laplace and Fourier Transform

Laplace and Fourier transforms are related. Let
s = 2πiy and consider functions f (x) which vanish for
x ≤ 0. See the Laplace and Fourier transforms are
equal.

Given a function f we can compute its transform.
What about the other direction?
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Schwartz Space

Schwartz space

The Schwartz space, S(R), is the set of all infinitely
differentiable functions f such that, for any non-negative
integers m and n,

sup
x∈R

∣∣∣∣(1 + x2)m dnf
dxn

∣∣∣∣ < ∞,

where supx∈R
|g(x)| is the smallest number B such that

|g(x)| ≤ B for all x (think ‘maximum value’ whenever you
see supremum).
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Inversion Theorem

Inversion Theorem for Fourier Transform
Let f ∈ S(R), the Schwartz space. Then

f (x) =

∫
∞

−∞

f̂ (y)e2πixydy .

f , g ∈ S(R) with f̂ = ĝ then f (x) = g(x).

Interplay useful in probability: MGF is an integral
transform of the density:MX (t) =

∫
∞

−∞
etx f (t)dt .

If f (x) = 0 for x ≤ 0, this is the Laplace transform .
Take t = −2πiy then it is the Fourier transform.
Related to the characteristic function φ(t) = E[eitX ].
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Key Results from Complex Analysis

Theorem
Assume the MGFs MX (t) and MY (t) exist in a
neighborhood of zero (i.e., there is some δ such that both
functions exist for |t | < δ). If MX (t) = MY (t) in this
neighborhood, then FX (u) = FY (u) for all u. As the
densities are the derivatives of the cumulative distribution
functions, we have f = g.
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Key Results from Complex Analysis

Theorem
Let {Xi}i∈I be a sequence of random variables with MGFs
MXi (t). Assume there is a δ > 0 such that when |t | < δ we
have limi→∞ MXi (t) = MX (t) for some MGF MX (t), and all
MGFs converge for |t | < δ. Then there exists a unique
cumulative distribution function F whose moments are
determined from MX (t) and for all x where FX (x) is
continuous, limn→∞ FXi (x) = FX (x).
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Key Results from Complex Analysis

Theorem: X and Y continuous random variables on
[0,∞) with continuous densities f and g, all of whose
moments are finite and agree, and

1 ∃C > 0 st ∀c ≤ C, e(c+1)t f (et) and e(c+1)tg(et ) are
Schwartz functions.

2 The (not necessarily integral) moments

µ′

rn
(f ) =

∫
∞

0
x rn f (x)dx and µ′

rn
(g) =

∫
∞

0
x rng(x)dx

agree for some sequence of non-negative real
numbers {rn}∞n=0 which has a finite accumulation point
(i.e., limn→∞ rn = r < ∞).

Then f = g (in other words, knowing all these moments
uniquely determines the probability density).
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Application to equal integral moments

Return to the two densities causing trouble:

f1(x) =
1√

2πx2
e−(log2 x)/2

f2(x) = f1(x) [1 + sin(2π log x)] .

23



Summary for the Day Complex Analysis Integral Transforms Central Limit Theorem

Application to equal integral moments

Return to the two densities causing trouble:

f1(x) =
1√

2πx2
e−(log2 x)/2

f2(x) = f1(x) [1 + sin(2π log x)] .

Same integral moments: ek2/2.
Have the correct decay.
Using complex analysis (specifically, contour
integration), we can calculate the (a + ib)thmoments:

For f1 : e(a+ib)2/2

For f2 : e(a+ib)2/2 +
i
2

(
e(a+i(b−2π))2/2 − e(a+i(b+2π))2/2

)
.
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Application to equal integral moments

Return to the two densities causing trouble:

f1(x) =
1√

2πx2
e−(log2 x)/2

f2(x) = f1(x) [1 + sin(2π log x)] .

No sequence of real moments having an
accumulation point where they agree.
athmoment of f2 is

ea2/2 + e(a−2iπ)2/2
(
1 − e4iaπ

)
,

and this is never zero unless a is a half-integer.
Only way this can vanish is if 1 = e4iaπ.
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Central Limit Theorem
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Normalization of a random variable

Normalization (standardization) of a random variable
Let X be a random variable with mean µ and standard
deviation σ, both of which are finite. The normalization, Y ,
is defined by

Y :=
X − E[X ]

StDev(X )
=

X − µ

σ
.

Note that

E[Y ] = 0 and StDev(Y ) = 1.
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Statement of the Central Limit Theorem

Normal distribution
A random variable X is normally distributed (or has the
normal distribution, or is a Gaussian random variable)
with mean µ and variance σ2 if the density of X is

f (x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
.

We often write X ∼ N(µ, σ2) to denote this. If µ = 0 and
σ2 = 1, we say X has the standard normal distribution.
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Statement of the Central Limit Theorem

Central Limit Theorem
Let X1, . . . , XN be independent, identically distributed
random variables whose moment generating functions
converge for |t | < δ for some δ > 0 (this implies all the
moments exist and are finite). Denote the mean by µ and
the variance by σ2, let

X N =
X1 + · · ·+ XN

N

and set

ZN =
X N − µ

σ/
√

N
.

Then as N → ∞, the distribution of ZN converges to the
standard normal.
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Statement of the Central Limit Theorem

Why are there only tables of values of standard normal?
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Statement of the Central Limit Theorem

Why are there only tables of values of standard normal?

Answer: normalization. Similar to log tables (only need
one from change of base formula).
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MGF and the CLT

Moment generating function of normal distributions
Let X be a normal random variable with mean µ and
variance σ2. Its moment generating function satisfies

MX (t) = eµt+ σ
2 t2

2 .

In particular, if Z has the standard normal distribution, its
moment generating function is

MZ (t) = et2/2.
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MGF and the CLT

Moment generating function of normal distributions
Let X be a normal random variable with mean µ and
variance σ2. Its moment generating function satisfies

MX (t) = eµt+ σ
2 t2

2 .

In particular, if Z has the standard normal distribution, its
moment generating function is

MZ (t) = et2/2.

Proof: Complete the square.
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Poisson Example of the CLT

Example
Let X , X1, . . . , XN be Poisson random variables with
parameter λ. Let

X N =
X1 + · · ·+ XN

N
, Y =

X − E[X ]

StDev(X )
.

Then as N → ∞, Y converges to having the standard
normal distribution.
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Poisson Example of the CLT

Example
Let X , X1, . . . , XN be Poisson random variables with
parameter λ. Let

X N =
X1 + · · ·+ XN

N
, Y =

X − E[X ]

StDev(X )
.

Then as N → ∞, Y converges to having the standard
normal distribution.

Moment generating function: MX (t) = exp(λ(et − 1)).
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