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Summary for the Day Central Limit Theorem CLT and MGF CLT and Fourier Analysis

Summary for the day

Central Limit Theorem:
⋄ Statement of the CLT.
⋄ Poisson example.
⋄ Proof with MGFs.
⋄ Proof with Fourier analysis.
⋄ Discuss rate of convergence.
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Central Limit Theorem
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Normalization of a random variable

Normalization (standardization) of a random variable
Let X be a random variable with mean � and standard
deviation �, both of which are finite. The normalization, Y ,
is defined by

Y :=
X − E[X ]

StDev(X )
=

X − �

�
.

Note that

E[Y ] = 0 and StDev(Y ) = 1.
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Statement of the Central Limit Theorem

Normal distribution
A random variable X is normally distributed (or has the
normal distribution, or is a Gaussian random variable)
with mean � and variance �2 if the density of X is

f (x) =
1√

2��2
exp

(
−(x − �)2

2�2

)
.

We often write X ∼ N(�, �2) to denote this. If � = 0 and
�2 = 1, we say X has the standard normal distribution.
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Statement of the Central Limit Theorem

Central Limit Theorem
Let X1, . . . ,XN be independent, identically distributed
random variables whose moment generating functions
converge for ∣t ∣ < � for some � > 0 (this implies all the
moments exist and are finite). Denote the mean by � and
the variance by �2, let

X N =
X1 + ⋅ ⋅ ⋅+ XN

N

and set

ZN =
X N − �

�/
√

N
.

Then as N → ∞, the distribution of ZN converges to the
standard normal.
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Alternative Statement of the Central Limit Theorem

Central Limit Theorem
Let X1, . . . ,XN be independent, identically distributed
random variables whose moment generating functions
converge for ∣t ∣ < � for some � > 0 (this implies all the
moments exist and are finite). Denote the mean by � and
the variance by �2, let

SN = X1 + ⋅ ⋅ ⋅+ XN

and set

ZN =
SN − N�√

N�2
.

Then as N → ∞, the distribution of ZN converges to the
standard normal.
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Key Probabilities:

Key probabilities for Z ∼ N(0, 1) (i.e., Z has the standard
normal distribution).

Prob(∣Z ∣ ≤ 1) ≈ 68.2%.

Prob(∣Z ∣ ≤ 1.96) ≈ 95%.

Prob(∣Z ∣ ≤ 2.575) ≈ 99%.
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Convergence to the standard normal

Question:
Let X1,X2, . . . be iidrv with mean 0 and variance 1, and let
ZN = X N/(1/

√
N). By the CLT ZN → N(0, 1); which

choice converges fastest? Slowest?

1 Uniform: X ∼ Unif(−
√

3,
√

3). Excess Kurtosis: -1.2.
2 Laplace: fX (x) = e−

√
2∣x∣/

√
2. Excess Kurtosis: 3.

3 Normal: X ∼ N(0, 1). Excess Kurtosis: 0.
4 Millered Cauchy: fX (x) =

4a sin(�/8)
�

1
1+(ax)8 ,

a =
√√

2 − 1. Excess Kurtosis: 1 +
√

2 − 3 ≈ −.586.

log MX (t) = t2

2 + (�4−3)t4

4! + O(t6).
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Convergence to the standard normal
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Figure: Convolutions of 5 Uniforms.
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Convergence to the standard normal
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Figure: Convolutions of 5 Laplaces.
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Convergence to the standard normal
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Figure: Convolutions of 5 Normals.
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Convergence to the standard normal
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Figure: Convolutions of 1 Millered Cauchy.
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Convergence to the standard normal
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Figure: Convolutions of 2 Millered Cauchy.
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Central Limit Theorem
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MGF and the CLT

Moment generating function of normal distributions
Let X be a normal random variable with mean � and
variance �2. Its moment generating function satisfies

MX (t) = e�t+�
2 t2

2 .

In particular, if Z has the standard normal distribution, its
moment generating function is

MZ (t) = et2/2.
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MGF and the CLT

Moment generating function of normal distributions
Let X be a normal random variable with mean � and
variance �2. Its moment generating function satisfies

MX (t) = e�t+�
2 t2

2 .

In particular, if Z has the standard normal distribution, its
moment generating function is

MZ (t) = et2/2.

