Summary for the Day o Central Limit Theorem

CLT and MGF

CLT and Fourier Analysis

Math 341: Probability Nineteenth Lecture (11/17/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, November 17, 2009

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis

Summary for the Day

Summary for the Day ●	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
Summary for the c	lay		

- Central Limit Theorem:
 - Statement of the CLT.
 - Poisson example.
 - Proof with MGFs.
 - Proof with Fourier analysis.
 - Discuss rate of convergence.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis

Central Limit Theorem

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
	00000		

Normalization of a random variable

Normalization (standardization) of a random variable

Let X be a random variable with mean μ and standard deviation σ , both of which are finite. The normalization, Y, is defined by

$$\mathsf{Y} := \frac{\mathsf{X} - \mathbb{E}[\mathsf{X}]}{\operatorname{StDev}(\mathsf{X})} = \frac{\mathsf{X} - \mu}{\sigma}$$

Note that

$$\mathbb{E}[Y] = 0$$
 and $StDev(Y) = 1$.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
	00000		

Statement of the Central Limit Theorem

Normal distribution

A random variable *X* is normally distributed (or has the normal distribution, or is a Gaussian random variable) with mean μ and variance σ^2 if the density of *X* is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

We often write $X \sim N(\mu, \sigma^2)$ to denote this. If $\mu = 0$ and $\sigma^2 = 1$, we say *X* has the standard normal distribution.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
	00000		

Statement of the Central Limit Theorem

Central Limit Theorem

Let X_1, \ldots, X_N be independent, identically distributed random variables whose moment generating functions converge for $|t| < \delta$ for some $\delta > 0$ (this implies all the moments exist and are finite). Denote the mean by μ and the variance by σ^2 , let

$$\overline{X}_N = \frac{X_1 + \dots + X_N}{N}$$

and set

$$Z_N = rac{\overline{X}_N - \mu}{\sigma/\sqrt{N}}.$$

Then as $N \to \infty$, the distribution of Z_N converges to the standard normal.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
	00000		

Alternative Statement of the Central Limit Theorem

Central Limit Theorem

Let X_1, \ldots, X_N be independent, identically distributed random variables whose moment generating functions converge for $|t| < \delta$ for some $\delta > 0$ (this implies all the moments exist and are finite). Denote the mean by μ and the variance by σ^2 , let

$$\mathbf{S}_N = \mathbf{X}_1 + \cdots + \mathbf{X}_N$$

and set

$$Z_N = rac{S_N - N\mu}{\sqrt{N\sigma^2}}.$$

Then as $N \to \infty$, the distribution of Z_N converges to the standard normal.

Key probabilities for $Z \sim N(0, 1)$ (i.e., Z has the standard normal distribution).

•
$$Prob(|Z| \le 1) \approx 68.2\%$$
.

•
$$Prob(|Z| \le 1.96) \approx 95\%$$
.

•
$$Prob(|Z| \le 2.575) \approx 99\%$$
.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
	000000		

Convergence to the standard normal

Question:

Let $X_1, X_2, ...$ be iidrv with mean 0 and variance 1, and let $Z_N = \overline{X}_N / (1/\sqrt{N})$. By the CLT $Z_N \to N(0, 1)$; which choice converges fastest? Slowest?

- Uniform: $X \sim \text{Unif}(-\sqrt{3}, \sqrt{3})$. Excess Kurtosis: -1.2.
- 2 Laplace: $f_X(x) = e^{-\sqrt{2}|x|}/\sqrt{2}$. Excess Kurtosis: 3.
- Solution Normal: $X \sim N(0, 1)$. Excess Kurtosis: 0.

Millered Cauchy:
$$f_X(x) = \frac{4a\sin(\pi/8)}{\pi} \frac{1}{1+(ax)^8}$$
,
 $a = \sqrt{\sqrt{2}-1}$. Excess Kurtosis: $1 + \sqrt{2} - 3 \approx -.586$.
og $M_X(t) = \frac{t^2}{2} + \frac{(\mu_4 - 3)t^4}{4!} + O(t^6)$.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
o	○○○○○●	00000	
Convergence to	the standard norm	al	

Figure: Convolutions of 5 Uniforms.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
○	○○○○○●	00000	
Convergence to th	e standard normal		

Figure: Convolutions of 5 Laplaces.

