LACOL DATA SCIENCE: Least Squares Lecture

Steven J Miller Williams College

$$
\begin{gathered}
\text { sjm1@williams.edu } \\
\text { http://www.williams.edu/Mathematics/sjmiller/ } \\
\text { public_html/ }
\end{gathered}
$$

Williams College

Introduction

Spring Test

Spring Test

Figure: xkcd: Convincing: https://xkcd.com/833/ (Extra text: And if you labeled your axes, I could tell you exactly how MUCH better.)

Spring Test

Data from $x_{n}=5+.2 n, y_{n}=5 x_{n}$ plus an error randomly drawn from a normal distribution with mean zero and standard deviation 4. Best fit line of $y=4.99 x+.48$; thus $a=4.99$ and $b=.48$.

Spring Test (continued)

Our value of b is significantly off: $a=4.99$ and $b=.48$.

Spring Test (continued)

Our value of b is significantly off: $a=4.99$ and $b=.48$.
Using absolute values for errors gives best fit value of a is 5.03 and the best fit value of b is less than 10^{-10} in absolute value.

Spring Test (continued)

Our value of b is significantly off: $a=4.99$ and $b=.48$.
Using absolute values for errors gives best fit value of a is 5.03 and the best fit value of b is less than 10^{-10} in absolute value.

The difference between these values and those from the Method of Least Squares is in the best fit value of b (the least important of the two parameters), and is due to the different ways of weighting the errors.

Regression

See https://web.williams.edu/Mathematics/ sjmiller/public_html/probabilitylifesaver/ MethodLeastSquares.pdf

Overview

Idea is to find best-fit parameters: choices that minimize error in a conjectured relationship.

Say observe y_{i} with input x_{i}, believe $y_{i}=a x_{i}+b$. Three choices:

$$
\begin{aligned}
& E_{1}(a, b)=\sum_{n=1}^{N}\left(y_{i}-\left(a x_{i}+b\right)\right) \\
& E_{2}(a, b)=\sum_{n=1}^{N}\left|y_{i}-\left(a x_{i}+b\right)\right| \\
& E_{3}(a, b)=\sum_{n=1}^{N}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2} .
\end{aligned}
$$

Overview

Idea is to find best-fit parameters: choices that minimize error in a conjectured relationship.

Say observe y_{i} with input x_{i}, believe $y_{i}=a x_{i}+b$. Three choices:

$$
\begin{aligned}
& E_{1}(a, b)=\sum_{n=1}^{N}\left(y_{i}-\left(a x_{i}+b\right)\right) \\
& E_{2}(a, b)=\sum_{n=1}^{N}\left|y_{i}-\left(a x_{i}+b\right)\right| \\
& E_{3}(a, b)=\sum_{n=1}^{N}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2} .
\end{aligned}
$$

Use sum of squares as calculus available.

Linear Regression

Explicit formula for values of a, b minimizing error $E_{3}(a, b)$. From

$$
\partial E_{3}(a, b) / \partial a=\partial E_{3}(a, b) / \partial b=0:
$$

After algebra:

$$
\binom{\widehat{a}}{\widehat{b}}=\left(\begin{array}{cc}
\sum_{n=1}^{N} x_{i}^{2} & \sum_{n=1}^{N} x_{i} \\
\sum_{n=1}^{N} x_{i} & \sum_{n=1}^{N} 1
\end{array}\right)^{-1}\binom{\sum_{n=1}^{N} x_{i} y_{i}}{\sum_{n=1}^{N} y_{i}}
$$

or

$$
\begin{aligned}
& a=\frac{\sum_{n=1}^{N} 1 \sum_{n=1}^{N} x_{n} y_{n}-\sum_{n=1}^{N} x_{n} \sum_{n=1}^{N} y_{n}}{\sum_{n=1}^{N} 1 \sum_{n=1}^{N} x_{n}^{2}-\sum_{n=1}^{N} x_{n} \sum_{n=1}^{N} x_{n}} \\
& b=\frac{\sum_{n=1}^{N} x_{n} \sum_{n=1}^{N} x_{n} y_{n}-\sum_{n=1}^{N} x_{n}^{2} \sum_{n=1}^{N} y_{n}}{\sum_{n=1}^{N} x_{n} \sum_{n=1}^{N} x_{n}-\sum_{n=1}^{N} x_{n}^{2} \sum_{n=1}^{N} 1} .
\end{aligned}
$$

