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Summary for the Day
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Summary for the Day CLT and Fourier Analysis

Summary for the day

Central Limit Theorem:
⋄ Proof with Fourier analysis.
⋄ Discuss rate of convergence.

Special Topics:
⋄ Gambling.
⋄ Benford’s Law
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Central Limit Theorem
and Fourier Analysis
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Summary for the Day CLT and Fourier Analysis

Convolutions

Convolution of f and g:

h(y) = (f ∗ g)(y) =

∫

ℝ

f (x)g(y − x)dx =

∫

ℝ

f (x − y)g(x)dx .
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Summary for the Day CLT and Fourier Analysis

Convolutions

Convolution of f and g:

h(y) = (f ∗ g)(y) =

∫

ℝ

f (x)g(y − x)dx =

∫

ℝ

f (x − y)g(x)dx .

X1 and X2 independent random variables with probability density p.

Prob(Xi ∈ [x , x +Δx ]) =

∫ x+Δx

x
p(t)dt ≈ p(x)Δx .

Prob(X1 + X2) ∈ [x , x +Δx ] =

∫ ∞

x1=−∞

∫ x+Δx−x1

x2=x−x1

p(x1)p(x2)dx2dx1.
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Summary for the Day CLT and Fourier Analysis

Convolutions

Convolution of f and g:

h(y) = (f ∗ g)(y) =

∫

ℝ

f (x)g(y − x)dx =

∫

ℝ

f (x − y)g(x)dx .

X1 and X2 independent random variables with probability density p.

Prob(Xi ∈ [x , x +Δx ]) =

∫ x+Δx

x
p(t)dt ≈ p(x)Δx .

Prob(X1 + X2) ∈ [x , x +Δx ] =

∫ ∞

x1=−∞

∫ x+Δx−x1

x2=x−x1

p(x1)p(x2)dx2dx1.

As Δx → 0 we obtain the convolution of p with itself:

Prob(X1 + X2 ∈ [a, b]) =

∫ b

a
(p ∗ p)(z)dz.

Exercise to show non-negative and integrates to 1.
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Summary for the Day CLT and Fourier Analysis

Statement of Central Limit Theorem

WLOG p has mean zero, variance one, finite third moment and
decays rapidly so all convolution integrals converge: p infinitely
differentiable function satisfying
∫ ∞

−∞
xp(x)dx = 0,

∫ ∞

−∞
x2p(x)dx = 1,

∫ ∞

−∞
∣x ∣3p(x)dx < ∞.

X1,X2, . . . are iidrv with density p.

Define SN =
∑N

i=1 Xi .

Standard Gaussian (mean zero, variance one) is 1√
2�

e−x2/2.
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Statement of Central Limit Theorem

WLOG p has mean zero, variance one, finite third moment and
decays rapidly so all convolution integrals converge: p infinitely
differentiable function satisfying
∫ ∞

−∞
xp(x)dx = 0,

∫ ∞

−∞
x2p(x)dx = 1,

∫ ∞

−∞
∣x ∣3p(x)dx < ∞.

X1,X2, . . . are iidrv with density p.

Define SN =
∑N

i=1 Xi .

Standard Gaussian (mean zero, variance one) is 1√
2�

e−x2/2.

Central Limit Theorem Let Xi ,SN be as above and assume the third
moment of each Xi is finite. Then SN/

√
N converges in probability to

the standard Gaussian:

lim
N→∞

Prob

(
SN√

N
∈ [a, b]

)
=

1√
2�

∫ b

a
e−x2/2dx .
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Summary for the Day CLT and Fourier Analysis

Proof of the Central Limit Theorem

The Fourier transform: p̂(y) =
∫∞
−∞ p(x)e−2�ixy dx .
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Summary for the Day CLT and Fourier Analysis

Proof of the Central Limit Theorem

The Fourier transform: p̂(y) =
∫∞
−∞ p(x)e−2�ixy dx .

Derivative of ĝ is the Fourier transform of −2�ixg(x);
differentiation (hard) is converted to multiplication (easy).

ĝ′(y) =

∫ ∞

−∞
−2�ix ⋅ g(x)e−2�ixy dx ;

g prob. density, ĝ′(0) = −2�iE[x ], ĝ′′(0) = −4�2
E[x2].

11



Summary for the Day CLT and Fourier Analysis

Proof of the Central Limit Theorem

The Fourier transform: p̂(y) =
∫∞
−∞ p(x)e−2�ixy dx .

Derivative of ĝ is the Fourier transform of −2�ixg(x);
differentiation (hard) is converted to multiplication (easy).

ĝ′(y) =

∫ ∞

−∞
−2�ix ⋅ g(x)e−2�ixy dx ;

g prob. density, ĝ′(0) = −2�iE[x ], ĝ′′(0) = −4�2
E[x2].

