Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis

Math 341: Probability Eighteenth Lecture (11/12/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, November 12, 2009

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis

Summary for the Day

Summary for the Day ●	Review 00	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
Summary fo	or the	day			

- Complex Analysis:
 - Review definitions / statements.
 - Accumulation point theorems.
- Clicker question:
 - Statement of the CLT.
 - Clicker question on rate of convergence.
- Central Limit Theorem:
 - Poisson example.
 - Proof with MGFs.
 - Proof with Fourier analysis.

Summary for the Day o	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis

Review

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
	0				

Accumulation points and functions

Theorem

Let *f* be an analytic function on an open set *U*, with infinitely many zeros z_1, z_2, z_3, \ldots . If $\lim_{n\to\infty} z_n \in U$, then *f* is identically zero on *U*. In other words, if a function is zero along a sequence in *U* whose accumulation point is also in *U*, then that function is identically zero in *U*.

Schwartz space $S(\mathbb{R})$: all infinitely differentiable functions *f* such that, for any non-negative integers *m* and *n*,

$$\sup_{x\in\mathbb{R}}\left|(1+x^2)^m\frac{d^nf}{dx^n}\right| < \infty.$$

Inversion Theorem for Fourier Transform: Let $f \in \mathcal{S}(\mathbb{R})$. Then

$$f(\mathbf{x}) = \int_{-\infty}^{\infty} \widehat{f}(\mathbf{y}) e^{2\pi i \mathbf{x} \mathbf{y}} d\mathbf{y}.$$

 $f,g\in\mathcal{S}(\mathbb{R})$ with $\widehat{f}=\widehat{g}$ then f(x)=g(x).

Summary for the Da	y Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis

Accumulation and Moments

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
		•0			

Accumulation Points and Moments

Theorem

Assume the MGFs $M_X(t)$ and $M_Y(t)$ exist in a neighborhood of zero (i.e., there is some δ such that both functions exist for $|t| < \delta$). If $M_X(t) = M_Y(t)$ in this neighborhood, then $F_X(u) = F_Y(u)$ for all u. As the densities are the derivatives of the cumulative distribution functions, we have f = g.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
		••			

Accumulation Points and Moments

Theorem

Let $\{X_i\}_{i \in I}$ be a sequence of random variables with MGFs $M_{X_i}(t)$. Assume there is a $\delta > 0$ such that when $|t| < \delta$ we have $\lim_{i\to\infty} M_{X_i}(t) = M_X(t)$ for some MGF $M_X(t)$, and all MGFs converge for $|t| < \delta$. Then there exists a unique cumulative distribution function F whose moments are determined from $M_X(t)$ and for all x where $F_X(x)$ is continuous, $\lim_{n\to\infty} F_{X_i}(x) = F_X(x)$.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
		•0			

Accumulation Points and Moments

Theorem: *X* and *Y* continuous random variables on $[0, \infty)$ with continuous densities *f* and *g*, all of whose moments are finite and agree, and

- $\exists C > 0$ st $\forall c \leq C$, $e^{(c+1)t}f(e^t)$ and $e^{(c+1)t}g(e^t)$ are Schwartz functions.
- The (not necessarily integral) moments

$$\mu'_{r_n}(f) = \int_0^\infty x^{r_n} f(x) dx$$
 and $\mu'_{r_n}(g) = \int_0^\infty x^{r_n} g(x) dx$

agree for some sequence of non-negative real numbers $\{r_n\}_{n=0}^{\infty}$ which has a finite accumulation point (i.e., $\lim_{n\to\infty} r_n = r < \infty$).

Then f = g (in other words, knowing all these moments uniquely determines the probability density).

