

Why do we care about Logarithms

- Discuss objects across many orders of magnitude.
- Linearize many non-linear functions (calculus becomes available).

Plot of 100 most populous cities

Definition of Logarithms

- If $x=b^{y}$ then $\log _{b} x=y$.
- Read as the logarithm of x base b is y.
- Often use base 10, and some authors suppress the subscript 10.
- Other popular bases are 2 for computers, and e for calculus; many sources write $\ln x$ for the natural logarithm of x, which is its logarithm base e (e is approximately 2.71828).
- Examples: $\log _{b} x=y$ means we need y powers of b to get x.
- $100=10^{2}$ becomes $\log _{10} 100=2$.

In base e it is about 4.6.

- $1=10^{0}$ becomes $\log _{10} 1=0$.

In base e it is still 0 .
$\cdot .001=10^{-3}$ becomes $\log _{10} .001=-3$. In base e it is about -6.9.

Examples of Logarithms

Order of Magnitude of some Lengths	
LENGTH	meters
radius of proton	10^{-15}
radius of atom	10^{-10}
radius of virus	10^{-7}
radius of amoeba	10^{-4}
height of human being	10^{0}
radius of earth	10^{7}
radius of sun	10^{9}
earth-sun distance	10^{11}
radius of solar system	10^{13}
distance of sun to nearest star	10^{16}
radius of milky way galaxy	10^{21}
radius of visible Universe	10^{26}

Examples of Logarithms

Earthquake frequency and destructive power

The left side of the chart shows the magnitude of the earthquake and the right side represents the amount of high explosive required to produce the energy released by the earthquake. The middle of the chart shows the relative frequencles.

Energy release

Examples of Logarithms

. Ill NoISE LEVELS

Office noise,

Vacuum deaner, average radio

Source: wwwwebmdicom

Heavy traffic,
window air conditioner,
noisy restaurant,
power lawn Boom box, ATV, mower cower

Chainsaw, leaf blower, $\begin{aligned} & \text { Stock car } \\ & \text { snowmobile } \\ & \text { races }\end{aligned}$ \uparrow

School dance

 140
 129

Sports crowd, Gun shot, rock concert, siren at loud symphony 100 feet

Sounds above 85 dB are harmful

Examples of Logarithms

The pH Scale

shutterstock.com • 1216954318

Recall: Definition of Logarithms

- If $x=b^{y}$ then $\log _{b} x=y$.
- Read as the logarithm of x base b is y.
- Often use base 10 , and some authors suppress the subscript 10.
- Other popular bases are 2 for computers, and e for calculus; many sources write $\ln x$ for the natural logarithm of x, which is its logarithm base e (e is approximately 2.71828).
- Examples: $\log _{b} x=y$ means we need y powers of b to get \boldsymbol{x}.
- $100=10^{2}$ becomes $\log _{10} 100=2$.

In base e it is about 4.6.

- $1=10^{0}$ becomes $\log _{10} 1=0$.

In base e it is still 0 .
$\cdot .001=10^{-3}$ becomes $\log _{10} .001=-3$. In base e it is about -6.9.

Plots of Exponentiation and Logarithms

- If $x=b^{y}$ then $\log _{b} x=y$.
- Read as the logarithm of x base b is y.

Why do we care about Logarithms

- Discuss objects across many orders of magnitude.
- Linearize many non-linear functions (calculus becomes available).

Plot of 100 most populous cities

Why do we care about Logarithms

- Linearize many non-linear functions (calculus becomes available).

Notice that even on a small range, from 1 to 10, the polynomial of highest degree drowns out the others and can barely see.

Why do we care about Logarithms

- Linearize many non-linear functions (calculus becomes available).

Plot of $\log _{-} 10\left(x^{\wedge} r\right)$ for r in $\{1 / 4,1 / 2,2,4\}$

Log-Log Plot: $y=x^{\wedge} r$, or $\log _10(y)=\log _{_} 10\left(x^{\wedge} r\right)$ or $\log _{_} 10(y)=r \log _10(x)$

Left: Semi-log plot: $y=\log x^{r}$. Right: $\log -\log$ plot: $\log y=\log x^{r}$.
Note that we can now see the four functions on one plot, and the log-log plot now has linear relations.

Review: Exponent Laws

Laws

- $b^{m} b^{n}=b^{m+n}$
- $b^{m} / b^{n}=b^{m-n}$
- $\left(b^{m}\right)^{n}=b^{m n}$

Examples

- $10^{3} 10^{2}=(10 * 10 * 10) *(10 * 10)=10^{5}$
$\cdot 10^{3} / 10^{2}=(10 * 10 * 10) /(10 * 10)=10^{1}$
- $\left(10^{3}\right)^{2}=10^{3} * 10^{3}=(10 * 10 * 10) *(10 * 10 * 10)=10^{6}$

Logarithm Laws

Parts of a Slide Rule

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$.
These allow us to simplify computations with logarithms.

THEOREM

$\cdot \log _{b}\left(x^{n}\right)=\mathrm{n} \log _{b} x$.
Log of a power is that power times the log.

- $\log _{b}\left(x_{1} x_{2}\right)=\log _{b}\left(x_{1}\right)+\log _{b}\left(x_{2}\right)$. Log of a product is the sum of the logs.
- $\log _{b}\left(x_{1} / x_{2}\right)=\log _{b}\left(x_{1}\right)-\log _{b}\left(x_{2}\right)$. Log of a quotient is the difference of the logs.
$\cdot \log _{b} x=\log _{c} x / \log _{c} b$ If know logs in one base, know in all.

