# Math 341: Probability Twenty-first Lecture (11/24/09) 

Steven J Miller Williams College

$$
\begin{gathered}
\text { Steven.J.Miller@williams.edu } \\
\text { http://www.williams.edu/go/math/sjmiller/ } \\
\text { public_html/341/ }
\end{gathered}
$$

Bronfman Science Center
Williams College, November 24, 2009

## Summary for the Day

## Summary for the day

- Benford's Law:
$\diamond$ Review.
$\diamond$ Inputs (equidistribution).
$\diamond$ Clicker question.
$\diamond$ Difference equations.
$\diamond$ Products.
- More Sum Than Difference Sets:
$\diamond$ Definition.
$\diamond$ Inputs (Chebyshev's Theorem).


## Introduction

## Caveats!

- Not all fraud can be detected by Benford's Law.


## Caveats!

- Not all fraud can be detected by Benford's Law.
- A math test indicating fraud is not proof of fraud: unlikely events, alternate reasons.


## Caveats!

- Not all fraud can be detected by Benford's Law.
- A math test indicating fraud is not proof of fraud: unlikely events, alternate reasons.



## Notation

- Logarithms: $\log _{B} x=y$ means $x=B^{y}$. $\diamond$ Example: $\log _{10} 100=2$ as $100=10^{2}$.
$\diamond \log _{B}(u v)=\log _{B} u+\log _{B} v$.
$\diamond \log _{10}(100 \cdot 1000)=\log _{10}(100)+\log _{10}(1000)$.
- Set Theory:
$\diamond \mathbb{Q}=$ rational numbers $=\{p / q: p, q$ integers $\}$.
$\diamond x \in S$ means $x$ belongs to $S$.
$\diamond[a, b]=\{x: a \leq x \leq b\}$.
- Modulo 1 :
$\diamond$ Any $x$ can be written as integer + fraction.
$\diamond x$ mod 1 means just the fractional part.
$\diamond$ Example: $\pi \bmod 1$ is about . 14159 .


## Benford's Law: Newcomb (1881), Benford (1938)

## Statement

For many data sets, probability of observing a first digit of $d$ base $B$ is $\log _{B}\left(\frac{d+1}{d}\right)$; base 10 about $30 \%$ are 1 s.

- Not all data sets satisfy Benford's Law. $\diamond$ Long street $[1, L]: L=199$ versus $L=999$.
$\diamond$ Oscillates between $1 / 9$ and $5 / 9$ with first digit 1. $\diamond$ Many streets of different sizes: close to Benford.


## Examples

- recurrence relations
- special functions (such as $n!$ )
- iterates of power, exponential, rational maps
- products of random variables
- L-functions, characteristic polynomials
- iterates of the $3 x+1$ map
- differences of order statistics
- hydrology and financial data
- many hierarchical Bayesian models


## Applications

- analyzing round-off errors
- determining the optimal way to store numbers
- detecting tax and image fraud, and data integrity


## Clicker Question

First 60 numbers of the form $2^{n}$

| digit | \# Obs | \# Pred | Obs Prob | Benf Prob |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 18 | 18.1 | .300 | .301 |
| 2 | 12 | 10.6 | .200 | .176 |
| 3 | 6 | 7.5 | .100 | .125 |
| 4 | 6 | 5.8 | .100 | .097 |
| 5 | 6 | 4.8 | .100 | .079 |
| 6 | 4 | 4.0 | .067 | .067 |
| 7 | 2 | 3.5 | .033 | .058 |
| 8 | 5 | 3.1 | .083 | .051 |
| 9 | 1 | 2.7 | .017 | .046 |

First 60 numbers of the form $2^{n}$

| digit | \# Obs | \# Pred | Obs Prob | Benf Prob |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 18 | 18.1 | .300 | .301 |
| 2 | 12 | 10.6 | .200 | .176 |
| 3 | 6 | 7.5 | .100 | .125 |
| 4 | 6 | 5.8 | .100 | .097 |
| 5 | 6 | 4.8 | .100 | .079 |
| 6 | 4 | 4.0 | .067 | .067 |
| 7 | 2 | 3.5 | .033 | .058 |
| 8 | 5 | 3.1 | .083 | .051 |
| 9 | 1 | 2.7 | .017 | .046 |

As $N \rightarrow \infty$, is $\left\{2^{n}\right\}_{n=0}^{N}$ Benford? (a) yes (b) no (c) open.

