# Math 341: Probability Twenty-third Lecture (12/3/09) 

Steven J Miller Williams College

$$
\begin{gathered}
\text { Steven.J.Miller@williams.edu } \\
\text { http://www.williams.edu/go/math/sjmiller/ } \\
\text { public_html/341/ }
\end{gathered}
$$

Bronfman Science Center
Williams College, December 3, 2009

## Summary for the Day

## Summary for the day

- More Sum Than Difference Sets:
$\diamond$ Review.
$\diamond$ Inputs (Chebyshev's Theorem).
$\diamond$ Proofs.
- Sabermetrics (baseball math):


## More Sums Than Differences: Introduction

## Statement

$A$ finite set of integers, $|A|$ its size. Form

- Sumset: $A+A=\left\{a_{i}+a_{j}: a_{j}, a_{j} \in A\right\}$.
- Difference set: $A-A=\left\{a_{i}-a_{j}: a_{j}, a_{j} \in A\right\}$.


## Definition

We say $A$ is difference dominated if $|A-A|>|A+A|$, balanced if $|\boldsymbol{A}-\boldsymbol{A}|=|\boldsymbol{A}+\boldsymbol{A}|$ and sum dominated (or an MSTD set) if $|A+A|>|A-A|$.

## Clicker Question

## Binomial Model

Consider the $2^{N}$ subsets of $\{1,2, \ldots, N\}$. As $N \rightarrow \infty$, what can you say about the percentage that are MSTD?
(1) It tends to 1 .
(2) It tends to $1 / 2$.
(3) It tends to a small positive constant.
(3) It tends to 0 .

## Questions

Expect generic set to be difference dominated:

- addition is commutative, subtraction isn't:
- Generic pair $(x, y)$ gives 1 sum, 2 differences.


## Questions

- Do there exist sum-dominated sets?
- If yes, how many?


## Examples

## Examples

- Conway: $\{0,2,3,4,7,11,12,14\}$.
- Marica (1969): $\{0,1,2,4,7,8,12,14,15\}$.
- Freiman and Pigarev (1973): $\{0,1,2,4,5,9,12,13$, 14, 16, 17, 21, 24, 25, 26, 28, 29\}.
- Computer search of random subsets of $\{1, \ldots, 100\}$ : $\{2,6,7,9,13,14,16,18,19,22,23,25,30,31,33,37,39$, $41,42,45,46,47,48,49,51,52,54,57,58,59,61,64,65$, $66,67,68,72,73,74,75,81,83,84,87,88,91,93,94,95$, $98,100\}$.
- Recently infinite families (Hegarty, Nathanson).


## Probability Review

$X$ random variable with density $f(x)$ means

- $f(x) \geq 0$;
- $\int_{-\infty}^{\infty} f(x)=1$;
- $\operatorname{Prob}(X \in[a, b])=\int_{a}^{b} f(x) d x$.

Key quantities:

- Expected (Average) Value: $\mathbb{E}[X]=\int x f(x) d x$.
- Variance: $\sigma^{2}=\int(x-\mathbb{E}[X])^{2} f(x) d x$.


## Binomial model

## Binomial model, parameter $p(n)$

Each $k \in\{0, \ldots, n\}$ is in $A$ with probability $p(n)$.

Consider uniform model $(p(n)=1 / 2)$ :

- Let $A \in\{0, \ldots, n\}$. Most elements in $\{0, \ldots, 2 n\}$ in $A+A$ and in $\{-n, \ldots, n\}$ in $A-A$.
- $\mathbb{E}[|A+A|]=2 n-11, \mathbb{E}[|A-A|]=2 n-7$.


## Martin and O'Bryant '06

## Theorem

Let $A$ be chosen from $\{0, \ldots, N\}$ according to the binomial model with constant parameter $p$ (thus $k \in A$ with probability p). At least $k_{\mathrm{sd} ;} 2^{N+1}$ subsets are sum dominated.

- $k_{\text {SD } ; 1 / 2} \geq 10^{-7}$, expect about $10^{-3}$.
- Proof $(p=1 / 2)$ : Generically $|A|=\frac{N}{2}+O(\sqrt{N})$. $\diamond$ about $\frac{N}{4}-\frac{|N-k|}{4}$ ways write $k \in A+A$. $\diamond$ about $\frac{N}{4}-\frac{|k|}{4}$ ways write $k \in A-A$. $\diamond$ Almost all numbers that can be in $A \pm A$ are.
$\diamond$ Win by controlling fringes.