Summary for the Day o	Review 00	Accumulation and Moments $\circ \bullet$	Clicker Questions	

Application to equal integral moments

Return to the two densities causing trouble:

$$\begin{array}{rcl} f_1(x) & = & \displaystyle \frac{1}{\sqrt{2\pi x^2}} \, e^{-(\log^2 x)/2} \\ f_2(x) & = & \displaystyle f_1(x) \left[1 + \sin(2\pi \log x) \right]. \end{array}$$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
		00			

Application to equal integral moments

Return to the two densities causing trouble:

$$\begin{array}{rcl} f_1(x) & = & \frac{1}{\sqrt{2\pi x^2}} \, e^{-(\log^2 x)/2} \\ f_2(x) & = & f_1(x) \left[1 + \sin(2\pi \log x) \right]. \end{array}$$

- Same integral moments: $e^{k^2/2}$.
- Have the correct decay.
- Using complex analysis (specifically, contour integration), we can calculate the (a + ib)thmoments:

For
$$f_1$$
 : $e^{(a+ib)^2/2}$

For
$$f_2$$
: $\mathbf{e}^{(a+ib)^2/2} + \frac{i}{2} \left(\mathbf{e}^{(a+i(b-2\pi))^2/2} - \mathbf{e}^{(a+i(b+2\pi))^2/2} \right)$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
		00			

Application to equal integral moments

Return to the two densities causing trouble:

$$\begin{array}{lll} f_1(x) & = & \frac{1}{\sqrt{2\pi x^2}} e^{-(\log^2 x)/2} \\ f_2(x) & = & f_1(x) \left[1 + \sin(2\pi \log x)\right]. \end{array}$$

- No sequence of real moments having an accumulation point where they agree.
- athmoment of f₂ is

$$e^{a^2/2} + e^{(a-2i\pi)^2/2} \left(1 - e^{4ia\pi}\right),$$

and this is never zero unless a is a half-integer.

• Only way this can vanish is if $1 = e^{4ia\pi}$.

Summary for the Day o	Review 00	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Anal	lysis
			cker stions			

Summary for the Day Review Accumulation and Moments

Clicker Questions

CLT and MGF

CLT and Fourier Analysis

Normalization of a random variable

Normalization (standardization) of a random variable

Let X be a random variable with mean μ and standard deviation σ , both of which are finite. The normalization, Y, is defined by

$$Y := \frac{X - \mathbb{E}[X]}{\text{StDev}(X)} = \frac{X - \mu}{\sigma}$$

Note that

$$\mathbb{E}[Y] = 0$$
 and $StDev(Y) = 1$.

Summary for the Day o Review Accumulation and Moments

Clicker Questions

CLT and MGF

CLT and Fourier Analysis

Statement of the Central Limit Theorem

Normal distribution

A random variable *X* is normally distributed (or has the normal distribution, or is a Gaussian random variable) with mean μ and variance σ^2 if the density of *X* is

$$f(\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\mathbf{x}-\mu)^2}{2\sigma^2}\right).$$

We often write $X \sim N(\mu, \sigma^2)$ to denote this. If $\mu = 0$ and $\sigma^2 = 1$, we say *X* has the standard normal distribution.

Clicker Questions

CLT and MGF

CLT and Fourier Analysis

Statement of the Central Limit Theorem

Central Limit Theorem

Let X_1, \ldots, X_N be independent, identically distributed random variables whose moment generating functions converge for $|t| < \delta$ for some $\delta > 0$ (this implies all the moments exist and are finite). Denote the mean by μ and the variance by σ^2 , let

$$\overline{X}_N = \frac{X_1 + \dots + X_N}{N}$$

and set

$$Z_N = rac{\overline{X}_N - \mu}{\sigma/\sqrt{N}}.$$

Then as $N \to \infty$, the distribution of Z_N converges to the standard normal.

ummary for the Day	Review	Accumulation and M

Clicker Questions

CLT and MGF

CLT and Fourier Analysis

Statement of the Central Limit Theorem

Why are there only tables of values of standard normal?

Summary for the Day o	Review 00	Accumulation and Moments		CLT and MGF	CLT and Fourier Analysis
Statement d	of the	Central Limit Th	eorem		

Why are there only tables of values of standard normal?

Answer: normalization. Similar to log tables (only need one from change of base formula).

