Introduction	Regression	Theory	Regression Extensions

LACOL DATA SCIENCE: Least Squares Lecture

Examples

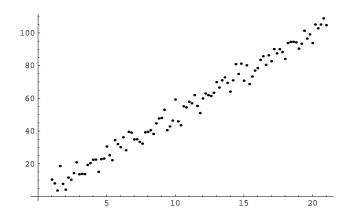
Steven J Miller Williams College

Williams College

Introduction	Regression	Theory	Regression Extensions	Examples
00				
			·	

Introduction

Introduction •••	Regression	Theory 0000000000	Regression Extensions	Examples ೦೦೦೦೦೦೦೦೦೦೦೦
Spring Tes	st			



Introduction •••	Regression	Theory 000000000	Regression Extensions	Examples 000000000000

Spring Test

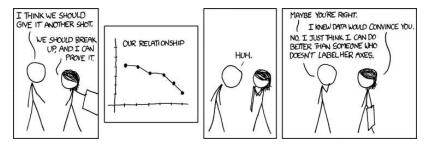
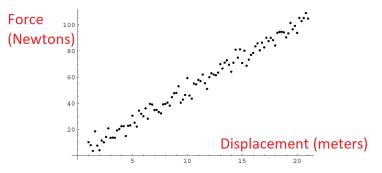


Figure: xkcd: Convincing: https://xkcd.com/833/ (Extra text: And if you labeled your axes, I could tell you exactly how MUCH better.)

Introduction	Regression	Theory	Regression Extensions	Examples
000	000	000000000		000000000000
Spring Test				



Data from $x_n = 5 + .2n$, $y_n = 5x_n$ plus an error randomly drawn from a normal distribution with mean zero and standard deviation 4. Best fit line of y = 4.99x + .48; thus a = 4.99 and b = .48.

Introduction ○○●	Regression	Theory 0000000000	Regression Extensions	Examples 000000000000
Spring Test	(continued)			

Our value of *b* is significantly off: a = 4.99 and b = .48.

Introduction	Regression	Theory	Regression Extensions	Examples
○○●	000	0000000000		000000000000
Spring Te	st (continued	l)		

Our value of *b* is significantly off: a = 4.99 and b = .48.

Using absolute values for errors gives best fit value of *a* is 5.03 and the best fit value of *b* is less than 10^{-10} in absolute value.

Our value of *b* is significantly off: a = 4.99 and b = .48.

Using absolute values for errors gives best fit value of *a* is 5.03 and the best fit value of *b* is less than 10^{-10} in absolute value.

The difference between these values and those from the Method of Least Squares is in the best fit value of b (the least important of the two parameters), and is due to the different ways of weighting the errors.

See https://web.williams.edu/Mathematics/ sjmiller/public_html/probabilitylifesaver/ MethodLeastSquares.pdf

Introduction	Regression ○●○	Theory 000000000	Regression Extensions	Examples oooooooooooooo
Overview				

Idea is to find *best-fit* parameters: choices that minimize error in a conjectured relationship.

Say observe y_i with input x_i , believe $y_i = ax_i + b$. Three choices:

$$egin{array}{rll} E_1(a,b)&=&\sum_{n=1}^N \left(y_i-(ax_i+b)
ight)\ E_2(a,b)&=&\sum_{n=1}^N \left|y_i-(ax_i+b)
ight|\ E_3(a,b)&=&\sum_{n=1}^N \left(y_i-(ax_i+b)
ight)^2. \end{array}$$

Introduction	Regression ○●○	Theory 000000000	Regression Extensions	Examples 000000000000
Overview				

Idea is to find *best-fit* parameters: choices that minimize error in a conjectured relationship.

Say observe y_i with input x_i , believe $y_i = ax_i + b$. Three choices:

$$egin{array}{rll} E_1(a,b)&=&\sum_{n=1}^N \left(y_i-(ax_i+b)
ight)\ E_2(a,b)&=&\sum_{n=1}^N \left|y_i-(ax_i+b)
ight|\ E_3(a,b)&=&\sum_{n=1}^N \left(y_i-(ax_i+b)
ight)^2. \end{array}$$

Use sum of squares as calculus available.