## First 60 numbers of the form $2^{n}$

| digit | \# Obs | \# Pred | Obs Prob | Benf Prob |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 18 | 18.1 | .300 | .301 |
| 2 | 12 | 10.6 | .200 | .176 |
| 3 | 6 | 7.5 | .100 | .125 |
| 4 | 6 | 5.8 | .100 | .097 |
| 5 | 6 | 4.8 | .100 | .079 |
| 6 | 4 | 4.0 | .067 | .067 |
| 7 | 2 | 3.5 | .033 | .058 |
| 8 | 5 | 3.1 | .083 | .051 |
| 9 | 1 | 2.7 | .017 | .046 |

As $N \rightarrow \infty$, is $\left\{2^{n}\right\}_{n=0}^{N}$ Benford? (a) yes (b) no (c) open.

Are the 9 s low in limit? (a) yes (b) no (c) open.

## Benford's Law: Newcomb (1881), Benford (1938)

## Statement

For many data sets, probability of observing a first digit of $d$ base $B$ is $\log _{B}\left(\frac{d+1}{d}\right)$.

First 60 values of $2^{n}$ (only displaying 30)

| 1 | 1024 | 1048576 | digit | $\#$ | Obs Prob | Benf Prob |
| ---: | ---: | ---: | :---: | :---: | :---: | :---: |
| 2 | 2048 | 2097152 | 1 | 18 | .300 | .301 |
| 4 | 4096 | 4194304 | 2 | 12 | .200 | .176 |
| 8 | 8192 | 8388608 | 3 | 6 | .100 | .125 |
| 16 | 16384 | 16777216 | 4 | 6 | .100 | .097 |
| 32 | 32768 | 33554432 | 5 | 6 | .100 | .079 |
| 64 | 65536 | 67108864 | 6 | 4 | .067 | .067 |
| 128 | 131072 | 134217728 | 7 | 2 | .033 | .058 |
| 256 | 262144 | 268435456 | 8 | 5 | .083 | .051 |
| 512 | 524288 | 536870912 | 9 | 1 | .017 | .046 |

## Data Analysis

- $\chi^{2}$-Tests: Test if theory describes data $\diamond$ Expected probability: $p_{d}=\log _{10}\left(\frac{d+1}{d}\right)$. $\diamond$ Expect about $N p_{d}$ will have first digit $d$. $\diamond$ Observe Obs(d) with first digit $d$.
$\diamond \chi^{2}=\sum_{d=1}^{9} \frac{\left(\mathrm{Obs}(d)-N p_{d}\right)^{2}}{N p_{d}}$.
$\diamond$ Smaller $\chi^{2}$, more likely correct model.
- Will study $\gamma^{n}, e^{n}, \pi^{n}$.


## Logarithms and Benford's Law

$\chi^{2}$ values for $\alpha^{n}, 1 \leq n \leq N(5 \% 15.5)$.

| $N$ | $\chi^{2}(\gamma)$ | $\chi^{2}(e)$ | $\chi^{2}(\pi)$ |
| ---: | :---: | :---: | :---: |
| 100 | 0.72 | 0.30 | 46.65 |
| 200 | 0.24 | 0.30 | 8.58 |
| 400 | 0.14 | 0.10 | 10.55 |
| 500 | 0.08 | 0.07 | 2.69 |
| 700 | 0.19 | 0.04 | 0.05 |
| 800 | 0.04 | 0.03 | 6.19 |
| 900 | 0.09 | 0.09 | 1.71 |
| 1000 | 0.02 | 0.06 | 2.90 |

## Logarithms and Benford's Law: Base 10

$\log \left(\chi^{2}\right)$ vs $N$ for $\pi^{n}$ (red) and $e^{n}$ (blue), $n \in\{1, \ldots, N\}$. Note $\pi^{175} \approx 1.0028 \cdot 10^{87}$, (5\%, $\left.\log \left(\chi^{2}\right) \approx 2.74\right)$.