Clicker Questions

CLT and MGF CLT an 00000 00000

CLT and Fourier Analysis

Alternative Statement of the Central Limit Theorem

Central Limit Theorem

Let X_1, \ldots, X_N be independent, identically distributed random variables whose moment generating functions converge for $|t| < \delta$ for some $\delta > 0$ (this implies all the moments exist and are finite). Denote the mean by μ and the variance by σ^2 , let

$$S_N = X_1 + \cdots + X_N$$

and set

$$Z_N = rac{S_N - N\mu}{\sqrt{N\sigma^2}}.$$

Then as $N \to \infty$, the distribution of Z_N converges to the standard normal.

Key probabilities for $Z \sim N(0, 1)$ (i.e., Z has the standard normal distribution).

•
$$Prob(|Z| \le 1) \approx 68.2\%$$
.

•
$$Prob(|Z| \le 1.96) \approx 95\%$$
.

•
$$Prob(|Z| \le 2.575) \approx 99\%$$
.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
			000000000		

Question:

- Uniform: $X \sim \text{Unif}(-\sqrt{3}, \sqrt{3})$.
- 2 Laplace: $f_X(x) = e^{-\sqrt{2}|x|}/\sqrt{2}$.
- 3 Normal: $X \sim N(0, 1)$.
- Millered Cauchy: $f_X(x) = \frac{4a \sin(\pi/8)}{\pi} \frac{1}{1 + (ax)^8},$ $a = \sqrt{\sqrt{2} 1}.$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
			000000000		

Question:

- Uniform: $X \sim \text{Unif}(-\sqrt{3}, \sqrt{3})$. Kurtosis: 1.8.
- 2 Laplace: $f_X(x) = e^{-\sqrt{2}|x|}/\sqrt{2}$. Kurtosis: 6.
- Solution Normal: $X \sim N(0, 1)$. Kurtosis: 3.
- Millered Cauchy: $f_X(x) = \frac{4a \sin(\pi/8)}{\pi} \frac{1}{1+(ax)^8}$, $a = \sqrt{\sqrt{2} 1}$. Kurtosis: $1 + \sqrt{2} \approx 2.414$.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
			000000000		

Question:

- Uniform: $X \sim \text{Unif}(-\sqrt{3}, \sqrt{3})$. Kurtosis: 1.8.
- 2 Laplace: $f_X(x) = e^{-\sqrt{2}|x|}/\sqrt{2}$. Kurtosis: 6.
- Solution Normal: $X \sim N(0, 1)$. Kurtosis: 3.
- Millered Cauchy: $f_X(x) = \frac{4a\sin(\pi/8)}{\pi} \frac{1}{1+(ax)^8}$, $a = \sqrt{\sqrt{2}-1}$. Kurtosis: $1 + \sqrt{2} \approx 2.414$. $\log M_X(t) = \frac{t^2}{2} + \frac{(\mu_4 - 3)t^4}{4!} + O(t^6)$.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
			000000000		

Question:

- Uniform: $X \sim \text{Unif}(-\sqrt{3}, \sqrt{3})$. Excess Kurtosis: -1.2.
- 2 Laplace: $f_X(x) = e^{-\sqrt{2}|x|}/\sqrt{2}$. Excess Kurtosis: 3.
- Solution Normal: $X \sim N(0, 1)$. Excess Kurtosis: 0.

Millered Cauchy:
$$f_X(x) = \frac{4a\sin(\pi/8)}{\pi} \frac{1}{1+(ax)^8}$$
,
$$a = \sqrt{\sqrt{2}-1}$$
. Excess Kurtosis: $1 + \sqrt{2} - 3 \approx -.586$.
og $M_X(t) = \frac{t^2}{2} + \frac{(\mu_4 - 3)t^4}{4!} + O(t^6)$.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
			00000000		

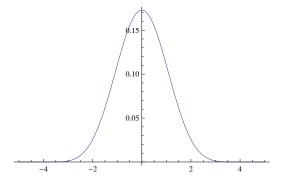


Figure: Convolutions of 5 Uniforms.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
			00000000		

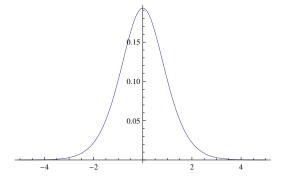


Figure: Convolutions of 5 Laplaces.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
			00000000		