Introduction	Regression	Theory	Regression Extensions	Examples
	000			

Linear Regression

Explicit formula for values of a, b minimizing error $E_3(a, b)$. From

$$\partial E_3(a,b)/\partial a = \partial E_3(a,b)/\partial b = 0$$
:

After algebra:

$$\left(\begin{array}{c} \widehat{a} \\ \widehat{b} \end{array}\right) = \left(\begin{array}{c} \sum_{n=1}^{N} x_i^2 & \sum_{n=1}^{N} x_i \\ \sum_{n=1}^{N} x_i & \sum_{n=1}^{N} 1 \end{array}\right)^{-1} \left(\begin{array}{c} \sum_{n=1}^{N} x_i y_i \\ \sum_{n=1}^{N} y_i \end{array}\right)$$

or

$$a = \frac{\sum_{n=1}^{N} 1 \sum_{n=1}^{N} x_n y_n - \sum_{n=1}^{N} x_n \sum_{n=1}^{N} y_n}{\sum_{n=1}^{N} 1 \sum_{n=1}^{N} x_n^2 - \sum_{n=1}^{N} x_n \sum_{n=1}^{N} x_n}$$

$$b = \frac{\sum_{n=1}^{N} x_n \sum_{n=1}^{N} x_n y_n - \sum_{n=1}^{N} x_n^2 \sum_{n=1}^{N} y_n}{\sum_{n=1}^{N} x_n \sum_{n=1}^{N} x_n - \sum_{n=1}^{N} x_n^2 \sum_{n=1}^{N} 1}$$

Introduction	Regression	Theory	Regression Extensions	Examples
000	000	000000000	00000	000000000000

Theory

Introduction	Regression	Theory ○●○○○○○○○	Regression Extensions	Examples ০০০০০০০০০০০০০

Theoretical Aside: Derivation

See https://web.williams.edu/Mathematics/sjmiller/ public_html/341Fa18/handouts/MethodLeastSquares.pdf

$$E_3(a,b) = \sum_{n=1}^N (y_i - (ax_i + b))^2.$$

Error a function of two variables, the unknown parameters a and b.

Note *x*, *y* are the data *NOT* the variables.

The goal is to find values of *a* and *b* that minimize the error.

Introduction	Regression	Theory	Regression Extensions	Examples
		00000000		

Theoretical Aside: Derivation: II

One-Variable Calculus: candidates for max/min from boundary points and critical points (places where derivative vanishes).

Multivariable Calculus: Similar, need partial derivatives to vanish (partial is hold all variables fixed but one).

$$\nabla E = \left(\frac{\partial E}{\partial a}, \frac{\partial E}{\partial b}\right) = (0, 0),$$

 $\frac{\partial E}{\partial a} = 0, \quad \frac{\partial E}{\partial b} = 0.$

or

Do not have to worry about boundary points: as |a| and |b| become large, the fit gets worse and worse.

Introduction	Regression	Theory	Regression Extensions	Examples
		000000000		

Theoretical Aside: Derivation: III

Differentiating E(a, b) yields

$$\frac{\partial E}{\partial a} = \sum_{n=1}^{N} 2(y_n - (ax_n + b)) \cdot (-x_n)$$
$$\frac{\partial E}{\partial b} = \sum_{n=1}^{N} 2(y_n - (ax_n + b)) \cdot (-1).$$

Setting $\partial E/\partial a = \partial E/\partial b = 0$ (and dividing by -2) yields

$$\sum_{n=1}^{N} (y_n - (ax_n + b)) \cdot x_n = 0$$
$$\sum_{n=1}^{N} (y_n - (ax_n + b)) = 0.$$

Note we can divide both sides by -2 as it is just a constant; we cannot divide by x_i as that varies with *i*.