Theory

Theoretical Aside: Derivation

See https://web.williams.edu/Mathematics/sjmiller/ public_html/341Fa18/handouts/MethodLeastSquares.pdf

$$
E_{3}(a, b)=\sum_{n=1}^{N}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}
$$

Error a function of two variables, the unknown parameters a and b.
Note x, y are the data NOT the variables.
The goal is to find values of a and b that minimize the error.

Theoretical Aside: Derivation: II

One-Variable Calculus: candidates for max/min from boundary points and critical points (places where derivative vanishes).

Multivariable Calculus: Similar, need partial derivatives to vanish (partial is hold all variables fixed but one).

$$
\nabla E=\left(\frac{\partial E}{\partial a}, \frac{\partial E}{\partial b}\right)=(0,0)
$$

or

$$
\frac{\partial E}{\partial a}=0, \quad \frac{\partial E}{\partial b}=0
$$

Do not have to worry about boundary points: as $|a|$ and $|b|$ become large, the fit gets worse and worse.

Theoretical Aside: Derivation: III

Differentiating $E(a, b)$ yields

$$
\begin{aligned}
& \frac{\partial E}{\partial a}=\sum_{n=1}^{N} 2\left(y_{n}-\left(a x_{n}+b\right)\right) \cdot\left(-x_{n}\right) \\
& \frac{\partial E}{\partial b}=\sum_{n=1}^{N} 2\left(y_{n}-\left(a x_{n}+b\right)\right) \cdot(-1)
\end{aligned}
$$

Setting $\partial E / \partial a=\partial E / \partial b=0$ (and dividing by -2) yields

$$
\begin{aligned}
\sum_{n=1}^{N}\left(y_{n}-\left(a x_{n}+b\right)\right) \cdot x_{n} & =0 \\
\sum_{n=1}^{N}\left(y_{n}-\left(a x_{n}+b\right)\right) & =0 .
\end{aligned}
$$

Note we can divide both sides by -2 as it is just a constant; we cannot divide by x_{i} as that varies with i.

Theoretical Aside: Derivation: IV

Rewrite as

$$
\begin{aligned}
\left(\sum_{n=1}^{N} x_{n}^{2}\right) a+\left(\sum_{n=1}^{N} x_{n}\right) b & =\sum_{n=1}^{N} x_{n} y_{n} \\
\left(\sum_{n=1}^{N} x_{n}\right) a+\left(\sum_{n=1}^{N} 1\right) b & =\sum_{n=1}^{N} y_{n} .
\end{aligned}
$$

Values of a and b which minimize the error satisfy the following matrix equation:

$$
\left(\begin{array}{cc}
\sum_{n=1}^{N} x_{n}^{2} & \sum_{n=1}^{N} x_{n} \tag{1}\\
\sum_{n=1}^{N} x_{n} & \sum_{n=1}^{N} 1
\end{array}\right)\binom{a}{b}=\binom{\sum_{n=1}^{N} x_{n} y_{n}}{\sum_{n=1}^{N} y_{n}} .
$$

Theoretical Aside: Derivation: V

Inverse of a matrix A is the matrix B such that $A B=B A=I$, where l is the identity matrix.

If $A=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ is a 2×2 matrix where $\operatorname{det} A=\alpha \delta-\beta \gamma \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{\alpha \delta-\beta \gamma}\left(\begin{array}{cc}
\delta & -\gamma \tag{2}\\
-\beta & \alpha
\end{array}\right)
$$