Proof: Complete the square.

18



Summary for the Day Central Limit Theorem CLT and MGF CLT and Fourier Analysis

Poisson Example of the CLT

Example
Let X ,X1, . . . ,XN be Poisson random variables with
parameter �. Let

X N =
X1 + ⋅ ⋅ ⋅+ XN

N
, Y =

X − E[X ]

StDev(X )
.

Then as N → ∞, Y converges to having the standard
normal distribution.
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Poisson Example of the CLT

Example
Let X ,X1, . . . ,XN be Poisson random variables with
parameter �. Let

X N =
X1 + ⋅ ⋅ ⋅+ XN

N
, Y =

X − E[X ]

StDev(X )
.

Then as N → ∞, Y converges to having the standard
normal distribution.

Moment generating function: MX (t) = exp(�(et − 1)).
Independent formula: MX1+X2(t) = MX1(t)MX2(t).
Shift formula: MaX+b(t) = ebtMX (at).
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General proof via Moment Generating Functions

Xi ’s iidrv,

ZN =
X − �

�/
√

N
=

N∑

n=1

Xi − �

�
√

N
.
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General proof via Moment Generating Functions

Xi ’s iidrv,

ZN =
X − �

�/
√

N
=

N∑

n=1

Xi − �

�
√

N
.

Moment Generating Function is:

MZN (t) =
N∏

n=1

e
−�t
�

√
N MX

(
t

�
√

N

)
= e

−�t
√

N
� MX

(
t

�
√

N

)N
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General proof via Moment Generating Functions

Xi ’s iidrv,

ZN =
X − �

�/
√

N
=

N∑

n=1

Xi − �

�
√

N
.

Moment Generating Function is:

MZN (t) =
N∏

n=1

e
−�t
�

√
N MX

(
t

�
√

N

)
= e

−�t
√

N
� MX

(
t

�
√

N

)N

Taking logarithms:

log MZN (t) = −�t
√

N
�

+ N log MX

(
t

�
√

N

)
.
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General proof via Moment Generating Functions (cont)

Expansion of MGF:

MX (t) = 1 + �t +
�′

2t2

2!
+ ⋅ ⋅ ⋅ = 1 + t

(
�+

�′
2t
2

+ ⋅ ⋅ ⋅
)
.
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General proof via Moment Generating Functions (cont)

Expansion of MGF:

MX (t) = 1 + �t +
�′

2t2

2!
+ ⋅ ⋅ ⋅ = 1 + t

(
�+

�′
2t
2

+ ⋅ ⋅ ⋅
)
.

Expansion for log(1 + u) is

log(1 + u) = u − u2

2
+

u3

3!
− ⋅ ⋅ ⋅ .
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General proof via Moment Generating Functions (cont)

Expansion of MGF:

MX (t) = 1 + �t +
�′

2t2

2!
+ ⋅ ⋅ ⋅ = 1 + t

(
�+

�′
2t
2

+ ⋅ ⋅ ⋅
)
.

Expansion for log(1 + u) is

log(1 + u) = u − u2

2
+

u3

3!
− ⋅ ⋅ ⋅ .

Combining gives

log MX (t) = t
(
�+

�′
2t
2

+ ⋅ ⋅ ⋅
)
−

t2
(
�+

�′
2t
2 + ⋅ ⋅ ⋅

)2

2
+ ⋅ ⋅ ⋅

= �t +
�′

2 − �2

2
t2 + terms in t3 or higher.
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General proof via Moment Generating Functions (cont)

log MX

(
t

�
√

N

)

=
�t

�
√

N
+

�2

2
t2

�2N
+ terms in t3/N3/2 or lower in N.
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General proof via Moment Generating Functions (cont)

log MX

(
t

�
√

N

)

=
�t

�
√

N
+

�2

2
t2

�2N
+ terms in t3/N3/2 or lower in N.

Denote lower order terms by O(N−3/2). Collecting gives

log MZN (t) = −�t
√

N
�

+ N
(

�t

�
√

N
+

t2

2N
+ O(N−3/2)

)

= −�t
√

N
�

+
�t
√

N
�

+
t2

2
+ O(N−1/2)

=
t2

2
+ O(N−1/2).
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Central Limit Theorem
and Fourier Analysis
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Convolutions

Convolution of f and g:

h(y) = (f ∗ g)(y) =

∫

ℝ

f (x)g(y − x)dx =

∫

ℝ

f (x − y)g(x)dx .
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Convolutions

Convolution of f and g:

h(y) = (f ∗ g)(y) =

∫

ℝ

f (x)g(y − x)dx =

∫

ℝ

f (x − y)g(x)dx .