## Logarithms and Benford's Law: Base 20

$\log \left(\chi^{2}\right)$ vs $N$ for $\pi^{n}$ (red) and $e^{n}$ (blue), $n \in\{1, \ldots, N\}$. Note $e^{3} \approx 20.0855$, (5\%, $\left.\log \left(\chi^{2}\right) \approx 2.74\right)$.


## General Theory

## Mantissas

Mantissa: $x=M_{10}(x) \cdot 10^{k}, k$ integer.
$M_{10}(x)=M_{10}(\widetilde{x})$ if and only if $x$ and $\widetilde{x}$ have the same leading digits.

Key observation: $\log _{10}(x)=\log _{10}(\widetilde{x}) \bmod 1$ if and only if $x$ and $\widetilde{x}$ have the same leading digits.
Thus often study $y=\log _{10} x$.

## Equidistribution and Benford's Law

## Equidistribution

$\left\{y_{n}\right\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_{n} \bmod 1 \in[a, b]$ tends to $b-a$ :

$$
\frac{\#\left\{n \leq N: y_{n} \bmod 1 \in[a, b]\right\}}{N} \rightarrow b-a
$$

## Equidistribution and Benford's Law

## Equidistribution

$\left\{y_{n}\right\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_{n} \bmod 1 \in[a, b]$ tends to $b-a$ :

$$
\frac{\#\left\{n \leq N: y_{n} \bmod 1 \in[a, b]\right\}}{N} \rightarrow b-a
$$

- Thm: $\beta \notin \mathbb{Q}, n \beta$ is equidistributed $\bmod 1$.


## Equidistribution and Benford's Law

## Equidistribution

$\left\{y_{n}\right\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_{n} \bmod 1 \in[a, b]$ tends to $b-a$ :

$$
\frac{\#\left\{n \leq N: y_{n} \bmod 1 \in[a, b]\right\}}{N} \rightarrow b-a
$$

- Thm: $\beta \notin \mathbb{Q}, n \beta$ is equidistributed $\bmod 1$.
- Examples: $\log _{10} 2, \log _{10}\left(\frac{1+\sqrt{5}}{2}\right) \notin \mathbb{Q}$.


## Equidistribution and Benford's Law

## Equidistribution

$\left\{y_{n}\right\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability
$y_{n} \bmod 1 \in[a, b]$ tends to $b-a$ :

$$
\frac{\#\left\{n \leq N: y_{n} \bmod 1 \in[a, b]\right\}}{N} \rightarrow b-a
$$

- Thm: $\beta \notin \mathbb{Q}, n \beta$ is equidistributed $\bmod 1$.
- Examples: $\log _{10} 2, \log _{10}\left(\frac{1+\sqrt{5}}{2}\right) \notin \mathbb{Q}$. Proof: if rational: $2=10^{p / q}$.


## Equidistribution and Benford's Law

## Equidistribution

$\left\{y_{n}\right\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability
$y_{n} \bmod 1 \in[a, b]$ tends to $b-a$ :

$$
\frac{\#\left\{n \leq N: y_{n} \bmod 1 \in[a, b]\right\}}{N} \rightarrow b-a
$$

- Thm: $\beta \notin \mathbb{Q}, n \beta$ is equidistributed $\bmod 1$.
- Examples: $\log _{10} 2, \log _{10}\left(\frac{1+\sqrt{5}}{2}\right) \notin \mathbb{Q}$. Proof: if rational: $2=10^{p / q}$.
Thus $2^{q}=10^{p}$ or $2^{q-p}=5^{p}$, impossible.


