Daily	Summary

MSTD: Introduction

Examples 00000000 Proofs 000000

Math 341: Probability Twenty-third Lecture (12/3/09)

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public_html/341/

> Bronfman Science Center Williams College, December 3, 2009

Daily Summary	MSTD: Introduction	Examples	Proofs

Summary for the Day

2

Daily Summary	MSTD: Introduction	Examples	Proofs
●		oooooooo	000000
Summary for th	e day		

- More Sum Than Difference Sets:
 - Review.
 - Inputs (Chebyshev's Theorem).
 - Proofs.
- Sabermetrics (baseball math):

Daily Summary	MSTD: Introduction	Examples	Proofs

More Sums Than Differences: Introduction

A finite set of integers, |A| its size. Form

- Sumset: $A + A = \{a_i + a_j : a_j, a_j \in A\}$.
- Difference set: $A A = \{a_i a_j : a_j, a_j \in A\}$.

Definition

We say *A* is difference dominated if |A - A| > |A + A|, balanced if |A - A| = |A + A| and sum dominated (or an MSTD set) if |A + A| > |A - A|.

Daily Summary	MSTD: Introduction	Examples	Proofs
	000		

Clicker Question

Binomial Model

Consider the 2^{*N*} subsets of $\{1, 2, ..., N\}$. As $N \to \infty$, what can you say about the percentage that are MSTD?

- It tends to 1.
- It tends to 1/2.
- It tends to a small positive constant.
- It tends to 0.

Daily Summary	MSTD: Introduction	Examples	Proofs
o	○○●	00000000	000000
Questions			

Expect generic set to be difference dominated:

- addition is commutative, subtraction isn't:
- Generic pair (x, y) gives 1 sum, 2 differences.

Questions

- Do there exist sum-dominated sets?
- If yes, how many?

Daily Summary	MSTD: Introduction	Examples	Proofs

Examples

R

Daily Summary	MSTD: Introduction	Examples	Proofs
o		●○○○○○○○	000000
Examples			

- Conway: {0, 2, 3, 4, 7, 11, 12, 14}.
- Marica (1969): {0, 1, 2, 4, 7, 8, 12, 14, 15}.
- Freiman and Pigarev (1973): {0, 1, 2, 4, 5, 9, 12, 13, 14, 16, 17, 21, 24, 25, 26, 28, 29}.
- Computer search of random subsets of {1,...,100}: {2,6,7,9,13,14,16,18,19,22,23,25,30,31,33,37,39, 41,42,45,46,47,48,49,51,52,54,57,58,59,61,64,65, 66,67,68,72,73,74,75,81,83,84,87,88,91,93,94,95, 98,100}.
- Recently infinite families (Hegarty, Nathanson).

Daily Summary	MSTD: Introduction	Examples	Proofs
o		o●oooooo	0000000
Probability Review			

X random variable with density f(x) means

•
$$f(x) \geq 0;$$

•
$$\int_{-\infty}^{\infty} f(\mathbf{x}) = 1;$$

•
$$\operatorname{Prob}(X \in [a, b]) = \int_a^b f(x) dx.$$

Key quantities:

- Expected (Average) Value: $\mathbb{E}[X] = \int xf(x)dx$.
- Variance: $\sigma^2 = \int (x \mathbb{E}[X])^2 f(x) dx$.

Daily Summary	MSTD: Introduction	Examples	Proofs
o		○○●○○○○○	000000
Binomial model			

Binomial model, parameter p(n)

Each $k \in \{0, \ldots, n\}$ is in *A* with probability p(n).

Consider uniform model (p(n) = 1/2):

• Let $A \in \{0, ..., n\}$. Most elements in $\{0, ..., 2n\}$ in A + A and in $\{-n, ..., n\}$ in A - A.

•
$$\mathbb{E}[|A+A|] = 2n - 11$$
, $\mathbb{E}[|A-A|] = 2n - 7$.

Daily Summary o	MSTD: Introduction	Examples	Proofs 0000000

Martin and O'Bryant '06

Theorem

Let A be chosen from $\{0, ..., N\}$ according to the binomial model with constant parameter p (thus $k \in A$ with probability p). At least $k_{SD;p}2^{N+1}$ subsets are sum dominated.

•
$$k_{\text{SD};1/2} \ge 10^{-7}$$
, expect about 10^{-3} .