Convergence to the	o standard normal	
Convergence to the	e stanuaru normai	

Figure: Convolutions of 5 Normals.

Summary for the Day o	Central Limit Theorem ○○○○○●	CLT and MGF	CLT and Fourier Analysis
Convergence to the	he standard normal		

Figure: Convolutions of 1 Millered Cauchy.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
o	○○○○○●	00000	
Convergence to th	ne standard normal		

Figure: Convolutions of 2 Millered Cauchy.

Summary for the Day o	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis

Central Limit Theorem

Moment generating function of normal distributions

Let *X* be a normal random variable with mean μ and variance σ^2 . Its moment generating function satisfies

$$M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}.$$

In particular, if Z has the standard normal distribution, its moment generating function is

$$M_Z(t) = e^{t^2/2}.$$

Moment generating function of normal distributions

Let *X* be a normal random variable with mean μ and variance σ^2 . Its moment generating function satisfies

$$M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}.$$

In particular, if Z has the standard normal distribution, its moment generating function is

$$M_Z(t) = e^{t^2/2}.$$

Proof: Complete the square.

Summary for the Day o	Central Limit Theorem	CLT and MGF ○●○○○	CLT and Fourier Analysis
Poisson Example	of the CLT		

Example

Let X, X_1, \ldots, X_N be Poisson random variables with parameter λ . Let

$$\overline{X}_N = \frac{X_1 + \dots + X_N}{N}, \quad Y = \frac{\overline{X} - \mathbb{E}[\overline{X}]}{\operatorname{StDev}(\overline{X})}$$

Then as $N \to \infty$, Y converges to having the standard normal distribution.

Summary for the Day o	Central Limit Theorem	CLT and MGF ○●○○○	CLT and Fourier Analysis
Poisson Example	of the CLT		

Example

Let X, X_1, \ldots, X_N be Poisson random variables with parameter λ . Let

$$\overline{X}_N = \frac{X_1 + \dots + X_N}{N}, \quad Y = \frac{\overline{X} - \mathbb{E}[\overline{X}]}{\operatorname{StDev}(\overline{X})}$$

Then as $N \rightarrow \infty$, Y converges to having the standard normal distribution.

Moment generating function: $M_X(t) = \exp(\lambda(e^t - 1))$. Independent formula: $M_{X_1+X_2}(t) = M_{X_1}(t)M_{X_2}(t)$. Shift formula: $M_{aX+b}(t) = e^{bt}M_X(at)$.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
		00000	

 X_i 's iidrv,

$$Z_N = \frac{\overline{X} - \mu}{\sigma/\sqrt{N}} = \sum_{n=1}^N \frac{X_i - \mu}{\sigma\sqrt{N}}$$

Summary for the Day o	Central Limit Theorem	CLT and MGF ○○●○○	CLT and Fourier Analysis

 X_i 's iidrv,

$$Z_N = \frac{\overline{X} - \mu}{\sigma/\sqrt{N}} = \sum_{n=1}^N \frac{X_i - \mu}{\sigma\sqrt{N}}$$

Moment Generating Function is:

$$M_{Z_N}(t) = \prod_{n=1}^{N} e^{\frac{-\mu t}{\sigma \sqrt{N}}} M_X\left(\frac{t}{\sigma \sqrt{N}}\right) = e^{\frac{-\mu t \sqrt{N}}{\sigma}} M_X\left(\frac{t}{\sigma \sqrt{N}}\right)^N$$

Summary for the Day o	Central Limit Theorem	CLT and MGF ○○●○○	CLT and Fourier Analysis

 X_i 's iidrv,

$$Z_N = \frac{\overline{X} - \mu}{\sigma/\sqrt{N}} = \sum_{n=1}^N \frac{X_i - \mu}{\sigma\sqrt{N}}$$

Moment Generating Function is:

$$M_{Z_N}(t) = \prod_{n=1}^{N} e^{\frac{-\mu t}{\sigma \sqrt{N}}} M_X\left(\frac{t}{\sigma \sqrt{N}}\right) = e^{\frac{-\mu t \sqrt{N}}{\sigma}} M_X\left(\frac{t}{\sigma \sqrt{N}}\right)^N$$

Taking logarithms:

$$\log M_{Z_N}(t) = -\frac{\mu t \sqrt{N}}{\sigma} + N \log M_X\left(\frac{t}{\sigma \sqrt{N}}\right).$$