In other words, $A A^{-1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ here.
For example, if $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right)$ then $\operatorname{det} A=1$ and $A^{-1}=\left(\begin{array}{cc}7 & -2 \\ -3 & 1\end{array}\right)$; we
can check this by noting (through matrix multiplication) that

$$
\left(\begin{array}{ll}
1 & 2 \tag{3}\\
3 & 7
\end{array}\right)\left(\begin{array}{cc}
7 & -2 \\
-3 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Theoretical Aside: Derivation: VI

$$
\binom{a}{b}=\left(\begin{array}{cc}
\sum_{n=1}^{N} x_{n}^{2} & \sum_{n=1}^{N} x_{n} \tag{4}\\
\sum_{n=1}^{N} x_{n} & \sum_{n=1}^{N} 1
\end{array}\right)^{-1}\binom{\sum_{n=1}^{N} x_{n} y_{n}}{\sum_{n=1}^{N} y_{n}}
$$

Denote the matrix from (1) by M. The determinant of M is

$$
\operatorname{det} M=\sum_{n=1}^{N} x_{n}^{2} \cdot \sum_{n=1}^{N} 1-\sum_{n=1}^{N} x_{n} \cdot \sum_{n=1}^{N} x_{n}
$$

As

$$
\bar{x}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

we find that

$$
\operatorname{det} M=N \sum_{n=1}^{N} x_{n}^{2}-(N \bar{x})^{2}=N^{2} \cdot \frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\bar{x}\right)^{2}
$$

where the last equality follows from algebra. If the x_{n} are not all equal, $\operatorname{det} M$ is non-zero and M is invertible.

Theoretical Aside: Derivation: VII

We rewrite (4) in a simpler form. Using the inverse of the matrix and the definition of the mean and variance, we find

$$
\binom{a}{b}=\frac{1}{N^{2} \sigma_{x}^{2}}\left(\begin{array}{cc}
N & -N \bar{x} \tag{5}\\
-N \bar{x} & \sum_{n=1}^{N} x_{n}^{2}
\end{array}\right)\binom{\sum_{n=1}^{N} x_{n} y_{n}}{\sum_{n=1}^{N} y_{n}}
$$

Expanding gives

$$
\begin{align*}
& a= \frac{N \sum_{n=1}^{N} x_{n} y_{n}-N \bar{x} \sum_{n=1}^{N} y_{n}}{N^{2} \sigma_{X}^{2}} \\
& b= \frac{-N \bar{x} \sum_{n=1}^{N} x_{n} y_{n}+\sum_{n=1}^{N} x_{n}^{2} \sum_{n=1}^{N} y_{n}}{N^{2} \sigma_{X}^{2}} \\
& \bar{x}=\frac{1}{N} \sum_{n=1}^{N} x_{i} \\
& \sigma_{x}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{i}-\bar{x}\right)^{2} . \tag{6}
\end{align*}
$$

Theoretical Aside: Derivation: VIII

As the formulas for a and b are so important, it is worth giving another expression for them. We also have

$$
\begin{aligned}
& a=\frac{\sum_{n=1}^{N} 1 \sum_{n=1}^{N} x_{n} y_{n}-\sum_{n=1}^{N} x_{n} \sum_{n=1}^{N} y_{n}}{\sum_{n=1}^{N} 1 \sum_{n=1}^{N} x_{n}^{2}-\sum_{n=1}^{N} x_{n} \sum_{n=1}^{N} x_{n}} \\
& b=\frac{\sum_{n=1}^{N} x_{n} \sum_{n=1}^{N} x_{n} y_{n}-\sum_{n=1}^{N} x_{n}^{2} \sum_{n=1}^{N} y_{n}}{\sum_{n=1}^{N} x_{n} \sum_{n=1}^{N} x_{n}-\sum_{n=1}^{N} x_{n}^{2} \sum_{n=1}^{N} 1} .
\end{aligned}
$$

Theoretical Aside: Derivation: Remarks

Formulas for a and b are reasonable, as can be seen by a unit analysis. Imagine x in meters and y in seconds. Then if $y=a x+b$ we would need b and y to have the same units (seconds), and a to have units seconds per meter. If we substitute we do see a and b have the correct units. Not a proof that we have not made a mistake, but a great reassurance. No matter what you are studying, you should always try unit calculations such as this.