Daily Summary	MSTD: Introduction	Examples	Proofs
o		○○○○●○○○	0000000
Notation			

•
$$X \sim f(N)$$
 means $\forall \epsilon_1, \epsilon_2 > 0$, $\exists N_{\epsilon_1, \epsilon_2}$ st $\forall N \ge N_{\epsilon_1, \epsilon_2}$
Prob $(X \notin [(1 - \epsilon_1)f(N), (1 + \epsilon_1)f(N)]) < \epsilon_2$.
• $S = |A + A|, D = |A - A|,$
 $S^c = 2N + 1 - S, D^c = 2N + 1 - D$.

New model: Binomial with parameter p(N):

•
$$1/N = o(p(N))$$
 and $p(N) = o(1)$;

•
$$\operatorname{Prob}(k \in A) = p(N).$$

Conjecture (Martin-O'Bryant)

As $N \rightarrow \infty$, A is a.s. difference dominated.

Daily Summary	MSTD: Introduction	Examples	Proofs
		00000000	

Main Result

Theorem (Hegarty-Miller)

$$p(N)$$
 as above, $g(x) = 2rac{e^{-x}-(1-x)}{x}$.

•
$$p(N) = o(N^{-1/2})$$
: $D \sim 2S \sim (Np(N))^2$;

•
$$p(N) = cN^{-1/2}$$
: $\mathcal{D} \sim g(c^2)N$, $\mathcal{S} \sim g\left(\frac{c^2}{2}\right)N$
 $(c \rightarrow 0, \mathcal{D}/\mathcal{S} \rightarrow 2; c \rightarrow \infty, \mathcal{D}/\mathcal{S} \rightarrow 1);$

•
$$N^{-1/2} = o(p(N)): S^{c} \sim 2D^{c} \sim 4/p(N)^{2}.$$

Daily Summary	MSTD: Introduction	Examples	Proofs
o		○○○○○●○	0000000
Critical Threshold	ds		

Can generalize Hegarty-Miller to binary linear forms, still have critical threshold.

Daily Summary	MSTD: Introduction	Examples	Proofs
o		○○○○○○○●	0000000
Inputs			

Key input: recent strong concentration results of Kim and Vu (Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): t_i iid binary random variables, $Y = \sum_{i=1}^{n} t_i$, then

$$\forall \lambda > \mathbf{0}: \ \operatorname{Prob}\left(|\mathbf{Y} - \mathbb{E}[\mathbf{Y}]| \geq \sqrt{\lambda n}\right) \ \leq \ \mathbf{2} e^{-\lambda/2}$$

Need to allow dependent random variables. Sketch of proofs: $\mathcal{X} \in \{\mathcal{S}, \mathcal{D}, \mathcal{S}^c, \mathcal{D}^c\}$.

• Prove $\mathbb{E}[\mathcal{X}]$ behaves asymptotically as claimed;

2 Prove \mathcal{X} is strongly concentrated about mean.

Daily Summary	MSTD: Introduction	Examples	Proofs

Proofs

Daily Summary	MSTD: Introduction	Examples	Proofs
o		oooooooo	●○○○○○○
Setup			

Note: only need strong concentration for $N^{-1/2} = o(p(N))$.

Daily Summary o	MSTD: Introduction	Examples	Proofs ●○○○○○∢
Setup			

Note: only need strong concentration for $N^{-1/2} = o(p(N))$.

Will assume $p(N) = o(N^{-1/2})$ as proofs are elementary (i.e., Chebyshev: Prob($|Y - \mathbb{E}[Y]| \ge k\sigma_Y \le 1/k^2$)).

Daily Summary	MSTD: Introduction	Examples	Proofs
o		oooooooo	●○○○○○○
Setup			

Note: only need strong concentration for $N^{-1/2} = o(p(N))$.

Will assume $p(N) = o(N^{-1/2})$ as proofs are elementary (i.e., Chebyshev: $Prob(|Y - \mathbb{E}[Y]| \ge k\sigma_Y) \le 1/k^2)$).

For convenience let $p(N) = N^{-\delta}$, $\delta \in (1/2, 1)$.