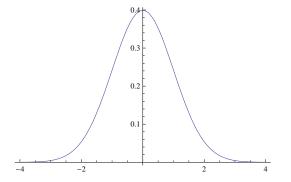


Figure: Convolutions of 5 Normals.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
			00000000		

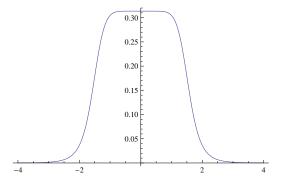


Figure: Convolutions of 1 Millered Cauchy.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
			00000000		

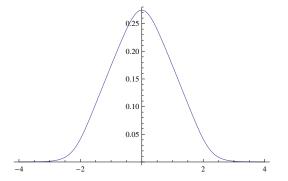


Figure: Convolutions of 2 Millered Cauchy.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis

Central Limit Theorem

Moment generating function of normal distributions

Let *X* be a normal random variable with mean μ and variance σ^2 . Its moment generating function satisfies

$$M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}.$$

In particular, if Z has the standard normal distribution, its moment generating function is

$$M_Z(t) = e^{t^2/2}.$$

Moment generating function of normal distributions

Let *X* be a normal random variable with mean μ and variance σ^2 . Its moment generating function satisfies

$$M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}.$$

In particular, if Z has the standard normal distribution, its moment generating function is

$$M_Z(t) = e^{t^2/2}.$$

Proof: Complete the square.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
				00000	

Poisson Example of the CLT

Example

Let X, X_1, \ldots, X_N be Poisson random variables with parameter λ . Let

$$\overline{X}_N = \frac{X_1 + \dots + X_N}{N}, \quad Y = \frac{\overline{X} - \mathbb{E}[\overline{X}]}{\operatorname{StDev}(\overline{X})}$$

Then as $N \to \infty$, Y converges to having the standard normal distribution.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
				0000	

Poisson Example of the CLT

Example

Let X, X_1, \ldots, X_N be Poisson random variables with parameter λ . Let

$$\overline{X}_N = \frac{X_1 + \cdots + X_N}{N}, \quad Y = \frac{\overline{X} - \mathbb{E}[\overline{X}]}{\text{StDev}(\overline{X})}$$

Then as $N \rightarrow \infty$, Y converges to having the standard normal distribution.

Moment generating function: $M_X(t) = \exp(\lambda(e^t - 1))$. Independent formula: $M_{X_1+X_2}(t) = M_{X_1}(t)M_{X_2}(t)$. Shift formula: $M_{aX+b}(t) = e^{bt}M_X(at)$.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
				00000	

General proof via Moment Generating Functions

X_i's iidrv,

$$Z_N = \frac{\overline{X} - \mu}{\sigma/\sqrt{N}} = \sum_{n=1}^N \frac{X_i - \mu}{\sigma\sqrt{N}}$$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
				00000	

 X_i 's iidrv,

$$Z_N = \frac{\overline{X} - \mu}{\sigma/\sqrt{N}} = \sum_{n=1}^N \frac{X_i - \mu}{\sigma\sqrt{N}}.$$

Moment Generating Function is:

$$M_{Z_N}(t) = \prod_{n=1}^{N} e^{\frac{-\mu t}{\sigma \sqrt{N}}} M_X\left(\frac{t}{\sigma \sqrt{N}}\right) = e^{\frac{-\mu t \sqrt{N}}{\sigma}} M_X\left(\frac{t}{\sigma \sqrt{N}}\right)^N$$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
				00000	

 X_i 's iidrv,

$$Z_N = \frac{\overline{X} - \mu}{\sigma/\sqrt{N}} = \sum_{n=1}^N \frac{X_i - \mu}{\sigma\sqrt{N}}$$

Moment Generating Function is:

$$M_{Z_N}(t) = \prod_{n=1}^{N} e^{\frac{-\mu t}{\sigma \sqrt{N}}} M_X\left(\frac{t}{\sigma \sqrt{N}}\right) = e^{\frac{-\mu t \sqrt{N}}{\sigma}} M_X\left(\frac{t}{\sigma \sqrt{N}}\right)^N$$