## Notation

- $X \sim f(N)$ means $\forall \epsilon_{1}, \epsilon_{2}>0, \exists N_{\epsilon_{1}, \epsilon_{2}}$ st $\forall N \geq N_{\epsilon_{1}, \epsilon_{2}}$

$$
\operatorname{Prob}\left(X \notin\left[\left(1-\epsilon_{1}\right) f(N),\left(1+\epsilon_{1}\right) f(N)\right]\right)<\epsilon_{2} .
$$

- $\mathcal{S}=|A+A|, \mathcal{D}=|A-A|$,

$$
\mathcal{S}^{\mathrm{c}}=2 N+1-\mathcal{S}, \mathcal{D}^{\mathrm{c}}=2 N+1-\mathcal{D} .
$$

New model: Binomial with parameter $p(N)$ :

- $1 / N=o(p(N))$ and $p(N)=o(1)$;
- $\operatorname{Prob}(k \in A)=p(N)$.


## Conjecture (Martin-O'Bryant)

As $N \rightarrow \infty, A$ is a.s. difference dominated.

## Main Result

## Theorem (Hegarty-Miller)

$p(N)$ as above, $g(x)=2 \frac{e^{-x}-(1-x)}{x}$.

- $p(N)=o\left(N^{-1 / 2}\right): \mathcal{D} \sim 2 \mathcal{S} \sim(N p(N))^{2}$;
- $p(N)=c N^{-1 / 2}: \mathcal{D} \sim g\left(c^{2}\right) N, \mathcal{S} \sim g\left(\frac{c^{2}}{2}\right) N$
( $c \rightarrow 0, \mathcal{D} / \mathcal{S} \rightarrow 2 ; c \rightarrow \infty, \mathcal{D} / \mathcal{S} \rightarrow 1$ );
- $N^{-1 / 2}=o(p(N)): \mathcal{S}^{c} \sim 2 \mathcal{D}^{c} \sim 4 / p(N)^{2}$.


## Critical Thresholds



Can generalize Hegarty-Miller to binary linear forms, still have critical threshold.

## Inputs

Key input: recent strong concentration results of Kim and Vu (Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): $t_{i}$ iid binary random variables, $Y=\sum_{i=1}^{n} t_{i}$, then

$$
\forall \lambda>0: \operatorname{Prob}(|Y-\mathbb{E}[Y]| \geq \sqrt{\lambda n}) \leq 2 e^{-\lambda / 2}
$$

Need to allow dependent random variables.
Sketch of proofs: $\mathcal{X} \in\left\{\mathcal{S}, \mathcal{D}, \mathcal{S}^{\mathrm{c}}, \mathcal{D}^{\mathrm{c}}\right\}$.
(1) Prove $\mathbb{E}[\mathcal{X}]$ behaves asymptotically as claimed;
(2) Prove $\mathcal{X}$ is strongly concentrated about mean.

## Proofs

## Setup

Note: only need strong concentration for $N^{-1 / 2}=o(p(N))$.

## Setup

Note: only need strong concentration for $N^{-1 / 2}=o(p(N))$.
Will assume $p(N)=o\left(N^{-1 / 2}\right)$ as proofs are elementary (i.e., Chebyshev: $\left.\operatorname{Prob}\left(|Y-\mathbb{E}[Y]| \geq k \sigma_{Y}\right) \leq 1 / k^{2}\right)$ ).

## Setup

Note: only need strong concentration for $N^{-1 / 2}=o(p(N))$.
Will assume $p(N)=o\left(N^{-1 / 2}\right)$ as proofs are elementary
(i.e., Chebyshev: $\left.\operatorname{Prob}\left(|Y-\mathbb{E}[Y]| \geq k \sigma_{Y}\right) \leq 1 / k^{2}\right)$ ).

For convenience let $p(N)=N^{-\delta}, \delta \in(1 / 2,1)$.
IID binary indicator variables:

$$
X_{n ; N}= \begin{cases}1 & \text { with probability } N^{-\delta} \\ 0 & \text { with probability } 1-N^{-\delta}\end{cases}
$$

$X=\sum_{i=1}^{N} X_{n ; N}, \mathbb{E}[X]=N^{1-\delta}$.