Natural: mean and variance simple multiples of derivatives of p̂
at zero: p̂′(0) = 0, p̂′′(0) = −4�2.
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Summary for the Day CLT and Fourier Analysis

Proof of the Central Limit Theorem

The Fourier transform: p̂(y) =
∫∞
−∞ p(x)e−2�ixy dx .

Derivative of ĝ is the Fourier transform of −2�ixg(x);
differentiation (hard) is converted to multiplication (easy).

ĝ′(y) =

∫ ∞

−∞
−2�ix ⋅ g(x)e−2�ixy dx ;

g prob. density, ĝ′(0) = −2�iE[x ], ĝ′′(0) = −4�2
E[x2].

Natural: mean and variance simple multiples of derivatives of p̂
at zero: p̂′(0) = 0, p̂′′(0) = −4�2.

We Taylor expand p̂ (need technical conditions on p):

p̂(y) = 1 +
p′′(0)

2
y2 + ⋅ ⋅ ⋅ = 1 − 2�2y2 + O(y3).

Near origin, p̂ a concave down parabola.
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Summary for the Day CLT and Fourier Analysis

Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.
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Summary for the Day CLT and Fourier Analysis

Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).
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Summary for the Day CLT and Fourier Analysis

Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).

Do not want the distribution of X1 + ⋅ ⋅ ⋅+ XN = x , but rather
SN = X1+⋅⋅⋅+XN√

N
= x .
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).

Do not want the distribution of X1 + ⋅ ⋅ ⋅+ XN = x , but rather
SN = X1+⋅⋅⋅+XN√

N
= x .

If B(x) = A(cx) for some fixed c ∕= 0, then B̂(y) = 1
c Â

( y
c

)
.
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).

Do not want the distribution of X1 + ⋅ ⋅ ⋅+ XN = x , but rather
SN = X1+⋅⋅⋅+XN√

N
= x .

If B(x) = A(cx) for some fixed c ∕= 0, then B̂(y) = 1
c Â

( y
c

)
.

Prob
(

X1+⋅⋅⋅+XN√
N

= x
)

= (
√

Np ∗ ⋅ ⋅ ⋅ ∗
√

Np)(x
√

N).
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Proof of the Central Limit Theorem (cont)

Prob(X1 + ⋅ ⋅ ⋅+ XN ∈ [a, b]) =
∫ b

a (p ∗ ⋅ ⋅ ⋅ ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If
FT[f ](y) denotes the Fourier transform of f evaluated at y :

FT[p ∗ ⋅ ⋅ ⋅ ∗ p](y) = p̂(y) ⋅ ⋅ ⋅ p̂(y).

Do not want the distribution of X1 + ⋅ ⋅ ⋅+ XN = x , but rather
SN = X1+⋅⋅⋅+XN√

N
= x .

If B(x) = A(cx) for some fixed c ∕= 0, then B̂(y) = 1
c Â

( y
c

)
.

Prob
(

X1+⋅⋅⋅+XN√
N

= x
)

= (
√

Np ∗ ⋅ ⋅ ⋅ ∗
√

Np)(x
√

N).

FT
[
(
√

Np ∗ ⋅ ⋅ ⋅ ∗
√

Np)(x
√

N)
]
(y) =

[
p̂
(

y√
N

)]N
.
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Summary for the Day CLT and Fourier Analysis

Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.

Take the limit as N → ∞ for fixed y .
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.

Take the limit as N → ∞ for fixed y .

Know p̂(y) = 1 − 2�2y2 + O(y3). Thus study
[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

.
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.

Take the limit as N → ∞ for fixed y .

Know p̂(y) = 1 − 2�2y2 + O(y3). Thus study
[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

.

For any fixed y ,

lim
N→∞

[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

= e−2�2y2

.
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Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :
[
p̂
(

y√
N

)]N

.

Take the limit as N → ∞ for fixed y .

Know p̂(y) = 1 − 2�2y2 + O(y3). Thus study
[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

.

For any fixed y ,

lim
N→∞

[
1 − 2�2y2

N
+ O

(
y3

N3/2

)]N

= e−2�2y2

.

Fourier transform of 1√
2�

e−x2/2 at y is e−2�2y2
.
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Proof of the Central Limit Theorem (cont)

We have shown:

the Fourier transform of the distribution of SN converges to
e−2�2y2

;

the Fourier transform of 1√
2�

e−x2/2 at y is e−2�2y2
.

Therefore the distribution of SN equalling x converges to 1√
2�

e−x2/2.
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Proof of the Central Limit Theorem (cont)

We have shown:

the Fourier transform of the distribution of SN converges to
e−2�2y2

;

the Fourier transform of 1√
2�

e−x2/2 at y is e−2�2y2
.

Therefore the distribution of SN equalling x converges to 1√
2�

e−x2/2.
We need complex analysis to justify this inversion. Must be careful:
Consider

g(x) =

{
e−1/x2

if x ∕= 0

0 if x = 0.

All the Taylor coefficients about x = 0 are zero, but the function is not
identically zero in a neighborhood of x = 0.
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