## Example of Equidistribution: $n \sqrt{\pi} \bmod 1$



## Example of Equidistribution: $n \sqrt{\pi} \bmod 1$



## Example of Equidistribution: $n \sqrt{\pi} \bmod 1$


$n \sqrt{\pi} \bmod 1$ for $n \leq 1000$

## Example of Equidistribution: $n \sqrt{\pi} \bmod 1$


$n \sqrt{\pi} \bmod 1$ for $n \leq 10,000$

## Denseness

## Dense

A sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$ of numbers in $[0,1]$ is dense if for any interval $[a, b]$ there are infinitely many $z_{n}$ in $[a, b]$.

- Dirichlet's Box (or Pigeonhole) Principle: If $n+1$ objects are placed in $n$ boxes, at least one box has two objects.
- Denseness of $n \alpha$ :

Thm: If $\alpha \notin \mathbb{Q}$ then $z_{n}=n \alpha \bmod 1$ is dense.

## Proof $n \alpha$ mod 1 dense if $\alpha \notin \mathbb{Q}$

- Enough to show in $[0, b]$ infinitely often for any $b$.
- Choose any integer $Q>1 / b$.
- $Q$ bins: $\left[0, \frac{1}{Q}\right],\left[\frac{1}{Q}, \frac{2}{Q}\right], \ldots,\left[\frac{Q-1}{Q}, Q\right]$.
- $Q+1$ objects:
$\{\alpha \bmod 1,2 \alpha \bmod 1, \ldots,(Q+1) \alpha \bmod 1\}$.
- Two in same bin, say $q_{1} \alpha \bmod 1$ and $q_{2} \alpha \bmod 1$.
- Exists integer $p$ with $0<q_{2} \alpha-q_{1} \alpha-p<\frac{1}{Q}$.
- Get $\left(q_{2}-q_{1}\right) \alpha \bmod 1 \in[0, b]$.


## Logarithms and Benford's Law

## Fundamental Equivalence

Data set $\left\{x_{i}\right\}$ is Benford base $B$ if $\left\{y_{i}\right\}$ is equidistributed mod 1 , where $y_{i}=\log _{B} x_{i}$.

## Logarithms and Benford's Law

## Fundamental Equivalence

Data set $\left\{x_{i}\right\}$ is Benford base $B$ if $\left\{y_{i}\right\}$ is equidistributed mod 1 , where $y_{i}=\log _{B} x_{i}$.


## Logarithms and Benford's Law

## Fundamental Equivalence

Data set $\left\{x_{i}\right\}$ is Benford base $B$ if $\left\{y_{i}\right\}$ is equidistributed mod 1 , where $y_{i}=\log _{B} x_{i}$.


## Logarithms and Benford's Law

## Fundamental Equivalence

Data set $\left\{x_{i}\right\}$ is Benford base $B$ if $\left\{y_{i}\right\}$ is equidistributed mod 1, where $y_{i}=\log _{B} x_{i}$.

## Proof:

- $x=M_{B}(x) \cdot B^{k}$ for some $k \in \mathbb{Z}$.
- $\mathrm{FD}_{B}(x)=d$ iff $d \leq M_{B}(x)<d+1$.
- $\log _{B} d \leq y<\log _{B}(d+1), y=\log _{B} x \bmod 1$.
- If $Y \sim \operatorname{Unif}(0,1)$ then above probability is $\log _{B}\left(\frac{d+1}{d}\right)$.


## Examples

- $2^{n}$ is Benford base 10 as $\log _{10} 2 \notin \mathbb{Q}$.


## Examples

- Fibonacci numbers are Benford base 10.


## Examples

- Fibonacci numbers are Benford base 10.

$$
a_{n+1}=a_{n}+a_{n-1}
$$

## Examples

- Fibonacci numbers are Benford base 10.


## $a_{n+1}=a_{n}+a_{n-1}$.

Guess $a_{n}=n^{r}: r^{n+1}=r^{n}+r^{n-1}$ or $r^{2}=r+1$.