Taking logarithms:

$$\log M_{Z_N}(t) = -\frac{\mu t \sqrt{N}}{\sigma} + N \log M_X\left(\frac{t}{\sigma \sqrt{N}}\right).$$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
				00000	

Expansion of MGF:

$$M_X(t) = 1 + \mu t + \frac{\mu'_2 t^2}{2!} + \cdots = 1 + t \left(\mu + \frac{\mu'_2 t}{2!} + \cdots \right) t$$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
				00000	

Expansion of MGF:

$$M_X(t) = 1 + \mu t + \frac{\mu'_2 t^2}{2!} + \cdots = 1 + t \left(\mu + \frac{\mu'_2 t}{2} + \cdots \right).$$

Expansion for log(1 + u) is

$$\log(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3!} - \cdots$$

٠

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
				00000	

Expansion of MGF:

$$M_X(t) = 1 + \mu t + \frac{\mu'_2 t^2}{2!} + \cdots = 1 + t \left(\mu + \frac{\mu'_2 t}{2!} + \cdots \right).$$

Expansion for log(1 + u) is

$$\log(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3!} - \cdots$$

.

Combining gives

$$\log M_X(t) = t\left(\mu + \frac{\mu'_2 t}{2} + \cdots\right) - \frac{t^2 \left(\mu + \frac{\mu'_2 t}{2} + \cdots\right)^2}{2} + \cdots$$
$$= \mu t + \frac{\mu'_2 - \mu^2}{2} t^2 + \text{terms in } t^3 \text{ or higher.}$$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
				00000	

$$\log M_X \left(\frac{t}{\sigma\sqrt{N}}\right)$$

= $\frac{\mu t}{\sigma\sqrt{N}} + \frac{\sigma^2}{2}\frac{t^2}{\sigma^2 N} + \text{terms in } t^3/N^{3/2} \text{ or lower in } N.$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
				00000	

$$\log M_X\left(\frac{t}{\sigma\sqrt{N}}\right)$$

= $\frac{\mu t}{\sigma\sqrt{N}} + \frac{\sigma^2}{2}\frac{t^2}{\sigma^2 N} + \text{terms in } t^3/N^{3/2} \text{ or lower in } N.$

Denote lower order terms by $O(N^{-3/2})$. Collecting gives

$$\log M_{Z_N}(t) = -\frac{\mu t \sqrt{N}}{\sigma} + N \left(\frac{\mu t}{\sigma \sqrt{N}} + \frac{t^2}{2N} + O(N^{-3/2}) \right)$$

= $-\frac{\mu t \sqrt{N}}{\sigma} + \frac{\mu t \sqrt{N}}{\sigma} + \frac{t^2}{2} + O(N^{-1/2})$
= $\frac{t^2}{2} + O(N^{-1/2}).$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis

Central Limit Theorem and Fourier Analysis

Summary for the Day o	Accumulation and Moments	Clicker Questions	CLT and Fourier Analysis

Convolutions

Convolution of *f* and *g*:

$$h(y) = (f * g)(y) = \int_{\mathbb{R}} f(x)g(y-x)dx = \int_{\mathbb{R}} f(x-y)g(x)dx.$$

Summary for the Day o	Accumulation and Moments	Clicker Questions	

Convolutions

Convolution of *f* and *g*:

$$h(y) = (f * g)(y) = \int_{\mathbb{R}} f(x)g(y-x)dx = \int_{\mathbb{R}} f(x-y)g(x)dx.$$

 X_1 and X_2 independent random variables with probability density p.

$$\operatorname{Prob}(X_i \in [x, x + \Delta x]) = \int_x^{x + \Delta x} p(t) dt \approx p(x) \Delta x.$$
$$\operatorname{Prob}(X_1 + X_2) \in [x, x + \Delta x] = \int_{x_1 = -\infty}^{\infty} \int_{x_2 = x - x_1}^{x + \Delta x - x_1} p(x_1) p(x_2) dx_2 dx_1.$$

Summary for the Day	Accumulation and Moments	Clicker Questions	CLT and Fourier Analysis