IID binary indicator variables:

$$X_{n;N} = \begin{cases} 1 & \text{with probability } N^{-\delta} \\ 0 & \text{with probability } 1 - N^{-\delta} \end{cases}$$

$$X = \sum_{i=1}^{N} X_{n;N}, \mathbb{E}[X] = N^{1-\delta}.$$

Daily Summary	MSTD: Introduction	Examples	Proofs
o		oooooooo	○●○○○○○

Proof

Lemma

$$\begin{aligned} & P_1(N) = 4N^{-(1-\delta)}, \\ & \mathcal{O} = \#\{(m,n) : m < n \in \{1, \dots, N\} \cap A\}. \\ & \text{With probability at least } 1 - P_1(N) \text{ have} \\ & \bullet \quad X \in \left[\frac{1}{2}N^{1-\delta}, \frac{3}{2}N^{1-\delta}\right]. \\ & \bullet \quad \frac{\frac{1}{2}N^{1-\delta}(\frac{1}{2}N^{1-\delta}-1)}{2} \le \mathcal{O} \le \frac{\frac{3}{2}N^{1-\delta}(\frac{3}{2}N^{1-\delta}-1)}{2}. \end{aligned}$$

Daily Summary	MSTD: Introduction	Examples	Proofs
o		00000000	○●○○○○○

Proof

Lemma

$$P_{1}(N) = 4N^{-(1-\delta)},$$

$$\mathcal{O} = \#\{(m, n) : m < n \in \{1, ..., N\} \cap A\},$$

With probability at least $1 - P_{1}(N)$ have

$$X \in \left[\frac{1}{2}N^{1-\delta}, \frac{3}{2}N^{1-\delta}\right].$$

$$2 \frac{\frac{1}{2}N^{1-\delta}(\frac{1}{2}N^{1-\delta}-1)}{2} \le \mathcal{O} \le \frac{\frac{3}{2}N^{1-\delta}(\frac{3}{2}N^{1-\delta}-1)}{2}.$$

Proof:

- (1) is Chebyshev: $\operatorname{Var}(X) = N\operatorname{Var}(X_{n;N}) \leq N^{1-\delta}$.
- (2) follows from (1) and $\binom{r}{2}$ ways to choose 2 from *r*.

Daily Summary	MSTD: Introduction	Examples	Proofs
o		oooooooo	○○●○○○○

Lemma

Concentration

•
$$f(\delta) = \min\left(\frac{1}{2}, \frac{3\delta-1}{2}\right)$$
, $g(\delta)$ any function st $0 < g(\delta) < f(\delta)$.

•
$$p(N) = N^{-\delta}, \, \delta \in (1/2, 1), \, P_1(N) = 4N^{-(1-\delta)}, \ P_2(N) = CN^{-(f(\delta)-g(\delta))}.$$

With probability at least $1 - P_1(N) - P_2(N)$ have $\mathcal{D}/\mathcal{S} = 2 + O(N^{-g(\delta)})$.

Daily Summary	MSTD: Introduction	Examples	Proofs
o		00000000	○○●○○○○

Concentration

Lemma

•
$$f(\delta) = \min\left(\frac{1}{2}, \frac{3\delta-1}{2}\right)$$
, $g(\delta)$ any function st $0 < g(\delta) < f(\delta)$.

•
$$p(N) = N^{-\delta}, \, \delta \in (1/2, 1), \, P_1(N) = 4N^{-(1-\delta)}, \ P_2(N) = CN^{-(f(\delta)-g(\delta))}.$$

With probability at least $1 - P_1(N) - P_2(N)$ have $\mathcal{D}/\mathcal{S} = 2 + O(N^{-g(\delta)})$.

Proof: Show
$$\mathcal{D} \sim 2\mathcal{O} + O(N^{3-4\delta})$$
, $\mathcal{S} \sim \mathcal{O} + O(N^{3-4\delta})$.

As O is of size $N^{2-2\delta}$ with high probability, need $2-2\delta > 3-4\delta$ or $\delta > 1/2$.

Daily Summary	MSTD: Introduction	Examples	Proofs
o		oooooooo	○○○●○○(
Analysis of ${\cal D}$			

Daily Summary o	MSTD: Introduction	Examples	Proofs ○○○●○○∢
Analysis of ${\cal D}$			

Difficulty: (m, n) and (m', n') could yield same differences.

Daily Summary	MSTD: Introduction	Examples	Proofs
o		oooooooo	○○○●○○∢
Analysis of \mathcal{D}			

Difficulty: (m, n) and (m', n') could yield same differences.