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
		00000	

Expansion of MGF:

$$M_X(t) = 1 + \mu t + \frac{\mu'_2 t^2}{2!} + \cdots = 1 + t \left(\mu + \frac{\mu'_2 t}{2!} + \cdots \right)$$

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
		00000	

Expansion of MGF:

$$M_X(t) = 1 + \mu t + \frac{\mu'_2 t^2}{2!} + \cdots = 1 + t \left(\mu + \frac{\mu'_2 t}{2} + \cdots \right).$$

Expansion for log(1 + u) is

$$\log(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3!} - \cdots$$

٠

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
		00000	

Expansion of MGF:

$$M_X(t) = 1 + \mu t + \frac{\mu'_2 t^2}{2!} + \cdots = 1 + t \left(\mu + \frac{\mu'_2 t}{2} + \cdots \right).$$

Expansion for log(1 + u) is

$$\log(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3!} - \cdots$$

.

Combining gives

$$\log M_X(t) = t\left(\mu + \frac{\mu'_2 t}{2} + \cdots\right) - \frac{t^2 \left(\mu + \frac{\mu'_2 t}{2} + \cdots\right)^2}{2} + \cdots$$
$$= \mu t + \frac{\mu'_2 - \mu^2}{2} t^2 + \text{terms in } t^3 \text{ or higher.}$$

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
		00000	

$$\log M_X \left(\frac{t}{\sigma\sqrt{N}}\right)$$

= $\frac{\mu t}{\sigma\sqrt{N}} + \frac{\sigma^2}{2}\frac{t^2}{\sigma^2 N} + \text{terms in } t^3/N^{3/2} \text{ or lower in } N.$

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
		00000	

$$\log M_X \left(\frac{t}{\sigma\sqrt{N}}\right)$$

= $\frac{\mu t}{\sigma\sqrt{N}} + \frac{\sigma^2}{2} \frac{t^2}{\sigma^2 N} + \text{terms in } t^3/N^{3/2} \text{ or lower in } N.$

Denote lower order terms by $O(N^{-3/2})$. Collecting gives

$$\log M_{Z_N}(t) = -\frac{\mu t \sqrt{N}}{\sigma} + N \left(\frac{\mu t}{\sigma \sqrt{N}} + \frac{t^2}{2N} + O(N^{-3/2}) \right)$$

= $-\frac{\mu t \sqrt{N}}{\sigma} + \frac{\mu t \sqrt{N}}{\sigma} + \frac{t^2}{2} + O(N^{-1/2})$
= $\frac{t^2}{2} + O(N^{-1/2}).$

Summary for the Day o	Central Limit Theorem	CLT and MGF 00000	CLT and Fourier Analysis

Central Limit Theorem and Fourier Analysis

Summary for the Day o	Central Limit Theorem	CLT and MGF 00000	CLT and Fourier Analysis
Convolutions			

Convolution of f and g:

$$h(y) = (f * g)(y) = \int_{\mathbb{R}} f(x)g(y-x)dx = \int_{\mathbb{R}} f(x-y)g(x)dx.$$

Summary for the Day o	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis

Convolutions

Convolution of f and g:

$$h(y) = (f * g)(y) = \int_{\mathbb{R}} f(x)g(y-x)dx = \int_{\mathbb{R}} f(x-y)g(x)dx.$$

 X_1 and X_2 independent random variables with probability density p.

$$\operatorname{Prob}(X_i \in [x, x + \Delta x]) = \int_x^{x + \Delta x} p(t) dt \approx p(x) \Delta x.$$
$$\operatorname{Prob}(X_1 + X_2) \in [x, x + \Delta x] = \int_{x_1 = -\infty}^{\infty} \int_{x_2 = x - x_1}^{x + \Delta x - x_1} p(x_1) p(x_2) dx_2 dx_1.$$

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
	000000	00000	00000

Convolutions

Convolution of *f* and *g*:

$$h(y) = (f * g)(y) = \int_{\mathbb{R}} f(x)g(y-x)dx = \int_{\mathbb{R}} f(x-y)g(x)dx.$$

 X_1 and X_2 independent random variables with probability density p.