Introduction	Regression	Theory	Regression Extensions	Examples
		000000000		

Theoretical Aside: Derivation: IV

Rewrite as

$$\begin{pmatrix} \sum_{n=1}^{N} x_n^2 \end{pmatrix} \mathbf{a} + \begin{pmatrix} \sum_{n=1}^{N} x_n \end{pmatrix} \mathbf{b} = \sum_{n=1}^{N} x_n y_n \\ \begin{pmatrix} \sum_{n=1}^{N} x_n \end{pmatrix} \mathbf{a} + \begin{pmatrix} \sum_{n=1}^{N} 1 \end{pmatrix} \mathbf{b} = \sum_{n=1}^{N} y_n.$$

Values of *a* and *b* which minimize the error satisfy the following matrix equation:

$$\begin{pmatrix} \sum_{n=1}^{N} x_n^2 & \sum_{n=1}^{N} x_n \\ \sum_{n=1}^{N} x_n & \sum_{n=1}^{N} 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \sum_{n=1}^{N} x_n y_n \\ \sum_{n=1}^{N} y_n \end{pmatrix}.$$
 (1)

Introduction	Regression	Theory	Regression Extensions	Examples
		0000000000		

Theoretical Aside: Derivation: V

Inverse of a matrix A is the matrix B such that AB = BA = I, where I is the identity matrix.

If $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ is a 2 × 2 matrix where det $A = \alpha \delta - \beta \gamma \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{\alpha\delta - \beta\gamma} \begin{pmatrix} \delta & -\gamma \\ -\beta & \alpha \end{pmatrix}.$$
 (2)

In other words, $AA^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ here.

For example, if $A = \begin{pmatrix} 1 & 2 \\ 3 & 7 \end{pmatrix}$ then det A = 1 and $A^{-1} = \begin{pmatrix} 7 & -2 \\ -3 & 1 \end{pmatrix}$; we can check this by noting (through matrix multiplication) that

$$\begin{pmatrix} 1 & 2 \\ 3 & 7 \end{pmatrix} \begin{pmatrix} 7 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
 (3)

Introduction	Regression	Theory	Regression Extensions	Examples
		0000000000		

Theoretical Aside: Derivation: VI

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \sum_{n=1}^{N} x_n^2 & \sum_{n=1}^{N} x_n \\ \sum_{n=1}^{N} x_n & \sum_{n=1}^{N} 1 \end{pmatrix}^{-1} \begin{pmatrix} \sum_{n=1}^{N} x_n y_n \\ \sum_{n=1}^{N} y_n \end{pmatrix}.$$
 (4)

4

Denote the matrix from (1) by M. The determinant of M is

$$\det M = \sum_{n=1}^{N} x_n^2 \cdot \sum_{n=1}^{N} 1 - \sum_{n=1}^{N} x_n \cdot \sum_{n=1}^{N} x_n.$$

As

$$\overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n,$$

we find that

$$\det M = N \sum_{n=1}^{N} x_n^2 - (N \overline{x})^2 = N^2 \cdot \frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})^2,$$

where the last equality follows from algebra. If the x_n are not all equal, det M is non-zero and M is invertible.

19

Introduction	Regression	Theory	Regression Extensions	Examples
		0000000000		

Theoretical Aside: Derivation: VII

We rewrite (4) in a simpler form. Using the inverse of the matrix and the definition of the mean and variance, we find

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{N^2 \sigma_x^2} \begin{pmatrix} N & -N\overline{x} \\ -N\overline{x} & \sum_{n=1}^N x_n^2 \end{pmatrix} \begin{pmatrix} \sum_{n=1}^N x_n y_n \\ \sum_{n=1}^N y_n \end{pmatrix}.$$
 (5)

