Math/Stat 341: Probability: Fall '21 (Williams)

Professor Steven J Miller: sjm1@williams.edu

Homepage:

https://web.williams.edu/Mathematics/sjmiller/ public html/341Fa21

Lecture 09: 9/25/19: Trump Splits, Conditional Probability, Bayes' Theorem: https://youtu.be/IdOh1Nawh9Q

Plan for the day: Lecture 09: September 29, 2021:

https://web.williams.edu/Mathematics/sjmiller/public html/341Fa21/handouts/34
1Notes Chap1.pdf

- Trump Splits
- Conditional Probability (sniffing out formula)
- Inclusion/Exclusion
- Bayes' Theorem

General items.

- Run simulations!
- Importance of phrasing.
- Explore extreme cases.

Probability of having a 5-0 trump split in bridge
4 hands of $13, p a r+0, \alpha d$ have $8+\cdots m \beta$ missing 5

Probabilty of a 5-0 split: 9/230, or about 3.91% or is it $2 / 32$ or about 6.25% ?

```
badtrumpsplit[numbad_, numiter_] := Module[{},
    deck = {};
    For[c = 1, c \leq numbad, c++, deck = AppendTo[deck, 1]];
    For[c = numbad +1, c \leq 26, c++, deck = AppendTo[deck, 0]];
    badsplits = 0;
    For[n = 1, n \leq numiter, n++,
        {
            hand = RandomSample[deck, 13];
            If[Mod[Sum[hand[[i]], {i, 1, 13}], numbad] == 0, badsplits = badsplits + 1];
        }];
    Print["Observed badsplits is ", SetAccuracy[100.0 badsplits/numiter, 4], "%."];
    ];
Timing[badtrumpsplit[5, 1000000]]
Observed badsplits is 3.942%.
{15.5625, Null}
```

Timing[badtrumpsplit[5, 10000000$]$]
Observed badsplits is 3.913%.
\{188.891, Null \}

Are these two items equivalent:
Each person is equally likely to be chosen, form a group of two people from four.

Chose any group of two people, all groups equally likely to be chosen.
Not Equivalent
$A_{1} B_{1} B_{2} A_{2}$
$\left.\begin{array}{l}A_{1} B_{2} \\ A_{1} A_{2} \\ B_{1} B_{2} \\ B_{1} A_{2}\end{array}\right\} \begin{aligned} & \text { each person } \\ & 1220+4 \\ & \text { or } 50 \%\end{aligned}$
never have $A_{1} B_{1}$ or $A_{2} B_{2}$

Rolling two fair independent die....

What is the probability that

1. The sum is an 11: $\frac{2}{36}=\frac{1}{18}$
2. The sum is a $7: \frac{6}{36}=\frac{1}{6}$
3. Given first die is a 3 , the sum is an 11 :
4. Given first die is a 3 , the sum is a 7 :

When Luke boards the Millennium Falcon in The Last Jedi, he grabs a pair of gold dice which belonged to Han Solo, and though you may not have ever noticed them before, they were hanging up in the Falcon in A New Hope and also reappeared in The Force Awakens.

Conditioned probability las be the same on difteret as The probability.

Is it possible that there's some nice function F such that

$$
\underbrace{\operatorname{Pr}(A \mid B)}=F(\operatorname{Pr}(A), \operatorname{Pr}(B)) ?
$$

$$
\binom{A s s u m p t a n}{P(B)>0}
$$

Conditional par ot
Ty ia $B=\Omega$ the entire space, so $P(B)=1 \Rightarrow P(A(\Omega)=P(A)$ A given B happens

- $A=B$ Then $P(A \mid A)=1$
- $A=B^{c}$ Pen $P\left(A \mid A^{c}\right)=0$

If $A=B \quad(P-(A), \operatorname{Pr}(B))$ same as if $A=B^{C}\left(\operatorname{Pr}(A), P-\left(A^{C}\right)\right)$
Take $\operatorname{Pr}(A)=\operatorname{Pr}(B)=P-\left(B^{C}\right)=1 / 2$

$$
F\left(1 / 2, y_{2}\right)=1 \text { and } F(1 / 2,1 / 2)=0
$$

NO SUCH A exist!
$\operatorname{Pr}(A \mid B)=G(\operatorname{Pr}(A), \operatorname{Pr}(B), \operatorname{Pr}(A \cap B))$
$\operatorname{Pr}(A \mid B)=G(\operatorname{Pr}(A), \operatorname{Pr}(B), \operatorname{Pr}(A \cap B))$

- $\operatorname{Pr}(B \mid B)=1$, A and B hepper
- $\operatorname{Pr}\left(B^{\mathrm{c}} \mid B\right)=0$, and
- $0 \leq \operatorname{Pr}(A \mid B) \leq 1$.