## Examples

- Fibonacci numbers are Benford base 10.

$$
a_{n+1}=a_{n}+a_{n-1}
$$

$$
\text { Guess } a_{n}=n^{r}: r^{n+1}=r^{n}+r^{n-1} \text { or } r^{2}=r+1
$$

$$
\text { Roots } r=(1 \pm \sqrt{5}) / 2
$$

## Examples

- Fibonacci numbers are Benford base 10. $a_{n+1}=a_{n}+a_{n-1}$.
Guess $a_{n}=n^{r}: r^{n+1}=r^{n}+r^{n-1}$ or $r^{2}=r+1$. Roots $r=(1 \pm \sqrt{5}) / 2$.
General solution: $a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$.


## Examples

- Fibonacci numbers are Benford base 10. $a_{n+1}=a_{n}+a_{n-1}$.
Guess $a_{n}=n^{r}: r^{n+1}=r^{n}+r^{n-1}$ or $r^{2}=r+1$. Roots $r=(1 \pm \sqrt{5}) / 2$.
General solution: $a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$.
Binet: $a_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.


## Examples

- Fibonacci numbers are Benford base 10. $a_{n+1}=a_{n}+a_{n-1}$.
Guess $a_{n}=n^{r}: r^{n+1}=r^{n}+r^{n-1}$ or $r^{2}=r+1$. Roots $r=(1 \pm \sqrt{5}) / 2$.
General solution: $a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$.
Binet: $a_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
- Most linear recurrence relations Benford:


## Examples

- Fibonacci numbers are Benford base 10. $a_{n+1}=a_{n}+a_{n-1}$.
Guess $a_{n}=n^{r}: r^{n+1}=r^{n}+r^{n-1}$ or $r^{2}=r+1$.
Roots $r=(1 \pm \sqrt{5}) / 2$.
General solution: $a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$.
Binet: $a_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
- Most linear recurrence relations Benford:

$$
\diamond a_{n+1}=2 a_{n}
$$

## Examples

- Fibonacci numbers are Benford base 10. $a_{n+1}=a_{n}+a_{n-1}$.
Guess $a_{n}=n^{r}: r^{n+1}=r^{n}+r^{n-1}$ or $r^{2}=r+1$.
Roots $r=(1 \pm \sqrt{5}) / 2$.
General solution: $a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$.
Binet: $a_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
- Most linear recurrence relations Benford:

$$
\diamond a_{n+1}=2 a_{n}-a_{n-1}
$$

## Examples

- Fibonacci numbers are Benford base 10. $a_{n+1}=a_{n}+a_{n-1}$.
Guess $a_{n}=n^{r}: r^{n+1}=r^{n}+r^{n-1}$ or $r^{2}=r+1$. Roots $r=(1 \pm \sqrt{5}) / 2$.
General solution: $a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$.
Binet: $a_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
- Most linear recurrence relations Benford:
$\diamond a_{n+1}=2 a_{n}-a_{n-1}$
$\diamond$ take $a_{0}=a_{1}=1$ or $a_{0}=0, a_{1}=1$.


## Applications

## Stock Market

| Milestone | Date | Effective Rate from last milestone |
| ---: | ---: | ---: |
| 108.35 | Jan 12, 1906 |  |
| 500.24 | Mar 12, 1956 | $3.0 \%$ |
| 1003.16 | Nov 14, 1972 | $4.2 \%$ |
| 2002.25 | Jan 8, 1987 | $4.9 \%$ |
| 3004.46 | Apr 17, 1991 | $9.5 \%$ |
| 4003.33 | Feb 23, 1995 | $7.4 \%$ |
| 5023.55 | Nov 21, 1995 | $30.6 \%$ |
| 6010.00 | Oct 14, 1996 | $20.0 \%$ |
| 7022.44 | Feb 13, 1997 | $46.6 \%$ |
| 8038.88 | Jul 16, 1997 | $32.3 \%$ |
| 9033.23 | Apr 6, 1998 | $16.1 \%$ |
| 10006.78 | Mar 29, 1999 | $10.5 \%$ |
| 11209.84 | Jul 16, 1999 | $38.0 \%$ |
| 12011.73 | Oct 19, 2006 | $1.0 \%$ |
| 13089.89 | Apr 25, 2007 | $16.7 \%$ |
| 14000.41 | Jul 19, 2007 | $28.9 \%$ |