Expanding gives

$$a = \frac{N \sum_{n=1}^{N} x_n y_n - N \overline{x} \sum_{n=1}^{N} y_n}{N^2 \sigma_x^2}$$

$$b = \frac{-N \overline{x} \sum_{n=1}^{N} x_n y_n + \sum_{n=1}^{N} x_n^2 \sum_{n=1}^{N} y_n}{N^2 \sigma_x^2}$$

$$\overline{x} = \frac{1}{N} \sum_{n=1}^{N} x_i$$

$$\sigma_x^2 = \frac{1}{N} \sum_{n=1}^{N} (x_i - \overline{x})^2.$$

(6)

As the formulas for *a* and *b* are so important, it is worth giving another expression for them. We also have

$$a = \frac{\sum_{n=1}^{N} 1 \sum_{n=1}^{N} x_n y_n - \sum_{n=1}^{N} x_n \sum_{n=1}^{N} y_n}{\sum_{n=1}^{N} 1 \sum_{n=1}^{N} x_n^2 - \sum_{n=1}^{N} x_n \sum_{n=1}^{N} x_n}$$

$$b = \frac{\sum_{n=1}^{N} x_n \sum_{n=1}^{N} x_n y_n - \sum_{n=1}^{N} x_n^2 \sum_{n=1}^{N} y_n}{\sum_{n=1}^{N} x_n \sum_{n=1}^{N} x_n - \sum_{n=1}^{N} x_n^2 \sum_{n=1}^{N} 1}.$$

Introduction	Regression	Theory	Regression Extensions	Examples
		000000000		

Theoretical Aside: Derivation: Remarks

Formulas for *a* and *b* are reasonable, as can be seen by a unit analysis. Imagine *x* in meters and *y* in seconds. Then if y = ax + bwe would need *b* and *y* to have the same units (seconds), and *a* to have units seconds per meter. If we substitute we do see *a* and *b* have the correct units. Not a proof that we have not made a mistake, but a great reassurance. No matter what you are studying, you should always try unit calculations such as this.

Introduction	Regression	Theory	Regression Extensions	Examples
		000000000		

Theoretical Aside: Derivation: Remarks

There are other, equivalent formulas for *a* and *b*, arranging the algebra in a slightly different sequence of steps. Essentially what we are doing is the following: image we are given

4 = 3a + 2b5 = 2a + 5b.

If we want to solve, we can proceed in two ways. We can use the first equation to solve for *b* in terms of *a* and substitute in, or we can multiply the first equation by 5 and the second equation by 2 and subtract; the *b* terms cancel and we obtain the value of *a*. Explicitly,

$$20 = 15a + 10b$$

 $10 = 4a + 10b$.

which yields

$$10 = 11a$$
,

or

a = 10/11.

Introduction	Regression	Theory	Regression Extensions	Examples
			00000	

Regression Extensions

Introduction	Regression	Theory	Regression Extensions	Examples		
	000	000000000	○●○○○	000000000000		
Powend the Past Fit Line						

 $\mathsf{Did} \ y = ax + b.$

All that matters is linear in the unknown parameters.

Could do

$$y = a_1 f_1(x) + a_2 f_2(x) + \cdots + a_k f_k(x);$$

do not need the functions *f* to be linear.

Introduction	Regression	Theory 0000000000	Regression Extensions ○●○○	Examples oooooooooooooo
Non-linea	r Relations			

Most relations are not linear.

Newton's law of gravity: $F = Gm_1m_2/r^2$.

If guess force is proportional to a power of the distance: $F = Br^{a}$.

Take logarithms: $\log(F) = a \log(r) + b$ with $b = \log B$.

Note the linear relation between log(F) and log(r).

