Math/Stat 341: Probability: Fall '21 (Williams)

Professor Steven J Miller: sjm1@williams.edu

Homepage:

https://web.williams.edu/Mathematics/sjmiller/ public html/341Fa21

Lecture 11: 10-06-21: hitrss//voutubea/abwmbssow

Lecture 11: 9/30/19: Basics of pdfs and Random Variables: https://youtu.be/sn-hypa9tRY (coding: https://youtu.be/sSgjBysixdQ; code file here, pdf here)

Plan for the day: Lecture 11: October 06, 2021:

https://web.williams.edu/Mathematics/sjmiller/public html/341Fa21/handouts/34
1Notes Chap1.pdf

- Basics of PDFs
- Random Variables: Continuous (FTC) vs Discrete
- Moments and Expected Values

General items.

- Rescale
- Taylor Trick (several variables)
- More coding: https://youtu.be/sSgjBysixdQ; code file here, pdf here

Probability Density Functions and Cumulative Distributions (PDF, CDF): Continuous vs Discrete
Z random variable, density P or f or P_{X} or f_{Z}

- $f(x) \geqslant 0$ for all x
- $\int_{-\infty}^{\infty} f(x) d x=1$ or $\sum_{n=0}^{\infty} f\left(x_{n}\right)=1$

$$
\operatorname{Prb}(a \leq I \leq b)=\int_{a}^{n} f(x) d x \text { or } \sum_{a \leq x_{1} \leq b} f\left(x_{n}\right)
$$

What events get probabilities?
Area of red
uniform
Area of circle distribution.

Probability density of $Y=g(X)$ in terms of X and its density
$E x: \bar{X} \sim U_{n+}(0,1) \quad f_{\underline{x}}(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$
Ty $\Psi=X^{2}$: What is $f_{\underline{Y}}(y)$?
CDF: cumulation distribution Fin: $C D \underline{\bar{x}}(x)=\operatorname{Prb}(\bar{X} \leq x)=\int_{-\infty}^{x} f_{x}^{(t)} d t$
$\rightarrow p o b$ X is at most x
$\mapsto 10.1$-decreasing and $\lim _{x \rightarrow \infty} C D F_{X}(x)=1$ often write $F_{X}(x)=C D F_{X^{\prime}}(x)=\int_{-\infty}^{x} f_{X^{\prime}}(t) d t$

Good rotation: $F_{\neq X}(x)=f_{ \pm}(x)$
 a^{n}, but $\lim _{x \rightarrow-\infty} F_{X}(x)=0$ so the,

Expirith, of $F^{\prime}=f_{x}$ Ther

$$
C D F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t=F(x) \underbrace{-F(-\infty)}_{\cos 0^{\sin 2}}
$$

So

$$
\begin{aligned}
\operatorname{CDF}_{ \pm}^{\prime}(x) & =F^{\prime}(x) \\
& =f_{\bar{X}}(x)
\end{aligned}
$$

$$
\begin{aligned}
& F_{Y}(y)=\operatorname{Prb}(\Psi \leq y)=\operatorname{Prb}\left(\bar{X}^{2} \leq y\right) \\
& =\operatorname{Prb}(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =\operatorname{Pab}(0 \leq \underline{X} \leq \sqrt{y}) \text { as } X \sim \text { Unf (oir) } \\
& =\left\{\begin{array}{ll}
1 & \text { if } y \geqslant 1 \\
\sqrt{y} & \text { if } 0 \leq y \leq 1 \\
0 & \text { onewise }
\end{array}\right\} \text { know CDF } \underline{\underline{y}}=F_{\underline{y}} \\
& f_{Y}(y)=F_{Y}^{\prime}(y)=C D F_{Y}^{\prime}(y)=\left\{\begin{array}{cl}
\frac{1}{2} y^{-1 / 2} & \text { if } 0 \leq y \leq 1 \\
0 & \text { othe wise }
\end{array}\right.
\end{aligned}
$$

Check: Pdf is ron-net, S to I : bolly

In She CDF method do at need FX as only its derivative energes....
$\varepsilon x: \operatorname{Pab}(0 \leqslant \not X \& \sqrt{y})=F_{X}(\sqrt{y})-F_{X}(0)=F_{\underline{y}}(y)$

$$
\begin{aligned}
F_{Y}^{\prime}(y) & =f_{Y}(y)=F_{X}^{\prime}(\sqrt{y}) *(\sqrt{y})^{\prime} \\
& =f_{X}(\sqrt{y}) * \frac{1}{2} y^{-1 / 2}
\end{aligned}
$$

do nt need F_{X} explicitly
LG Good as δ is hard!