$$\operatorname{Prob}(X_i \in [x, x + \Delta x]) = \int_x^{x + \Delta x} p(t) dt \approx p(x) \Delta x.$$
$$\operatorname{Prob}(X_1 + X_2) \in [x, x + \Delta x] = \int_{x_1 = -\infty}^{\infty} \int_{x_2 = x - x_1}^{x + \Delta x - x_1} p(x_1) p(x_2) dx_2 dx_1.$$

As $\Delta x \rightarrow 0$ we obtain the convolution of *p* with itself:

$$\operatorname{Prob}(X_1+X_2\in [a,b]) = \int_a^b (p*p)(z) dz.$$

Exercise to show non-negative and integrates to 1.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
			00000

Statement of Central Limit Theorem

 WLOG p has mean zero, variance one, finite third moment and decays rapidly so all convolution integrals converge: p infinitely differentiable function satisfying

$$\int_{-\infty}^{\infty} x p(x) \mathrm{d}x = 0, \ \int_{-\infty}^{\infty} x^2 p(x) \mathrm{d}x = 1, \ \int_{-\infty}^{\infty} |x|^3 p(x) \mathrm{d}x < \infty.$$

- X_1, X_2, \ldots are idrv with density *p*.
- Define $S_N = \sum_{i=1}^N X_i$.
- Standard Gaussian (mean zero, variance one) is $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
			00000

Statement of Central Limit Theorem

 WLOG p has mean zero, variance one, finite third moment and decays rapidly so all convolution integrals converge: p infinitely differentiable function satisfying

$$\int_{-\infty}^{\infty} x p(x) \mathrm{d}x = 0, \ \int_{-\infty}^{\infty} x^2 p(x) \mathrm{d}x = 1, \ \int_{-\infty}^{\infty} |x|^3 p(x) \mathrm{d}x < \infty.$$

- X_1, X_2, \ldots are iidrv with density *p*.
- Define $S_N = \sum_{i=1}^N X_i$.
- Standard Gaussian (mean zero, variance one) is $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

Central Limit Theorem Let X_i , S_N be as above and assume the third moment of each X_i is finite. Then S_N/\sqrt{N} converges in probability to the standard Gaussian:

$$\lim_{N\to\infty} \operatorname{Prob}\left(\frac{S_N}{\sqrt{N}} \in [a,b]\right) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} \mathrm{d}x$$

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
o		00000	○●○○○
Proof of the Centr	al Limit Theorem		

• The Fourier transform: $\hat{p}(y) = \int_{-\infty}^{\infty} p(x) e^{-2\pi i x y} dx$.

Summary for the Day o	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis ○●○○○
Proof of the Contr	al Limit Theorem		

- The Fourier transform: $\hat{\rho}(y) = \int_{-\infty}^{\infty} \rho(x) e^{-2\pi i x y} dx$.
- Derivative of ĝ is the Fourier transform of -2πixg(x); differentiation (hard) is converted to multiplication (easy).

$$\widehat{g}'(y) = \int_{-\infty}^{\infty} -2\pi i x \cdot g(x) e^{-2\pi i x y} \mathrm{d}x;$$

g prob. density, $\widehat{g}'(0) = -2\pi i \mathbb{E}[x], \ \widehat{g}''(0) = -4\pi^2 \mathbb{E}[x^2].$

Summary for the Day o	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis ○●○○○
Proof of the Contr	al Limit Theorem		

- The Fourier transform: $\hat{\rho}(y) = \int_{-\infty}^{\infty} \rho(x) e^{-2\pi i x y} dx$.
- Derivative of ĝ is the Fourier transform of -2πixg(x); differentiation (hard) is converted to multiplication (easy).

$$\widehat{g}'(y) = \int_{-\infty}^{\infty} -2\pi i x \cdot g(x) e^{-2\pi i x y} \mathrm{d}x;$$

g prob. density, $\widehat{g}'(0) = -2\pi i \mathbb{E}[x], \ \widehat{g}''(0) = -4\pi^2 \mathbb{E}[x^2].$

• Natural: mean and variance simple multiples of derivatives of \hat{p} at zero: $\hat{p}'(0) = 0$, $\hat{p}''(0) = -4\pi^2$.