Notation: $m < n, m' < n', m \le m'$,

$$Y_{m,n,m',n'} = \begin{cases} 1 & \text{if } n-m=n'-m' \\ 0 & \text{otherwise.} \end{cases}$$

Daily Summary	MSTD: Introduction	Examples	Proofs
o		oooooooo	○○○●○○∢
Analysis of \mathcal{D}			

Difficulty: (m, n) and (m', n') could yield same differences.

Notation: $m < n, m' < n', m \le m'$,

$$Y_{m,n,m',n'} = \begin{cases} 1 & \text{if } n-m=n'-m' \\ 0 & \text{otherwise.} \end{cases}$$

 $\mathbb{E}[Y] \le N^3 \cdot N^{-4\delta} + N^2 \cdot N^{-3\delta} \le 2N^{3-4\delta}. \text{ As } \delta > 1/2,$ Expected number bad pairs $\ll |\mathcal{O}|.$

Daily Summary o	MSTD: Introduction	Examples	Proofs ○○○●○○○
Analysis of \mathcal{D}			

Difficulty: (m, n) and (m', n') could yield same differences.

Notation: $m < n, m' < n', m \le m'$,

$$Y_{m,n,m',n'} = \begin{cases} 1 & \text{if } n-m=n'-m' \\ 0 & \text{otherwise.} \end{cases}$$

 $\mathbb{E}[Y] \le N^3 \cdot N^{-4\delta} + N^2 \cdot N^{-3\delta} \le 2N^{3-4\delta}. \text{ As } \delta > 1/2,$ Expected number bad pairs $\ll |\mathcal{O}|.$

Claim: $\sigma_Y \leq N^{r(\delta)}$ with $r(\delta) = \frac{1}{2} \max(3 - 4\delta, 5 - 7\delta)$. This and Chebyshev conclude proof of theorem.

Daily Summary	MSTD: Introduction	Examples	Proofs
o		oooooooo	○○○○●○○
Proof of claim			

Cannot use CLT as $Y_{m,n,m',n'}$ are not independent.

Daily Summary	MSTD: Introduction	Examples	Proofs
o		0000000	○○○○●○
Proof of claim			

Cannot use CLT as $Y_{m,n,m',n'}$ are not independent.

Use $\operatorname{Var}(U + V) \leq 2\operatorname{Var}(U) + 2\operatorname{Var}(V)$.

Daily Summary	MSTD: Introduction	Examples	Proofs
o		oooooooo	○○○○●○<
Proof of claim			

Cannot use CLT as $Y_{m,n,m',n'}$ are not independent.

Use $\operatorname{Var}(U + V) \leq 2\operatorname{Var}(U) + 2\operatorname{Var}(V)$.

Write

$$\sum Y_{m,n,m',n'} = \sum U_{m,n,m',n'} + \sum V_{m,n,n'}$$

with all indices distinct (at most one in common, if so must be n = m').

$$\operatorname{Var}(U) = \sum \operatorname{Var}(U_{m,n,m',n'}) + 2 \sum_{\substack{(m,n,m',n')\neq\\(\widetilde{m},\widetilde{n},\widetilde{m'},\widetilde{n'})}} \operatorname{CoVar}(U_{m,n,m',n'}, U_{\widetilde{m},\widetilde{n},\widetilde{m'},\widetilde{n'}})$$

Daily Summary	MSTD: Introduction	Examples	Proofs
o		00000000	○○○○○●○
Analyzing Var($U_{m,n,m',n'})$		

At most N³ tuples.

Each has variance $N^{-4\delta} - N^{-8\delta} \leq N^{-4\delta}$.

Thus $\sum \operatorname{Var}(U_{m,n,m',n'}) \leq N^{3-4\delta}$.

- All 8 indices distinct: independent, covariance of 0.
- 7 indices distinct: At most N³ choices for first tuple, at most N² for second, get

$$\mathbb{E}[U_{(1)}U_{(2)}] - \mathbb{E}[U_{(1)}]\mathbb{E}[U_{(2)}] = N^{-7\delta} - N^{-4\delta}N^{-4\delta} \le N^{-7\delta}$$

• Argue similarly for rest, get $\ll N^{5-7\delta} + N^{3-4\delta}$.