Example: $f(x)=2+3 x-5 x^{2}$ for x in $[0,1]$: Curve sketching

$$
\begin{aligned}
& f(x)=2+3 x-5 x^{2} \\
& f^{\prime}(x)=3-10 x \\
& f(0)=2 \quad f(1)=0
\end{aligned}
$$

Critical point: $f^{\prime}(x)=0$

$$
\begin{aligned}
& \int_{0}^{1}\left(2+3 x-5 x^{2}\right) d x=\left[2 x+\frac{3 x^{2}}{2}-\frac{5 x^{3}}{3}\right]_{0}^{1} \\
& =2+\frac{3}{2}-\frac{5}{3}=\frac{12+9-10}{6}=\frac{11}{6}
\end{aligned}
$$

not a density but... $\frac{6}{11} f(x)$ is a density

If $f(x) \geqslant 0$ and $\int_{-\infty}^{\infty} f(x) d x$ is finse
Then $g(x)=\frac{f(x)}{\int_{-\infty}^{\infty} f(t) d t}$
is a porbabilin dessity
\rightarrow Renormalizins

Sum of two independent, fair die.... Uniform + Uniform = Triangle
sem
$\begin{array}{ll}2 & (1,1) \\ 3 & (1,2),(201)\end{array}$
$4(1,3),(2,2),(3,4)$
5
6
7
8
9
(o $(4,6),(5,5)$,
$11(5,6), 6,5)$
$12 \quad(6,6)$

Exit worse dower a formulas for
sum of two (ndep fair die

$$
f_{ \pm}(>)=1 / 6
$$

$$
\begin{aligned}
& f_{x}(7)=1 / 6 \\
& f_{x}(2)=f_{x}(12)=\frac{1}{36}
\end{aligned}
$$

Moments and expected value of functions of random variables
\bar{X}, deaths $f_{E}, \mu_{k}=\int_{-\infty}^{\infty} x^{k} f_{E}(x) d x$
Hep: know the moment know f_{x}

$$
g(x)= \begin{cases}e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

$\leftrightarrow \infty$ differatiole
use L'Hopital (extra (edit) $g^{(n)}(0)=0$ $g(x)$ us $g(0)+g^{\prime}(0) x+\frac{g^{\prime \prime}(0)}{2 i} x^{2}+\cdots$

$$
\mathbb{E}[h(X)]=\int_{-\infty}^{\infty} h(x) f_{\bar{X}}(x) d x \text {, nomuts are } h(\bar{X})=\mathbb{X}^{n}
$$

Fun facts: Taylor series of several variables trick, area-volume and perimeter-area connections

$$
\begin{aligned}
& f(x, y)=\cos \left(x^{2}+x y^{2}\right) \\
& \cos (y)=1-\frac{u^{2}}{2!}+\frac{u^{4}}{4!}-\frac{u^{6}}{6!}+\cdots \\
& \cos \left(x^{2}+x y^{2}\right)=1-\frac{\left(x^{2}+x y^{2}\right)^{2}}{2!}+\frac{\left(x^{2}+x y^{2}\right)^{4}}{4!}-\cdots
\end{aligned}
$$

Vol sphere of radios $R: \frac{y}{3} \pi R^{3} \quad$ Area aide radius R : πR^{2} Surface Area \qquad : $4 \pi R^{2} \quad$ Permute \qquad $2 \pi R$ Note derivatives

I love now Steven can turn a game observation into a research question! No wonder he's so productive! Steven, let's put that on our list.

Steve: Tampa has lined up their rotation, but is it better to have a weaker person go against their \#1 and maybe have the edge in the other match-ups?
(f)