## Applications for the IRS: Detecting Fraud



## Applications for the IRS: Detecting Fraud



## Applications for the IRS: Detecting Fraud

## Exhibit 3: Check Fraud in Arizona

The table lists the checks that a manager in the office of the Arizona State Treasurer wrote to divert funds for his own use. The vendors to whom the checks were issued were fictitious.

| Date of Check | Amount |
| :---: | :---: |
| October 9, 1992 | $\begin{array}{r} \$ 1.927 .48 \\ 27,902.31 \\ \hline \end{array}$ |
| October 14, 1992 | $\begin{aligned} & 86,241.90 \\ & 72,117.46 \\ & 81,321.75 \\ & 97,473.96 \end{aligned}$ |
| October 19, 1992 | 93,249.11 <br> 89,658.17 <br> 87,776.89 <br> 92,105.83 <br> 79.949.16 <br> 87.602 .93 <br> 96,879.27 <br> 91,806.47 <br> $84,991.67$ <br> $90,831.83$ <br> 93,766.67 <br> 88,338. 72 <br> $94,639.49$ <br> $83,709.28$ <br> 96.412. 21 <br> 88,432.86 <br> 71.552 .16 |
| TOTAL | ,878,687.58 |

## Applications for the IRS: Detecting Fraud (cont)

- Embezzler started small and then increased dollar amounts.
- Most amounts below \$100,000 (critical threshold for data requiring additional scrutiny).
- Over $90 \%$ had first digit of 7,8 or 9 .


## Detecting Fraud

## Bank Fraud

- Audit of a bank revealed huge spike of numbers starting with 48 and 49 , most due to one person.
- Write-off limit of $\$ 5,000$. Officer had friends applying for credit cards, ran up balances just under \$5,000 then he would write the debts off.


## Detecting Fraud

## Enron

- Benford's Law detected manipulation of revenue numbers.
- Results showed a tendency towards round Earnings Per Share (0.10, 0.20 , etc.).
Consistent with a small but noticeable increase in earnings management in 2002.


## Data Integrity: Stream Flow Statistics: 130 years, 457,440 records


-Actual - Benford's Law

## Election Fraud: Iran 2009

Numerous protests and complaints over Iran's 2009 elections.
Lot of analysis done; data is moderately suspicious.
Tests done include

- First and second leading digits;
- Last two digits (should almost be uniform);
- Last two digits differing by at least 2.

Warning: do enough tests, even if nothing is wrong will find a suspicious result, but when all tests are on the boundary....

## The Modulo 1 <br> Central Limit Theorem

## Needed Input: Poisson Summation Formula

## Poisson Summation Formula

$f$ nice:

$$
\sum_{\ell=-\infty}^{\infty} f(\ell)=\sum_{\ell=-\infty}^{\infty} \widehat{f}(\ell)
$$

Fourier transform $\widehat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi} d x$.

## Needed Input: Poisson Summation Formula

## Poisson Summation Formula

$f$ nice:

$$
\begin{gathered}
\qquad \sum_{\ell=-\infty}^{\infty} f(\ell)=\sum_{\ell=-\infty}^{\infty} \widehat{f}(\ell) \\
\text { Fourier transform } \widehat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi} d x .
\end{gathered}
$$

What is 'nice'?

- $f$ Schwartz more than enough.
- $f$ twice continuously differentiable \& $f, f^{\prime}, f^{\prime \prime}$ decay like $x^{-(1+\eta)}$ for an $\eta>0$ ( $g$ decays like $x^{-a}$ if $\exists x_{0}, C$ st $\left.|x|>x_{0},|g(x)| \leq C /|x|^{a}\right)$.


## Modulo 1 Central Limit Theorem

## The Modulo 1 Central Limit Theorem for Independent

Let $\left\{Y_{m}\right\}$ be independent continuous random variables on $[0,1)$, not necessarily identically distributed, with densities $\left\{g_{m}\right\}$. A necessary and sufficient condition for $Y_{1}+\cdots+Y_{M}$ modulo 1 to converge to the uniform distribution as $M \rightarrow \infty$ (in $L_{1}([0,1])$ is that for each $n \neq 0$ we have $\lim _{M \rightarrow \infty} \widehat{g_{1}}(n) \cdots \widehat{g_{M}}(n)=0$.