## Proof

## Lemma

$P_{1}(N)=4 N^{-(1-\delta)}$,
$\mathcal{O}=\#\{(m, n): m<n \in\{1, \ldots, N\} \cap A\}$.
With probability at least $1-P_{1}(N)$ have
(1) $X \in\left[\frac{1}{2} N^{1-\delta}, \frac{3}{2} N^{1-\delta}\right]$.
(2) $\frac{\frac{1}{2} N^{1-\delta}\left(\frac{1}{2} N^{1-\delta}-1\right)}{2} \leq \mathcal{O} \leq \frac{\frac{3}{2} N^{1-\delta}\left(\frac{3}{2} N^{1-\delta}-1\right)}{2}$.

## Proof

## Lemma

$$
\begin{aligned}
& P_{1}(N)=4 N^{-(1-\delta)}, \\
& \mathcal{O}=\#\{(m, n): m<n \in\{1, \ldots, N\} \cap A\} .
\end{aligned}
$$

$$
\text { With probability at least } 1-P_{1}(N) \text { have }
$$

(1) $X \in\left[\frac{1}{2} N^{1-\delta}, \frac{3}{2} N^{1-\delta}\right]$.
(2) $\frac{\frac{1}{2} N^{1-\delta}\left(\frac{1}{2} N^{1-\delta}-1\right)}{2} \leq \mathcal{O} \leq \frac{\frac{3}{2} N^{1-\delta}\left(\frac{3}{2} N^{1-\delta}-1\right)}{2}$.

## Proof:

- (1) is Chebyshev: $\operatorname{Var}(X)=N \operatorname{Var}\left(X_{n ; N}\right) \leq N^{1-\delta}$.
- (2) follows from (1) and $\binom{r}{2}$ ways to choose 2 from $r$.


## Concentration

## Lemma

- $f(\delta)=\min \left(\frac{1}{2}, \frac{3 \delta-1}{2}\right), g(\delta)$ any function st $0<g(\delta)<f(\delta)$.
- $p(N)=N^{-\delta}, \delta \in(1 / 2,1), P_{1}(N)=4 N^{-(1-\delta)}$, $P_{2}(N)=C N^{-(f(\delta)-g(\delta))}$.

With probability at least $1-P_{1}(N)-P_{2}(N)$ have $\mathcal{D} / \mathcal{S}=2+O\left(N^{-g(\delta)}\right)$.

## Concentration

## Lemma

- $f(\delta)=\min \left(\frac{1}{2}, \frac{3 \delta-1}{2}\right), g(\delta)$ any function st $0<g(\delta)<f(\delta)$.
- $p(N)=N^{-\delta}, \delta \in(1 / 2,1), P_{1}(N)=4 N^{-(1-\delta)}$, $P_{2}(N)=C N^{-(f(\delta)-g(\delta))}$.
With probability at least $1-P_{1}(N)-P_{2}(N)$ have $\mathcal{D} / \mathcal{S}=2+O\left(N^{-g(\delta)}\right)$.

Proof: Show $\mathcal{D} \sim 2 \mathcal{O}+O\left(N^{3-4 \delta}\right), \mathcal{S} \sim \mathcal{O}+O\left(N^{3-4 \delta}\right)$.
As $\mathcal{O}$ is of size $N^{2-2 \delta}$ with high probability, need $2-2 \delta>3-4 \delta$ or $\delta>1 / 2$.

## Analysis of $\mathcal{D}$

Contribution from ‘diagonal’ terms lower order, ignore.

## Analysis of $\mathcal{D}$

Contribution from ‘diagonal' terms lower order, ignore.
Difficulty: $(m, n)$ and ( $m^{\prime}, n^{\prime}$ ) could yield same differences.

## Analysis of $\mathcal{D}$

Contribution from 'diagonal' terms lower order, ignore.
Difficulty: $(m, n)$ and $\left(m^{\prime}, n^{\prime}\right)$ could yield same differences.
Notation: $m<n, m^{\prime}<n^{\prime}, m \leq m^{\prime}$,

$$
Y_{m, n, m^{\prime}, n^{\prime}}= \begin{cases}1 & \text { if } n-m=n^{\prime}-m^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

## Analysis of $\mathcal{D}$

Contribution from 'diagonal' terms lower order, ignore.
Difficulty: $(m, n)$ and $\left(m^{\prime}, n^{\prime}\right)$ could yield same differences.
Notation: $m<n, m^{\prime}<n^{\prime}, m \leq m^{\prime}$,

$$
Y_{m, n, m^{\prime}, n^{\prime}}= \begin{cases}1 & \text { if } n-m=n^{\prime}-m^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

$\mathbb{E}[Y] \leq N^{3} \cdot N^{-4 \delta}+N^{2} \cdot N^{-3 \delta} \leq 2 N^{3-4 \delta}$. As $\delta>1 / 2$,
Expected number bad pairs $\lll|\mathcal{O}|$.