X1 and X2 independent random variables with probability density p.

Prob(Xi ∈ [x , x +Δx ]) =

∫ x+Δx

x
p(t)dt ≈ p(x)Δx .

Prob(X1 + X2) ∈ [x , x +Δx ] =

∫ ∞

x1=−∞

∫ x+Δx−x1

x2=x−x1

p(x1)p(x2)dx2dx1.
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Convolutions

Convolution of f and g:

h(y) = (f ∗ g)(y) =

∫

ℝ

f (x)g(y − x)dx =

∫

ℝ

f (x − y)g(x)dx .

X1 and X2 independent random variables with probability density p.

Prob(Xi ∈ [x , x +Δx ]) =

∫ x+Δx

x
p(t)dt ≈ p(x)Δx .

Prob(X1 + X2) ∈ [x , x +Δx ] =

∫ ∞

x1=−∞

∫ x+Δx−x1

x2=x−x1

p(x1)p(x2)dx2dx1.

As Δx → 0 we obtain the convolution of p with itself:

Prob(X1 + X2 ∈ [a, b]) =

∫ b

a
(p ∗ p)(z)dz.

Exercise to show non-negative and integrates to 1.
32



Summary for the Day Central Limit Theorem CLT and MGF CLT and Fourier Analysis

Statement of Central Limit Theorem

WLOG p has mean zero, variance one, finite third moment and
decays rapidly so all convolution integrals converge: p infinitely
differentiable function satisfying
∫ ∞

−∞
xp(x)dx = 0,

∫ ∞

−∞
x2p(x)dx = 1,

∫ ∞

−∞
∣x ∣3p(x)dx < ∞.

X1,X2, . . . are iidrv with density p.

Define SN =
∑N

i=1 Xi .

Standard Gaussian (mean zero, variance one) is 1√
2�

e−x2/2.
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Statement of Central Limit Theorem

WLOG p has mean zero, variance one, finite third moment and
decays rapidly so all convolution integrals converge: p infinitely
differentiable function satisfying
∫ ∞

−∞
xp(x)dx = 0,

∫ ∞

−∞
x2p(x)dx = 1,

∫ ∞

−∞
∣x ∣3p(x)dx < ∞.

X1,X2, . . . are iidrv with density p.

Define SN =
∑N

i=1 Xi .

Standard Gaussian (mean zero, variance one) is 1√
2�

e−x2/2.

Central Limit Theorem Let Xi ,SN be as above and assume the third
moment of each Xi is finite. Then SN/

√
N converges in probability to

the standard Gaussian:

lim
N→∞

Prob

(
SN√

N
∈ [a, b]

)
=

1√
2�

∫ b

a
e−x2/2dx .
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Proof of the Central Limit Theorem

The Fourier transform: p̂(y) =
∫∞
−∞ p(x)e−2�ixy dx .

35



Summary for the Day Central Limit Theorem CLT and MGF CLT and Fourier Analysis

Proof of the Central Limit Theorem

The Fourier transform: p̂(y) =
∫∞
−∞ p(x)e−2�ixy dx .

Derivative of ĝ is the Fourier transform of −2�ixg(x);
differentiation (hard) is converted to multiplication (easy).

ĝ′(y) =

∫ ∞

−∞
−2�ix ⋅ g(x)e−2�ixy dx ;

g prob. density, ĝ′(0) = −2�iE[x ], ĝ′′(0) = −4�2
E[x2].
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Proof of the Central Limit Theorem

The Fourier transform: p̂(y) =
∫∞
−∞ p(x)e−2�ixy dx .

Derivative of ĝ is the Fourier transform of −2�ixg(x);
differentiation (hard) is converted to multiplication (easy).

ĝ′(y) =

∫ ∞

−∞
−2�ix ⋅ g(x)e−2�ixy dx ;

g prob. density, ĝ′(0) = −2�iE[x ], ĝ′′(0) = −4�2
E[x2].