Introduction	Regression	Theory	Regression Extensions	Examples
000	000	0000000000	○○○●○	000000000000
City Popu	Ilations			

The twenty-five most populous cities (I believe this is American cities from a few years ago):

8,363,710	1,540,351	912,062	754,885	620,535
3,833,995	1,351,305	808,976	703,073	613,190
2,853,114	1,279,910	807,815	687,456	604,477
2,242,193	1,279,329	798,382	669,651	598,707
1,567,924	948,279	757,688	636,919	598,541

Introduction	Regression	Theory	Regression Extensions	Examples
000	000	0000000000	○○○●○	oooooooooooooo
City Pop	lations			

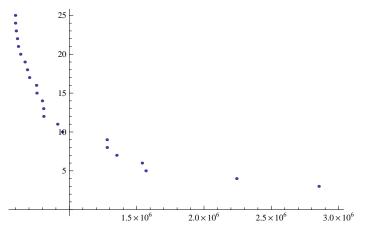


Figure: Plot of rank versus population

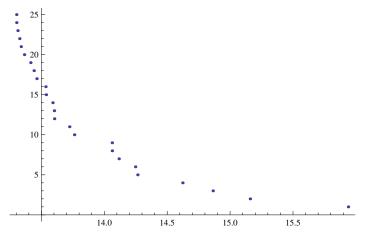


Figure: Plot of rank versus log(population)

Introduction	Regression	Theory	Regression Extensions	Examples
000	000	0000000000	○○○●○	oooooooooooooo
City Popu	lations			

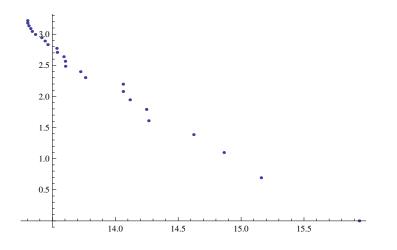


Figure: Plot of log(rank) versus log(population)

Introduction	Regression	Theory 000000000	Regression Extensions	Examples 000000000000

City Populations

Plot of 100 most populous cities

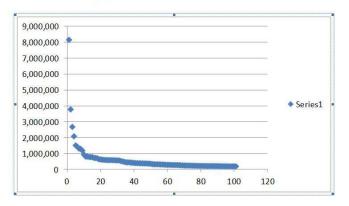


Figure: Plot of rank versus population

Introduction	Regression	Theory	Regression Extensions	Examples
000	000	0000000000	○○○●○	000000000000
City Popu	Ilations			

Plot of 100 most populous cities: log-log plot

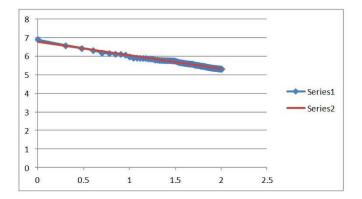


Figure: Plot of log(rank) versus log(population)

Introduction	Regression	Theory	Regression Extensions	Examples
000	000	೦೦೦೦೦೦೦೦೦೦	○○○○●	000000000000
Word Cou	unts			

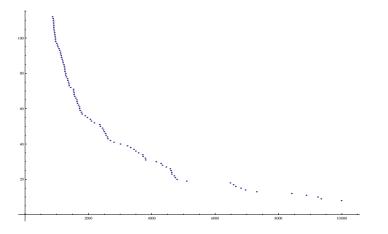


Figure: Plot of rank versus occurrences

Introduction	Regression	Theory	Regression Extensions	Examples
000	000	0000000000	○○○○●	oooooooooooooo
Word Cou	unts			

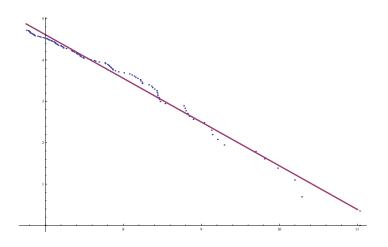


Figure: Plot of log(rank) versus log(occurrences)

Introduction	Regression	Theory	Regression Extensions	Examples
000	000	0000000000		●○○○○○○○○○○

Examples: Chapter 70 Aid, Kepler's Laws, Birthday Problem

Introduction	Regression	Theory	Regression Extensions	Examples
000	000	0000000000		o●oooooooooo
Framework				

Real World Challenge: Need to assign \$3,500,000 to three schools (LES, WES, MtG).