## Analysis of $\mathcal{D}$

Contribution from 'diagonal' terms lower order, ignore.
Difficulty: ( $m, n$ ) and ( $m^{\prime}, n^{\prime}$ ) could yield same differences.
Notation: $m<n, m^{\prime}<n^{\prime}, m \leq m^{\prime}$,

$$
Y_{m, n, m^{\prime}, n^{\prime}}= \begin{cases}1 & \text { if } n-m=n^{\prime}-m^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

$\mathbb{E}[Y] \leq N^{3} \cdot N^{-4 \delta}+N^{2} \cdot N^{-3 \delta} \leq 2 N^{3-4 \delta}$. As $\delta>1 / 2$,
Expected number bad pairs $\lll|\mathcal{O}|$.
Claim: $\sigma_{Y} \leq N^{r(\delta)}$ with $r(\delta)=\frac{1}{2} \max (3-4 \delta, 5-7 \delta)$. This and Chebyshev conclude proof of theorem.

## Proof of claim

## Cannot use CLT as $Y_{m, n, m^{\prime}, n^{\prime}}$ are not independent.

## Proof of claim

Cannot use CLT as $Y_{m, n, m^{\prime}, n^{\prime}}$ are not independent. Use $\operatorname{Var}(U+V) \leq 2 \operatorname{Var}(U)+2 \operatorname{Var}(V)$.

## Proof of claim

Cannot use CLT as $Y_{m, n, m^{\prime}, n^{\prime}}$ are not independent.
Use $\operatorname{Var}(U+V) \leq 2 \operatorname{Var}(U)+2 \operatorname{Var}(V)$.
Write

$$
\sum Y_{m, n, m^{\prime}, n^{\prime}}=\sum U_{m, n, m^{\prime}, n^{\prime}}+\sum V_{m, n, n^{\prime}}
$$

with all indices distinct (at most one in common, if so must be $n=m^{\prime}$ ).

$$
\operatorname{Var}(U)=\sum \operatorname{Var}\left(U_{m, n, m^{\prime}, n^{\prime}}\right)+2 \sum_{\substack{m, n, m^{\prime}, m^{\prime}, \neq \prime \\\left(m, n, \tilde{m}^{\prime}, \tilde{n}^{\prime}\right)}} \operatorname{CoVar}\left(U_{m, n, m^{\prime}, n^{\prime}}, U_{\tilde{m}, \tilde{n}, \tilde{m^{\prime}}, \tilde{n}^{\prime}}\right)
$$

## Analyzing $\operatorname{Var}\left(U_{m, n, m^{\prime}, n^{\prime}}\right)$

At most $N^{3}$ tuples.
Each has variance $N^{-4 \delta}-N^{-8 \delta} \leq N^{-4 \delta}$.
Thus $\sum \operatorname{Var}\left(U_{m, n, m^{\prime}, n^{\prime}}\right) \leq N^{3-4 \delta}$.

## Analyzing $\operatorname{Co} \operatorname{Var}\left(U_{m, n, m^{\prime}, n^{\prime}}, U_{\widetilde{m}, \tilde{n}, \widetilde{m}^{\prime}, \tilde{n}^{\prime}}\right)$

- All 8 indices distinct: independent, covariance of 0 .
- 7 indices distinct: At most $N^{3}$ choices for first tuple, at most $N^{2}$ for second, get

$$
\mathbb{E}\left[U_{(1)} U_{(2)}\right]-\mathbb{E}\left[U_{(1)}\right] \mathbb{E}\left[U_{(2)}\right]=N^{-7 \delta}-N^{-4 \delta} N^{-4 \delta} \leq N^{-7 \delta} .
$$

- Argue similarly for rest, get $\ll N^{5-7 \delta}+N^{3-4 \delta}$.