Theoretical Aside: Derivation: Remarks

There are other, equivalent formulas for a and b, arranging the algebra in a slightly different sequence of steps. Essentially what we are doing is the following: image we are given

$$
\begin{aligned}
& 4=3 a+2 b \\
& 5=2 a+5 b
\end{aligned}
$$

If we want to solve, we can proceed in two ways. We can use the first equation to solve for b in terms of a and substitute in, or we can multiply the first equation by 5 and the second equation by 2 and subtract; the b terms cancel and we obtain the value of a. Explicitly,

$$
\begin{aligned}
20 & =15 a+10 b \\
10 & =4 a+10 b
\end{aligned}
$$

which yields

$$
10=11 a,
$$

or

$$
a=10 / 11
$$

Regression Extensions

Beyond the Best Fit Line

Did $y=a x+b$.
All that matters is linear in the unknown parameters.
Could do

$$
y=a_{1} f_{1}(x)+a_{2} f_{2}(x)+\cdots+a_{k} f_{k}(x) ;
$$

do not need the functions f to be linear.

Non-linear Relations

Most relations are not linear.
Newton's law of gravity: $F=G m_{1} m_{2} / r^{2}$.
If guess force is proportional to a power of the distance:
$F=B r^{a}$.
Take logarithms: $\log (F)=a \log (r)+b$ with $b=\log B$.
Note the linear relation between $\log (F)$ and $\log (r)$.

City Populations

The twenty-five most populous cities (I believe this is American cities from a few years ago):

$8,363,710$	$1,540,351$	912,062	754,885	620,535
$3,833,995$	$1,351,305$	808,976	703,073	613,190
$2,853,114$	$1,279,910$	807,815	687,456	604,477
$2,242,193$	$1,279,329$	798,382	669,651	598,707
$1,567,924$	948,279	757,688	636,919	598,541

City Populations

Figure: Plot of rank versus population

City Populations

Figure: Plot of rank versus log(population)

City Populations

Figure: Plot of $\log (r a n k)$ versus \log (population)

City Populations

Plot of 100 most populous cities

Figure: Plot of rank versus population

City Populations

।

Plot of 100 most populous cities: $\log -\log$ plot

Figure: Plot of $\log (r a n k)$ versus $\log ($ population)

Word Counts

Figure: Plot of rank versus occurrences

Word Counts

Figure: Plot of $\log ($ rank $)$ versus \log (occurrences)

Examples:

Chapter 70 Aid, Kepler's Laws, Birthday Problem

Framework

Real World Challenge: Need to assign \$3,500,000 to three schools (LES, WES, MtG).

- Pre-regionalization know how much state gives each; post regionalization only know sum.
- State has formula, lots of variables, secret.

What is the goal? How do we accomplish it?

Objectives

- Fair formula that predicts well.
- Transparent, seems fair.
- Can be explained.

Solution

Solution: Method of Least Squares / Linear Regression.
Inputs: Population of Schools (LES(pop), WES(pop), MtG(pop)), Assessment of Towns (EQV(L), EQV(W)).

Formula: If $\vec{y}=\mathbf{X} \vec{\beta}$ then

$$
\vec{\beta}=\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \vec{y}
$$

What properties do we want the solution to have?

Properties of Solution

- Want solution to exist - will it?
- Want values to be between 0 and 1 - will it?
- Want values to be stable under small changes - will it?
- Want the sum of the three percentages to add to 1 will it?

Plot of predicted versus actual percentages in Chapter 70 for LES, WES and MtG.

- LES(pred)
- LES(actual)
- WES(pred)
- WES(actual)
- MtG(Pred)
- MtG(actual)

Theory vs Reality

Predicted, Actual and Errors for Schools:
LES:
21.7826
22.0248
-0.242194
WES: $27.8397 \quad 27.8767-0.0369861$
MtG: $50.3776 \quad 50.0984 \quad 0.279181$

Sum of three predictions is 100%
Total chapter 70 funds in 2018: 3,489,437. 1% of total is $34,894.40$.
$.3 \%$ of total is $10,468.31$.
School budgets (roughly): LES $\$ 2.7$ million, WES $\$ 6.6$ million, MtG $\$ 11$ million.