There's a simple expression using our three building blocks that has these three properties:

$$
\text { Tr PP(A|B)=} \frac{P-(A \cap B)}{P(B)}
$$

Satisfies the Three points above

Expected Counts Approach
Suppose that you go out fishing one day, and you have the following set of rules: you stop fishing once you catch a fish, or after you've been on the water for four hours (whichever comes first). Let's also imagine that there's a 40% chance that you catch a trout, a 25% chance you catch a bass, and a 35% chance you don't catch anything. Notice that the percentages sum to 100%, and that you never catch more than one fish in a day. Now, if we know that you caught a fish one day, what are the odds that fish was a trout? Suppose that you went fishing 1000. Then....
Yo\% chance caret tout 25% chance cart ales 35% chance at rh rolling

$$
\begin{aligned}
& P(\text { tout } \text { / Cart fish) } \\
& =\frac{.40}{.65}
\end{aligned}
$$

Conditional Probability, Independence and Bayes' Theorem

	A	A^{c}
B	$A \cap B$	$A^{c} \cap B$
B^{c}	$A \cap B^{c}$	$A^{c} \cap B^{c}$

Table 4.1: These are the possible outcomes for events A and B. If we know that event B has happened, we need only worry about the events in B 's row.

Conditional Probability: Let B be an event such that $\operatorname{Pr}(B)>0$. Then the conditonal probability of A given B is

$$
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A \cap B) / \operatorname{Pr}(B)
$$

$$
\text { Rewrote: } \operatorname{Pr}(A \cap B)=\operatorname{Pr}(A \mid B) * \operatorname{Pr}(B)
$$

If you were really reading carefully, you might've noticed a new condition snuck into the box above: $\operatorname{Pr}(B)>0$. If $\operatorname{Pr}(B)=0$, then B cannot happen. If B cannot happen, it doesn't make sense to talk about the probability A happens given B happens! Fortunately if $\operatorname{Pr}(B)=0$ then $\operatorname{Pr}(A \cap B)$ is also 0 , and we have the indeterminate ratio $0 / 0$, which warns us that we are in dangerous waters.

Illustration of inclusion-exclusion with three sets.

$$
\begin{aligned}
& \operatorname{Pr}\left(A_{1} \cup A_{2}\right) \\
& =\operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)-\operatorname{Pr}\left(A_{1} \cap A_{2}\right)
\end{aligned}
$$

Inclusion-Exclusion Principle: Consider sets $A_{1}, A_{2}, \ldots, A_{n}$. Denote the number of elements of a set S by $|S|$ and the probability of a set S by $\operatorname{Pr}(S)$. Then

$$
\begin{aligned}
\left|\bigcup_{i=1}^{n} A_{i}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|- \\
& \cdots+(-1)^{n-2} \sum_{1<\ell_{1}<\ell_{2}<\cdots<\ell_{n-1} \leq n}\left|A_{\ell_{1}} \cap A_{\ell_{2}} \cap \cdots \cap A_{\ell_{n-1}}\right| \\
& +(-1)^{n-1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right|
\end{aligned}
$$

this also holds if we replace the size of all the sets above with their probabilities.
We may write this more concisely. Let $A_{\ell_{1} \ell_{2} \ldots \ell_{k}}=A_{\ell_{1}} \cap A_{\ell_{2}} \cap \cdots \cap A_{\ell_{k}}$ (so $A_{12}=A_{1} \cap A_{2}$ and $A_{489}=A_{4} \cap A_{8} \cap A_{9}$). Then

$$
\begin{gathered}
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i j}\right|+\sum_{1 \leq i<j<k \leq n}\left|A_{i j k}\right|-\cdots \\
+(-1)^{n-2} \sum_{1<\ell_{1}<\ell_{2}<\cdots<\ell_{n-1} \leq n}\left|A_{\ell_{1} \ell_{2} \cdots \ell_{n-1}}\right|+(-1)^{n-1}\left|A_{12 \cdots n}\right| .
\end{gathered}
$$

If the A_{i} 's live in a finite set and we use the counting measure where each element of our outcome space is equally likely, we may replace all $|S|$ above with $\operatorname{Pr}(S)$.

$$
\begin{aligned}
& (A: \cap A j)=\text { same.... } \\
& \binom{n}{1}-\binom{n}{2}+\binom{n}{3}-\binom{n}{y} \cdots+(-1)^{n-1}\binom{1}{n}-\underbrace{-\binom{n}{0}+\binom{n}{0}}_{\text {adden zero }} \\
& =\binom{n}{0}-\left[\binom{n}{0}-\binom{n}{\jmath}+\binom{n}{2}-\cdots \cdot+(-1)^{n}\binom{n}{1}\right] \\
& =1-(1-1)^{n} \text { Binomid Thm: } x=1, y=-1 \\
& =1 \text { Simplities wher weass xac the equalites dover }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left(A_{1} \cup \cdots \cup A_{n}\right) \\
&= A \operatorname{Pr}\left(A_{1}\right) \\
&-\binom{n}{2} \operatorname{Pr}\left(A_{1} \cap A_{2}\right) \\
&+\binom{n}{3} \operatorname{Pr}\left(A_{1} \cap A_{2} A_{3}\right) \\
&-\ldots \\
&+(-1)^{n-1}\binom{n}{n} \operatorname{Pr}\left(A_{1} \cap \cdots A_{n}\right)
\end{aligned}
$$