Convolutions

Convolution of *f* and *g*:

$$h(y) = (f * g)(y) = \int_{\mathbb{R}} f(x)g(y-x)dx = \int_{\mathbb{R}} f(x-y)g(x)dx.$$

 X_1 and X_2 independent random variables with probability density p.

$$\operatorname{Prob}(X_i \in [x, x + \Delta x]) = \int_x^{x + \Delta x} p(t) dt \approx p(x) \Delta x.$$
$$\operatorname{Prob}(X_1 + X_2) \in [x, x + \Delta x] = \int_{x_1 = -\infty}^{\infty} \int_{x_2 = x - x_1}^{x + \Delta x - x_1} p(x_1) p(x_2) dx_2 dx_1.$$

As $\Delta x \rightarrow 0$ we obtain the convolution of *p* with itself:

$$\operatorname{Prob}(X_1+X_2\in [a,b]) = \int_a^b (p*p)(z) dz.$$

Exercise to show non-negative and integrates to 1.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

Statement of Central Limit Theorem

 WLOG p has mean zero, variance one, finite third moment and decays rapidly so all convolution integrals converge: p infinitely differentiable function satisfying

$$\int_{-\infty}^{\infty} x p(x) \mathrm{d}x = 0, \ \int_{-\infty}^{\infty} x^2 p(x) \mathrm{d}x = 1, \ \int_{-\infty}^{\infty} |x|^3 p(x) \mathrm{d}x < \infty.$$

- X_1, X_2, \ldots are iidrv with density *p*.
- Define $S_N = \sum_{i=1}^N X_i$.
- Standard Gaussian (mean zero, variance one) is $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

Statement of Central Limit Theorem

 WLOG p has mean zero, variance one, finite third moment and decays rapidly so all convolution integrals converge: p infinitely differentiable function satisfying

$$\int_{-\infty}^{\infty} x p(x) \mathrm{d}x = 0, \ \int_{-\infty}^{\infty} x^2 p(x) \mathrm{d}x = 1, \ \int_{-\infty}^{\infty} |x|^3 p(x) \mathrm{d}x < \infty.$$

- X_1, X_2, \ldots are iidrv with density *p*.
- Define $S_N = \sum_{i=1}^N X_i$.
- Standard Gaussian (mean zero, variance one) is $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

Central Limit Theorem Let X_i , S_N be as above and assume the third moment of each X_i is finite. Then S_N/\sqrt{N} converges in probability to the standard Gaussian:

$$\lim_{N \to \infty} \operatorname{Prob} \left(\frac{\mathsf{S}_N}{\sqrt{N}} \in [a, b] \right) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} \mathrm{d}x$$

rioodinalation and monitorito	Olicker Questions	CLT and Fourier Analysis
		00000

• The Fourier transform:
$$\hat{p}(y) = \int_{-\infty}^{\infty} p(x) e^{-2\pi i x y} dx$$
.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					0000

- The Fourier transform: $\hat{\rho}(y) = \int_{-\infty}^{\infty} \rho(x) e^{-2\pi i x y} dx$.
- Derivative of ĝ is the Fourier transform of -2πixg(x); differentiation (hard) is converted to multiplication (easy).

$$\widehat{g}'(y) = \int_{-\infty}^{\infty} -2\pi i x \cdot g(x) e^{-2\pi i x y} \mathrm{d}x;$$

g prob. density, $\widehat{g}'(0) = -2\pi i \mathbb{E}[x], \ \widehat{g}''(0) = -4\pi^2 \mathbb{E}[x^2].$

Summa	iry for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
						0000

- The Fourier transform: $\hat{p}(y) = \int_{-\infty}^{\infty} p(x) e^{-2\pi i x y} dx$.
- Derivative of ĝ is the Fourier transform of -2πixg(x); differentiation (hard) is converted to multiplication (easy).

$$\widehat{g}'(y) = \int_{-\infty}^{\infty} -2\pi i x \cdot g(x) e^{-2\pi i x y} \mathrm{d}x;$$

g prob. density, $\widehat{g}'(0) = -2\pi i \mathbb{E}[x], \ \widehat{g}''(0) = -4\pi^2 \mathbb{E}[x^2].$