 Pre-regionalization know how much state gives each; post regionalization only know sum.

• State has formula, lots of variables, secret.

What is the goal? How do we accomplish it?

Introduction 000	Regression	Theory 000000000	Regression Extensions	Examples ○○●○○○○○○○○○
Objectives				

- Fair formula that predicts well.
- Transparent, seems fair.
- Can be explained.

Introduction	Regression 000	Theory 000000000	Regression Extensions	Examples ○○○●○○○○○○○○
Solution				

Solution: Method of Least Squares / Linear Regression.

Inputs: Population of Schools (LES(pop), WES(pop), MtG(pop)), Assessment of Towns (EQV(L), EQV(W)).

Formula: If $\overrightarrow{y} = \mathbf{X}\overrightarrow{\beta}$ then

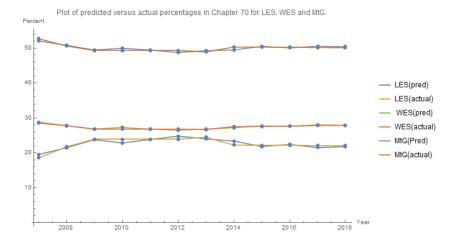
$$\overrightarrow{\beta} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\overrightarrow{\mathbf{y}}$$

What properties do we want the solution to have?

Introduction	Regression	Theory	Regression Extensions	Examples
000	000	0000000000		○○○○●○○○○○○○
Properties	of Solution			

- Want solution to exist will it?
- Want values to be between 0 and 1 will it?
- Want values to be stable under small changes will it?
- Want the sum of the three percentages to add to 1 will it?

Introduction	Regression 000	Theory 000000000	Regression Extensions	Examples ○○○○○●○○○○○○



Introduction	Regression	Theory 000000000	Regression Extensions	Examples ○○○○○●○○○○○
Theory v	s Reality			

 Predicted, Actual and Errors for Schools:

 LES:
 21.7826
 22.0248
 -0.242194

 WES:
 27.8397
 27.8767
 -0.0369861

 MtG:
 50.3776
 50.0984
 0.279181

 Sum of three predictions is 100%

Total chapter 70 funds in 2018: 3,489,437. 1% of total is 34,894.40. .3% of total is 10,468.31.

School budgets (roughly): LES \$2.7 million, WES \$6.6 million, MtG \$11 million.

Introduction	Regression	Theory 0000000000	Regression Extensions	Examples ○○○○○○●○○○○
Logarithr	ns and Applic	cations		

Many non-linear relationships are linear after applying logarithms:

$$Y = BX^a$$
 then $\log(Y) = a \log(X) + b$, $b = \log B$.

Many non-linear relationships are linear after applying logarithms:

$$Y = BX^a$$
 then $\log(Y) = a \log(X) + b$, $b = \log B$.

Kepler's Third Law: if *T* is the orbital period of a planet traveling in an elliptical orbit about the sun (and no other objects exist), then $T^2 = \tilde{B}L^3$, where *L* is the length of the semi-major axis.

Assume do not know this – can we *discover* through statistics?

Many non-linear relationships are linear after applying logarithms:

$$Y = BX^a$$
 then $\log(Y) = a \log(X) + b$, $b = \log B$.

Kepler's Third Law: if *T* is the orbital period of a planet traveling in an elliptical orbit about the sun (and no other objects exist), then $T = BL^{1.5}$, where *L* is the length of the semi-major axis.

Assume do not know this – can we *discover* through statistics?

Introduction	Regression	Theory 000000000	Regression Extensions	Examples ○○○○○○●○○○

Kepler's Third Law: Can see the 1.5 exponent!

Data: Semi-major axis: Mercury 0.387, Venus 0.723, Earth 1.000, Mars 1.524, Jupiter 5.203, Saturn 9.539, Uranus 19.182, Neptune 30.06 (the units are astronomical units, where one astronomical unit is 1.496 ·10⁸ km).