## Modulo 1 Central Limit Theorem

## The Modulo 1 Central Limit Theorem for Independent

Let $\left\{Y_{m}\right\}$ be independent continuous random variables on $[0,1)$, not necessarily identically distributed, with densities $\left\{g_{m}\right\}$. A necessary and sufficient condition for $Y_{1}+\cdots+Y_{M}$ modulo 1 to converge to the uniform distribution as $M \rightarrow \infty$ (in $L_{1}([0,1])$ is that for each $n \neq 0$ we have $\lim _{M \rightarrow \infty} \widehat{g_{1}}(n) \cdots \widehat{g_{M}}(n)=0$.

Application to Benford's law: If $X=X_{1} \ldots X_{M}$ then

$$
\log _{10} X=\log _{10} X_{1}+\cdots+\log _{10} X_{M}:=Y_{1}+\cdots+Y_{M}
$$

## Products of Random Variables and the Fourier Transform

## Preliminaries

- $X_{1} \cdots X_{n} \Leftrightarrow Y_{1}+\cdots+Y_{n} \bmod 1, Y_{i}=\log _{B} X_{i}$
- Density $Y_{i}$ is $g_{i}$, density $Y_{i}+Y_{j}$ is

$$
\left(g_{i} * g_{j}\right)(y)=\int_{0}^{1} g_{i}(t) g_{j}(y-t) d t
$$

- $h_{n}=g_{1} * \cdots * g_{n}, \widehat{g}(\xi)=\widehat{g}_{1}(\xi) \cdots \widehat{g}_{n}(\xi)$.
- Dirac delta functional: $\int \delta_{\alpha}(y) g(y) d y=g(\alpha)$.


## Fourier input

- Fejér kernel:

$$
F_{N}(x)=\sum_{n=-N}^{N}\left(1-\frac{|n|}{N}\right) e^{2 \pi i n x}
$$

- Fejér series:

$$
T_{N} f(x)=\left(f * F_{N}\right)(x)=\sum_{n=-N}^{N}\left(1-\frac{|n|}{N}\right) \widehat{f}(n) e^{2 \pi i n x}
$$

- Lebesgue's Theorem: $f \in L^{1}([0,1])$. As $N \rightarrow \infty, T_{N} f$ converges to $f$ in $L^{1}([0,1])$.
- $T_{N}(f * g)=\left(T_{N} f\right) * g$ : convolution assoc.


## Modulo 1 Central Limit Theorem

## Theorem (M- and Nigrini 2007)

$\left\{Y_{m}\right\}$ independent continuous random variables on $[0,1)$ (not necc. i.i.d.), densities $\left\{g_{m}\right\} . Y_{1}+\cdots+Y_{M} \bmod 1$ converges to the uniform distribution as $M \rightarrow \infty$ in $L^{1}([0,1])$ iff $\forall n \neq 0, \lim _{M \rightarrow \infty} \widehat{g_{1}}(n) \cdots \widehat{g_{M}}(n)=0$.

## Generalizations

- Levy proved for i.i.d.r.v. just one year after Benford's paper.
- Generalized to other compact groups, with estimates on the rate of convergence.
$\diamond$ Stromberg: $n$-fold convolution of a regular probability measure on a compact Hausdorff group $G$ converges to normalized Haar measure in weak-star topology iff support of the distribution not contained in a coset of a proper normal closed subgroup of $G$.


## Theorem (M- and Nigrini 2007)

$\left\{Y_{m}\right\}$ indep. discrete random variables on $[0,1)$, not necc. identically distributed, densities

$$
g_{m}(x)=\sum_{k=1}^{r_{m}} w_{k, m} \delta_{\alpha_{k, m}}(x), w_{k, m}>0, \sum_{k=1}^{r_{m}} w_{k, m}=1 .
$$

Assume that there is a finite set $A \subset[0,1)$ such that all $\alpha_{k, m} \in A$. $Y_{1}+\cdots+Y_{M} \bmod 1$ converges weakly to the uniform distribution as $M \rightarrow \infty$ iff $\forall n \neq 0$, $\lim _{M \rightarrow \infty} \widehat{g_{1}}(n) \cdots \widehat{g_{M}}(n)=0$.