• Natural: mean and variance simple multiples of derivatives of \hat{p} at zero: $\hat{p}'(0) = 0$, $\hat{p}''(0) = -4\pi^2$.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					0000

- The Fourier transform: $\hat{p}(y) = \int_{-\infty}^{\infty} p(x) e^{-2\pi i x y} dx$.
- Derivative of ĝ is the Fourier transform of -2πixg(x); differentiation (hard) is converted to multiplication (easy).

$$\widehat{g}'(y) = \int_{-\infty}^{\infty} -2\pi i x \cdot g(x) e^{-2\pi i x y} \mathrm{d}x;$$

g prob. density, $\widehat{g}'(0) = -2\pi i \mathbb{E}[x], \ \widehat{g}''(0) = -4\pi^2 \mathbb{E}[x^2].$

- Natural: mean and variance simple multiples of derivatives of \hat{p} at zero: $\hat{p}'(0) = 0$, $\hat{p}''(0) = -4\pi^2$.
- We Taylor expand \hat{p} (need technical conditions on *p*):

$$\widehat{p}(y) = 1 + \frac{p''(0)}{2}y^2 + \cdots = 1 - 2\pi^2 y^2 + O(y^3).$$

Near origin, \hat{p} a concave down parabola.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

• Prob
$$(X_1 + \cdots + X_N \in [a, b]) = \int_a^b (p * \cdots * p)(z) dz$$
.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

• Prob
$$(X_1 + \cdots + X_N \in [a, b]) = \int_a^b (p * \cdots * p)(z) dz.$$

$$\mathsf{FT}[p*\cdots*p](y) = \widehat{p}(y)\cdots\widehat{p}(y).$$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

• Prob
$$(X_1 + \cdots + X_N \in [a, b]) = \int_a^b (p * \cdots * p)(z) dz.$$

 The Fourier transform converts convolution to multiplication. If FT[f](y) denotes the Fourier transform of f evaluated at y:

$$\mathsf{FT}[p*\cdots*p](y) = \widehat{p}(y)\cdots\widehat{p}(y).$$

• Do not want the distribution of $X_1 + \cdots + X_N = x$, but rather $S_N = \frac{X_1 + \cdots + X_N}{\sqrt{N}} = x$.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

• Prob
$$(X_1 + \cdots + X_N \in [a, b]) = \int_a^b (p * \cdots * p)(z) dz$$
.

$$\mathsf{FT}[p*\cdots*p](y) = \widehat{p}(y)\cdots\widehat{p}(y).$$

- Do not want the distribution of $X_1 + \cdots + X_N = x$, but rather $S_N = \frac{X_1 + \cdots + X_N}{\sqrt{N}} = x$.
- If B(x) = A(cx) for some fixed $c \neq 0$, then $\widehat{B}(y) = \frac{1}{c}\widehat{A}\left(\frac{y}{c}\right)$.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

• Prob
$$(X_1 + \cdots + X_N \in [a, b]) = \int_a^b (p * \cdots * p)(z) dz$$
.

$$\mathsf{FT}[p*\cdots*p](y) = \widehat{p}(y)\cdots\widehat{p}(y).$$

- Do not want the distribution of $X_1 + \cdots + X_N = x$, but rather $S_N = \frac{X_1 + \cdots + X_N}{\sqrt{N}} = x$.
- If B(x) = A(cx) for some fixed $c \neq 0$, then $\widehat{B}(y) = \frac{1}{c}\widehat{A}\left(\frac{y}{c}\right)$.

• Prob
$$\left(\frac{X_1+\cdots+X_N}{\sqrt{N}}=x\right) = (\sqrt{N}\rho * \cdots * \sqrt{N}\rho)(x\sqrt{N}).$$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

• Prob
$$(X_1 + \cdots + X_N \in [a, b]) = \int_a^b (p * \cdots * p)(z) dz$$
.

$$\mathsf{FT}[p*\cdots*p](y) = \widehat{p}(y)\cdots\widehat{p}(y).$$

- Do not want the distribution of $X_1 + \cdots + X_N = x$, but rather $S_N = \frac{X_1 + \cdots + X_N}{\sqrt{N}} = x$.
- If B(x) = A(cx) for some fixed $c \neq 0$, then $\widehat{B}(y) = \frac{1}{c}\widehat{A}\left(\frac{y}{c}\right)$.