Data: orbital periods (in years) are 0.2408467, 0.61519726, 1.0000174, 1.8808476, 11.862615, 29.447498, 84.016846 and 164.79132.

If T = BL^a, what should B equal with this data? Units: bruno, millihelen, slug, smoot, See https://en. wikipedia.org/wiki/ List_of_humorous_units_of_measurement

Introduction	Regression	Theory 000000000	Regression Extensions	Examples ○○○○○○○●○○○

Kepler's Third Law: Can see the 1.5 exponent!

Data: Semi-major axis: Mercury 0.387, Venus 0.723, Earth 1.000, Mars 1.524, Jupiter 5.203, Saturn 9.539, Uranus 19.182, Neptune 30.06 (the units are astronomical units, where one astronomical unit is 1.496 ·10⁸ km).

Data: orbital periods (in years) are 0.2408467, 0.61519726, 1.0000174, 1.8808476, 11.862615, 29.447498, 84.016846 and 164.79132.

If T = BL^a, what should B equal with this data? Units: bruno, millihelen, slug, smoot, See https://en. wikipedia.org/wiki/ List_of_humorous_units_of_measurement

Introduction	Re

egression 00 Theory 0000000000 Regression Extensions

Examples

Kepler's Third Law: Can see the 1.5 exponent!

If try $\log T = a \log L + b$: best fit values are...? HOMEWORK!

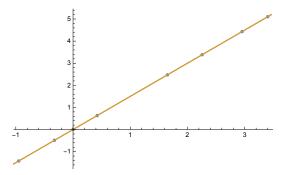


Figure: Plot of log *P* versus log *L* for planets. Is it surprising $b \approx 0$ (so $B \approx 1$ or $b \approx 0$?

Introduction
000

Regression

Theory 0000000000 Regression Extensions

Examples

Units: Goal: find good statistics to describe the world.

Figure: Harvard Bridge, about 620.1 meters.

Intr	od	uci	tior	
00				

Regression

Theory 0000000000 Regression Extensions

Examples

Units: Goal: find good statistics to describe the world.

Figure: Harvard Bridge, 364.1 Smoots (\pm one ear).

Introduction	Regression	Theory	Regression

egression Extensions

Examples

Units: Goal: find good statistics to describe the world.

Sieze opportunities: Never know where they will lead.

Oliver Smoot: Chairman of the American National Standards Institute (ANSI) from 2001 to 2002, President of the International Organization for Standardization (ISO) from 2003 to 2004.

Introduction	Regression	Theory	Regression Extensions	Examples
000	000	0000000000		○○○○○○○○○●○
Birthday	Problem			

Birthday Problem: Assume a year with D days, how many people do we need in a room to have a 50% chance that at least two share a birthday, under the assumption that the birthdays are independent and uniformly distributed from 1 to D?

Introduction	Regression	Theory	Regression Extensions	Examples
000	000	0000000000		○○○○○○○○○●○
Birthday	Problem			

Birthday Problem: Assume a year with D days, how many people do we need in a room to have a 50% chance that at least two share a birthday, under the assumption that the birthdays are independent and uniformly distributed from 1 to D?

An analysis shows the answer is approximately $D^{1/2}\sqrt{\log 4}$.

Can do simulations and try and see the correct exponent; will look not for 50% chance but the expected number of people in room for the first collision.

Try $P = BD^a$, take logs so $\log P = a \log D + b$ ($b = \log B$).

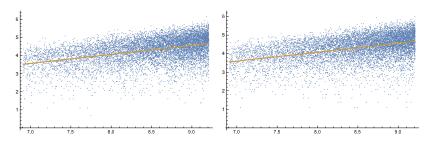


Figure: Plot of best fit line for *P* as a function of *D*. We twice ran 10,000 simulations with *D* chosen from 10,000 to 100,000. Best fit values were $a \approx 0.506167$, $b \approx -0.0110081$ (left) and $a \approx 0.48141$, $b \approx 0.230735$ (right).