Summary for the Day o	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis ○●○○○
Proof of the Cont	al Limit Theorem		

- The Fourier transform: $\hat{p}(y) = \int_{-\infty}^{\infty} p(x) e^{-2\pi i x y} dx$.
- Derivative of ĝ is the Fourier transform of -2πixg(x); differentiation (hard) is converted to multiplication (easy).

$$\widehat{g}'(y) = \int_{-\infty}^{\infty} -2\pi i x \cdot g(x) e^{-2\pi i x y} \mathrm{d}x;$$

g prob. density, $\widehat{g}'(0) = -2\pi i \mathbb{E}[x], \ \widehat{g}''(0) = -4\pi^2 \mathbb{E}[x^2].$

- Natural: mean and variance simple multiples of derivatives of \hat{p} at zero: $\hat{p}'(0) = 0$, $\hat{p}''(0) = -4\pi^2$.
- We Taylor expand \hat{p} (need technical conditions on *p*):

$$\widehat{p}(y) = 1 + \frac{p''(0)}{2}y^2 + \cdots = 1 - 2\pi^2 y^2 + O(y^3).$$

Near origin, \hat{p} a concave down parabola.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
			00000

• Prob
$$(X_1 + \cdots + X_N \in [a, b]) = \int_a^b (p * \cdots * p)(z) dz.$$

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
			00000

- Prob $(X_1 + \cdots + X_N \in [a, b]) = \int_a^b (p * \cdots * p)(z) dz.$
- The Fourier transform converts convolution to multiplication. If FT[f](y) denotes the Fourier transform of f evaluated at y:

$$\mathsf{FT}[p*\cdots*p](y) = \widehat{p}(y)\cdots\widehat{p}(y).$$

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
			00000

- Prob $(X_1 + \cdots + X_N \in [a, b]) = \int_a^b (p * \cdots * p)(z) dz.$
- The Fourier transform converts convolution to multiplication. If FT[f](y) denotes the Fourier transform of f evaluated at y:

$$\mathsf{FT}[p*\cdots*p](y) = \widehat{p}(y)\cdots\widehat{p}(y).$$

• Do not want the distribution of $X_1 + \cdots + X_N = x$, but rather $S_N = \frac{X_1 + \cdots + X_N}{\sqrt{N}} = x$.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
			00000

- Prob $(X_1 + \cdots + X_N \in [a, b]) = \int_a^b (p * \cdots * p)(z) dz.$
- The Fourier transform converts convolution to multiplication. If FT[f](y) denotes the Fourier transform of f evaluated at y:

$$\mathsf{FT}[p*\cdots*p](y) = \widehat{p}(y)\cdots\widehat{p}(y).$$

- Do not want the distribution of $X_1 + \cdots + X_N = x$, but rather $S_N = \frac{X_1 + \cdots + X_N}{\sqrt{N}} = x$.
- If B(x) = A(cx) for some fixed $c \neq 0$, then $\widehat{B}(y) = \frac{1}{c}\widehat{A}\left(\frac{y}{c}\right)$.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
	000000	00000	00000

- Prob $(X_1 + \cdots + X_N \in [a, b]) = \int_a^b (p * \cdots * p)(z) dz.$
- The Fourier transform converts convolution to multiplication. If FT[f](y) denotes the Fourier transform of f evaluated at y:

$$\mathsf{FT}[p*\cdots*p](y) = \widehat{p}(y)\cdots\widehat{p}(y).$$

- Do not want the distribution of $X_1 + \cdots + X_N = x$, but rather $S_N = \frac{X_1 + \cdots + X_N}{\sqrt{N}} = x$.
- If B(x) = A(cx) for some fixed $c \neq 0$, then $\widehat{B}(y) = \frac{1}{c}\widehat{A}\left(\frac{y}{c}\right)$.

• Prob
$$\left(\frac{X_1+\cdots+X_N}{\sqrt{N}}=x\right) = (\sqrt{N}p*\cdots*\sqrt{N}p)(x\sqrt{N}).$$

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
			0000

- Prob $(X_1 + \cdots + X_N \in [a, b]) = \int_a^b (p * \cdots * p)(z) dz.$
- The Fourier transform converts convolution to multiplication. If FT[f](y) denotes the Fourier transform of f evaluated at y:

$$\mathsf{FT}[p*\cdots*p](y) = \widehat{p}(y)\cdots\widehat{p}(y).$$

- Do not want the distribution of $X_1 + \cdots + X_N = x$, but rather $S_N = \frac{X_1 + \cdots + X_N}{\sqrt{N}} = x$.
- If B(x) = A(cx) for some fixed $c \neq 0$, then $\widehat{B}(y) = \frac{1}{c}\widehat{A}\left(\frac{y}{c}\right)$.