Distribution of digits (base 10) of 1000 products $X_{1} \cdots X_{1000}$, where $g_{10, m}=\phi_{11 m}$. $\phi_{m}(x)=m$ if $|x-1 / 8| \leq 1 / 2 m$ (0 otherwise).


## Proof of Modulo 1 CLT

- Density of sum is $h_{\ell}=g_{1} * \cdots * g_{\ell}$.
- Suffices show $\forall \epsilon$ : $\lim _{M \rightarrow \infty} \int_{0}^{1}\left|h_{M}(x)-1\right| d x<\epsilon$.
- Lebesgue's Theorem: $N$ large,

$$
\left\|h_{1}-T_{N} h_{1}\right\|_{1}=\int_{0}^{1}\left|h_{1}(x)-T_{N} h_{1}(x)\right| d x<\frac{\epsilon}{2}
$$

- Claim: above holds for $h_{M}$ for all $M$.


## Proof of claim

$$
\begin{aligned}
T_{N} h_{M+1} & =T_{N}\left(h_{M} * g_{M+1}\right)=\left(T_{N} h_{M}\right) * g_{M+1} \\
\left\|h_{M+1}-T_{N} h_{M+1}\right\|_{1} & =\int_{0}^{1}\left|h_{M+1}(x)-T_{N} h_{M+1}(x)\right| d x \\
& =\int_{0}^{1}\left|\left(h_{M} * g_{M+1}\right)(x)-\left(T_{N} h_{M}\right) * g_{M+1}(x)\right| d x \\
& =\int_{0}^{1}\left|\int_{0}^{1}\left(h_{M}(y)-T_{N} h_{M}(y)\right) g_{M+1}(x-y)\right| d y d x \\
& \leq \int_{0}^{1} \int_{0}^{1}\left|h_{M}(y)-T_{N} h_{M}(y)\right| g_{M+1}(x-y) d x d y \\
& =\int_{0}^{1}\left|h_{M}(y)-T_{N} h_{M}(y)\right| d y \cdot 1<\frac{\epsilon}{2}
\end{aligned}
$$

## Proof of Modulo 1 CLT (continued)

Show $\lim _{M \rightarrow \infty}\left\|h_{M}-1\right\|_{1}=0$.
Triangle inequality:

$$
\left\|h_{M}-1\right\|_{1} \leq\left\|h_{M}-T_{N} h_{M}\right\|_{1}+\left\|T_{N} h_{M}-1\right\|_{1} .
$$

Choices of $N$ and $\epsilon$ :

$$
\left\|h_{M}-T_{N} h_{M}\right\|_{1}<\epsilon / 2
$$

Show $\left\|T_{N} h_{M}-1\right\|_{1}<\epsilon / 2$.

$$
\begin{aligned}
\left\|T_{N} h_{M}-1\right\|_{1} & =\int_{0}^{1}\left|\sum_{\substack{n=-N \\
n \neq 0}}^{N}\left(1-\frac{|n|}{N}\right) \widehat{h_{M}}(n) e^{2 \pi i n x}\right| d x \\
& \leq \sum_{\substack{n==N \\
n \neq 0}}^{N}\left(1-\frac{|n|}{N}\right)\left|\widehat{h_{M}}(n)\right|
\end{aligned}
$$

$\widehat{h_{M}}(n)=\widehat{g_{1}}(n) \cdots \widehat{g_{M}}(n) \longrightarrow_{M \rightarrow \infty} 0$.
For fixed $N$ and $\epsilon$, choose $M$ large so that $\left|\widehat{h_{M}}(n)\right|<\epsilon / 4 N$ whenever $n \neq 0$ and $|n| \leq N$.