Natural: mean and variance simple multiples of derivatives of p̂
at zero: p̂′(0) = 0, p̂′′(0) = −4�2.
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Proof of the Central Limit Theorem

The Fourier transform: p̂(y) =
∫∞
−∞ p(x)e−2�ixy dx .

Derivative of ĝ is the Fourier transform of −2�ixg(x);
differentiation (hard) is converted to multiplication (easy).

ĝ′(y) =

∫ ∞

−∞
−2�ix ⋅ g(x)e−2�ixy dx ;

g prob. density, ĝ′(0) = −2�iE[x ], ĝ′′(0) = −4�2
E[x2].

Natural: mean and variance simple multiples of derivatives of p̂
at zero: p̂′(0) = 0, p̂′′(0) = −4�2.

We Taylor expand p̂ (need technical conditions on p):

p̂(y) = 1 +
p′′(0)

2
y2 + ⋅ ⋅ ⋅ = 1 − 2�2y2 + O(y3).

Near origin, p̂ a concave down parabola.
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).

Do not want the distribution of X1 + ⋅ ⋅ ⋅+ XN = x , but rather
SN = X1+⋅⋅⋅+XN√

N
= x .
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).

Do not want the distribution of X1 + ⋅ ⋅ ⋅+ XN = x , but rather
SN = X1+⋅⋅⋅+XN√

N
= x .

If B(x) = A(cx) for some fixed c ∕= 0, then B̂(y) = 1
c Â

( y
c

)
.
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).

Do not want the distribution of X1 + ⋅ ⋅ ⋅+ XN = x , but rather
SN = X1+⋅⋅⋅+XN√

N
= x .

If B(x) = A(cx) for some fixed c ∕= 0, then B̂(y) = 1
c Â

( y
c

)
.

Prob
(

X1+⋅⋅⋅+XN√
N

= x
)

= (
√

Np ∗ ⋅ ⋅ ⋅ ∗
√

Np)(x
√

N).
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).

Do not want the distribution of X1 + ⋅ ⋅ ⋅+ XN = x , but rather
SN = X1+⋅⋅⋅+XN√

N
= x .

If B(x) = A(cx) for some fixed c ∕= 0, then B̂(y) = 1
c Â

( y
c

)
.

Prob
(

X1+⋅⋅⋅+XN√
N

= x
)

= (
√

Np ∗ ⋅ ⋅ ⋅ ∗
√

Np)(x
√

N).

FT
[
(
√

Np ∗ ⋅ ⋅ ⋅ ∗
√

Np)(x
√

N)
]
(y) =

[
p̂
(

y√
N

)]N
.
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.

Take the limit as N → ∞ for fixed y .
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.

Take the limit as N → ∞ for fixed y .

Know p̂(y) = 1 − 2�2y2 + O(y3). Thus study
[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

.
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.

Take the limit as N → ∞ for fixed y .

Know p̂(y) = 1 − 2�2y2 + O(y3). Thus study
[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

.

For any fixed y ,

lim
N→∞

[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

= e−2�2y2

.
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.

Take the limit as N → ∞ for fixed y .

Know p̂(y) = 1 − 2�2y2 + O(y3). Thus study
[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

.

For any fixed y ,

lim
N→∞

[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

= e−2�2y2

.

Fourier transform of 1√
2�

e−x2/2 at y is e−2�2y2
.
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Proof of the Central Limit Theorem (cont)

We have shown:

the Fourier transform of the distribution of SN converges to
e−2�2y2

;

the Fourier transform of 1√
2�

e−x2/2 at y is e−2�2y2
.

Therefore the distribution of SN equalling x converges to 1√
2�

e−x2/2.
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Proof of the Central Limit Theorem (cont)

We have shown:

the Fourier transform of the distribution of SN converges to
e−2�2y2

;

the Fourier transform of 1√
2�

e−x2/2 at y is e−2�2y2
.

Therefore the distribution of SN equalling x converges to 1√
2�

e−x2/2.
We need complex analysis to justify this inversion. Must be careful:
Consider

g(x) =

{
e−1/x2

if x ∕= 0

0 if x = 0.

All the Taylor coefficients about x = 0 are zero, but the function is not
identically zero in a neighborhood of x = 0.
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