• Prob
$$\left(\frac{X_1+\cdots+X_N}{\sqrt{N}}=x\right) = (\sqrt{N}p * \cdots * \sqrt{N}p)(x\sqrt{N}).$$

• FT
$$\left[(\sqrt{N}p * \cdots * \sqrt{N}p)(x\sqrt{N}) \right] (y) = \left[\widehat{p} \left(\frac{y}{\sqrt{N}} \right) \right]^N$$
.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
			00000

• Can find the Fourier transform of the distribution of S_N :

$$\left[\widehat{p}\left(\frac{y}{\sqrt{N}}\right)\right]^{N}$$

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
			00000

• Can find the Fourier transform of the distribution of S_N :

$$\left[\widehat{p}\left(\frac{y}{\sqrt{N}}\right)\right]^{N}$$

• Take the limit as $N \to \infty$ for **fixed** *y*.

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
			00000

• Can find the Fourier transform of the distribution of S_N :

$$\left[\widehat{\rho}\left(\frac{y}{\sqrt{N}}\right)\right]^{N}$$

• Take the limit as $N \to \infty$ for **fixed** *y*.

• Know $\hat{p}(y) = 1 - 2\pi^2 y^2 + O(y^3)$. Thus study

$$\left[1-\frac{2\pi^2 y^2}{N}+O\left(\frac{y^3}{N^{3/2}}\right)\right]^N$$

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
			00000

• Can find the Fourier transform of the distribution of S_N :

$$\left[\widehat{p}\left(\frac{y}{\sqrt{N}}\right)\right]^{N}$$

- Take the limit as $N \to \infty$ for **fixed** *y*.
- Know $\widehat{\rho}(y) = 1 2\pi^2 y^2 + O(y^3)$. Thus study

$$\left[1-\frac{2\pi^2 y^2}{N}+O\left(\frac{y^3}{N^{3/2}}\right)\right]^N$$

• For any **fixed** y,

1

$$\lim_{N \to \infty} \left[1 - \frac{2\pi^2 y^2}{N} + O\left(\frac{y^3}{N^{3/2}}\right) \right]^N = e^{-2\pi^2 y^2}.$$

Summary for the Day	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
			00000

• Can find the Fourier transform of the distribution of S_N :

$$\left[\widehat{p}\left(\frac{y}{\sqrt{N}}\right)\right]^{N}$$

- Take the limit as $N \to \infty$ for **fixed** *y*.
- Know $\widehat{\rho}(y) = 1 2\pi^2 y^2 + O(y^3)$. Thus study

$$\left[1-\frac{2\pi^2 y^2}{N}+O\left(\frac{y^3}{N^{3/2}}\right)\right]^N$$

• For any **fixed** y,

$$\lim_{N \to \infty} \left[1 - \frac{2\pi^2 y^2}{N} + O\left(\frac{y^3}{N^{3/2}}\right) \right]^N = e^{-2\pi^2 y^2}.$$

• Fourier transform of
$$\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 at y is $e^{-2\pi^2 y^2}$.

Summary for the Day o	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis
Proof of the Centra	al Limit Theorem (co	ont)	

We have shown:

- the Fourier transform of the distribution of S_N converges to $e^{-2\pi^2 y^2}$;
- the Fourier transform of $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ at *y* is $e^{-2\pi^2 y^2}$.

Therefore the distribution of S_N equalling x converges to $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.

Summary for the Day o	Central Limit Theorem	CLT and MGF	CLT and Fourier Analysis ○○○○●
Proof of the Cen	tral Limit Theorem	(cont)	

We have shown:

- the Fourier transform of the distribution of S_N converges to $e^{-2\pi^2 y^2}$;
- the Fourier transform of $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ at *y* is $e^{-2\pi^2 y^2}$.

Therefore the distribution of S_N equalling *x* converges to $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$. We need complex analysis to justify this inversion. Must be careful: Consider

$$g(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

All the Taylor coefficients about x = 0 are zero, but the function is not identically zero in a neighborhood of x = 0.