• Prob
$$\left(\frac{X_1+\cdots+X_N}{\sqrt{N}}=x\right) = (\sqrt{N}p * \cdots * \sqrt{N}p)(x\sqrt{N}).$$

• FT
$$\left[(\sqrt{N}p * \cdots * \sqrt{N}p)(x\sqrt{N}) \right] (y) = \left[\widehat{p} \left(\frac{y}{\sqrt{N}} \right) \right]^N$$
.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

• Can find the Fourier transform of the distribution of S_N :

$$\left[\widehat{p}\left(\frac{y}{\sqrt{N}}\right)\right]^{N}$$

.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

• Can find the Fourier transform of the distribution of S_N :

$$\left[\widehat{p}\left(\frac{y}{\sqrt{N}}\right)\right]^{N}$$

• Take the limit as $N \to \infty$ for **fixed** *y*.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

• Can find the Fourier transform of the distribution of S_N :

$$\left[\widehat{p}\left(\frac{y}{\sqrt{N}}\right)\right]^{N}$$

• Take the limit as $N \to \infty$ for **fixed** *y*.

• Know $\hat{p}(y) = 1 - 2\pi^2 y^2 + O(y^3)$. Thus study

$$\left[1-\frac{2\pi^2 y^2}{N}+O\left(\frac{y^3}{N^{3/2}}\right)\right]^N$$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

• Can find the Fourier transform of the distribution of S_N :

$$\left[\widehat{p}\left(\frac{y}{\sqrt{N}}\right)\right]^{N}$$

- Take the limit as $N \to \infty$ for **fixed** *y*.
- Know $\hat{p}(y) = 1 2\pi^2 y^2 + O(y^3)$. Thus study

$$\left[1-\frac{2\pi^2 y^2}{N}+O\left(\frac{y^3}{N^{3/2}}\right)\right]^N$$

• For any **fixed** y,

ſ

$$\lim_{N \to \infty} \left[1 - \frac{2\pi^2 y^2}{N} + O\left(\frac{y^3}{N^{3/2}}\right) \right]^N = e^{-2\pi^2 y^2}.$$

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

• Can find the Fourier transform of the distribution of S_N :

$$\left[\widehat{p}\left(\frac{y}{\sqrt{N}}\right)\right]^{N}$$

- Take the limit as $N \to \infty$ for **fixed** *y*.
- Know $\hat{p}(y) = 1 2\pi^2 y^2 + O(y^3)$. Thus study

$$\left[1-\frac{2\pi^2 y^2}{N}+O\left(\frac{y^3}{N^{3/2}}\right)\right]^N$$

For any fixed y,

$$\lim_{N \to \infty} \left[1 - \frac{2\pi^2 y^2}{N} + O\left(\frac{y^3}{N^{3/2}}\right) \right]^N = e^{-2\pi^2 y^2}.$$

• Fourier transform of
$$\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 at y is $e^{-2\pi^2 y^2}$

Summary for the Day	Accumulation and Moments	Clicker Questions	CLT and Fourier Analysis

We have shown:

- the Fourier transform of the distribution of S_N converges to $e^{-2\pi^2 y^2}$;
- the Fourier transform of $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ at *y* is $e^{-2\pi^2 y^2}$.

Therefore the distribution of S_N equalling x converges to $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.

Summary for the Day	Review	Accumulation and Moments	Clicker Questions	CLT and MGF	CLT and Fourier Analysis
					00000

We have shown:

- the Fourier transform of the distribution of S_N converges to $e^{-2\pi^2 y^2}$;
- the Fourier transform of $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ at *y* is $e^{-2\pi^2 y^2}$.

Therefore the distribution of S_N equalling *x* converges to $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$. We need complex analysis to justify this inversion. Must be careful: Consider

$$g(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

All the Taylor coefficients about x = 0 are zero, but the function is not identically zero in a neighborhood of x = 0.