Logarithms and Applications

Many non-linear relationships are linear after applying logarithms:

$$
Y=B X^{a} \text { then } \log (Y)=a \log (X)+b, \quad b=\log B
$$

Logarithms and Applications

Many non-linear relationships are linear after applying logarithms:

$$
Y=B X^{a} \text { then } \log (Y)=a \log (X)+b, \quad b=\log B .
$$

Kepler's Third Law: if T is the orbital period of a planet traveling in an elliptical orbit about the sun (and no other objects exist), then $T^{2}=\widetilde{B} L^{3}$, where L is the length of the semi-major axis.

Assume do not know this - can we discover through statistics?

Logarithms and Applications

Many non-linear relationships are linear after applying logarithms:

$$
Y=B X^{a} \text { then } \log (Y)=a \log (X)+b, \quad b=\log B .
$$

Kepler's Third Law: if T is the orbital period of a planet traveling in an elliptical orbit about the sun (and no other objects exist), then $T=B L^{1.5}$, where L is the length of the semi-major axis.

Assume do not know this - can we discover through statistics?

Kepler's Third Law: Can see the 1.5 exponent!

Data: Semi-major axis: Mercury 0.387, Venus 0.723, Earth 1.000, Mars 1.524, Jupiter 5.203, Saturn 9.539, Uranus 19.182, Neptune 30.06 (the units are astronomical units, where one astronomical unit is $1.496 \cdot 10^{8} \mathrm{~km}$).

Data: orbital periods (in years) are 0.2408467 , 0.61519726, 1.0000174, 1.8808476, 11.862615, 29.447498, 84.016846 and 164.79132.

If $T=B L^{a}$, what should B equal with this data? Units: bruno, millihelen, slug, smoot, See https://en.
wikipedia.org/wiki/
List_of_humorous_units_of_measurement

Kepler's Third Law: Can see the 1.5 exponent!

Data: Semi-major axis: Mercury 0.387, Venus 0.723, Earth 1.000, Mars 1.524, Jupiter 5.203, Saturn 9.539, Uranus 19.182, Neptune 30.06 (the units are astronomical units, where one astronomical unit is $1.496 \cdot 10^{8} \mathrm{~km}$).

Data: orbital periods (in years) are 0.2408467 , 0.61519726, 1.0000174, 1.8808476, 11.862615, 29.447498, 84.016846 and 164.79132.

If $T=B L^{a}$, what should B equal with this data? Units: bruno, millihelen, slug, smoot, See https://en.
wikipedia.org/wiki/
List_of_humorous_units_of_measurement

Kepler's Third Law: Can see the 1.5 exponent!

If try $\log T=a \log L+b$: best fit values are...? HOMEWORK!

Figure: Plot of $\log P$ versus $\log L$ for planets. Is it surprising $b \approx 0$ (so $B \approx 1$ or $b \approx 0$?

Units: Goal: find good statistics to describe the world.

Figure: Harvard Bridge, about 620.1 meters.

Units: Goal: find good statistics to describe the world.

Figure: Harvard Bridge, 364.1 Smoots (\pm one ear).

Units: Goal: find good statistics to describe the world.

Sieze opportunities: Never know where they will lead.

Oliver Smoot: Chairman of the American National Standards Institute (ANSI) from 2001 to 2002, President of the International Organization for Standardization (ISO) from 2003 to 2004.

Birthday Problem

Birthday Problem: Assume a year with D days, how many people do we need in a room to have a 50% chance that at least two share a birthday, under the assumption that the birthdays are independent and uniformly distributed from 1 to D ?

Birthday Problem

Birthday Problem: Assume a year with D days, how many people do we need in a room to have a 50% chance that at least two share a birthday, under the assumption that the birthdays are independent and uniformly distributed from 1 to D ?

An analysis shows the answer is approximately $D^{1 / 2} \sqrt{\log 4}$.

Can do simulations and try and see the correct exponent; will look not for 50% chance but the expected number of people in room for the first collision.

Birthday Problem (cont)

Try $P=B D^{a}$, take logs so $\log P=a \log D+b(b=\log B)$.

Figure: Plot of best fit line for P as a function of D. We twice ran 10,000 simulations with D chosen from 10,000 to 100,000 . Best fit values were $a \approx 0.506167, b \approx-0.0110081$ (left) and $a \approx 0.48141$, $b \approx 0.230735$ (right).