OPTIONAL - PROOFS OF THE LOG LAWS

"I think you should be more explicit here in step two."

Logarithm Laws: Proofs

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$.

- $\log _{b}\left(x^{n}\right)=n \log _{b} x_{\text {. Log of a power is that power times the log. }}$.

Proof:

- $\log _{b} x=y$ means $x=b^{y}$.

Logarithm Laws: Proofs

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$.

- $\log _{b}\left(x^{n}\right)=n \log _{b} x^{\prime}$, Log of a power is that power times the log.

Proof:

- $\log _{b} x=y$ means $x=b^{y}$.
- Thus $x^{n}=\left(b^{y}\right)^{n}=b^{n y}$.

Logarithm Laws: Proofs

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$.

- $\log _{b}\left(x^{n}\right)=n \log _{b} x^{\prime}$, Log of a power is that power times the log.

Proof:

- $\log _{b} x=y$ means $x=b^{y}$.
- Thus $x^{n}=\left(b^{y}\right)^{n}=b^{n y}$.
- Taking logarithms: $\log _{b}(x n)=n y=n \log _{b} x$.

Logarithm Laws: Proofs

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$.

- $\log _{b}\left(x_{1} x_{2}\right)=\log _{b}\left(x_{1}\right)+\log _{b}\left(x_{2}\right) \cdot$ Log of a product is the sum of the logs.

Proof:

- As $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$, we have $x_{1}=b^{y_{1}}$ and $x_{2}=b^{y_{2}}$.

Logarithm Laws: Proofs

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$.

- $\log _{b}\left(x_{1} x_{2}\right)=\log _{b}\left(x_{1}\right)+\log _{b}\left(x_{2}\right) \cdot$. Log of a product is the sum of the logs.

Proof:

- As $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$, we have $x_{1}=b^{y_{1}}$ and $x_{2}=b^{y_{2}}$.
-Thus $x_{1} x_{2}=b^{y_{1} b^{y_{2}}}=b^{y_{1}+y_{2}}$.

Logarithm Laws: Proofs

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$.

- $\log _{b}\left(x_{1} x_{2}\right)=\log _{b}\left(x_{1}\right)+\log _{b}\left(x_{2}\right) \cdot$ tog of a product is the sum of the logs.

Proof:

- As $\log _{b} x_{1}=y_{1}$ and $\log _{b} x_{2}=y_{2}$, we have $x_{1}=b^{y_{1}}$ and $x_{2}=b^{y_{2}}$.
-Thus $x_{1} x_{2}=b^{y_{1} b^{y_{2}}}=b^{y_{1}+y_{2}}$.
- Therefore $\log _{b}\left(x_{1} x_{2}\right)=y_{1}+y_{2}=\log _{b} x_{1}+\log _{b} x_{2}$.

Logarithm Laws: Proofs

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{c} x=u$ (so $x=c^{u}$) and $\log _{c} b=v$ (so $b=c^{v}$).
$\cdot \log _{b} x=\log _{c} x / \log _{c} b \cdot$ Know logs in one base, know in all.

Proof:

- As $\log _{b} x=y$ have $x=b^{y}$. Similarly $x=c^{u}$ and $b=c^{v}$.

Logarithm Laws: Proofs

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{c} x=u$ (so $x=c^{u}$) and $\log _{c} b=v$ (so $b=c^{v}$).
$\cdot \log _{b} x=\log _{c} x / \log _{c} b \cdot$ Know logs in one base, know in all.

Proof:

- As $\log _{b} x=y$ have $x=b^{y}$. Similarly $x=c^{u}$ and $b=c^{v}$.
-Thus $x=b^{y}=\left(c^{v}\right)^{y}=c v^{y}$.

Logarithm Laws: Proofs

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{c} x=u$ (so $x=c^{u}$) and $\log _{c} b=v$ (so $b=c^{v}$).
$\cdot \log _{b} x=\log _{c} x / \log _{c} b \cdot$ Know logs in one base, know in all.

Proof:

- As $\log _{b} x=y$ have $x=b^{y}$. Similarly $x=c^{u}$ and $b=c^{v}$.
-Thus $x=b^{y}=\left(c^{v}\right)^{y}=c v^{y}$.
- As also have $x=c^{u}$ we have $u=v y$ or $y=u / v$.

Logarithm Laws: Proofs

Remember if $x=b^{y}$ then $\log _{b} x=y$.
Below assume $\log _{c} x=u$ (so $x=c^{u}$) and $\log _{c} b=v$ (so $b=c^{v}$).
$\cdot \log _{b} x=\log _{c} x / \log _{c} b \cdot$ Know logs in one base, know in all.

Proof:

- As $\log _{b} x=y$ have $x=b^{y}$. Similarly $x=c^{u}$ and $b=c^{v}$.
-Thus $x=b^{y}=\left(c^{v}\right)^{y}=c v^{y}$.
- As also have $x=c^{u}$ we have $u=v y$ or $y=u / v$.
- Substituting gives $\log _{b} x=\log _{c} x / \log _{c} b$.

Example: Factorial Function:

 Number ways to order \boldsymbol{n} objects when order matters:$$
n!=n *(n-1) * \bullet \bullet * 3 * 2 * 1 .
$$

```
list = {}; semiloglist = {}; logloglist = {};
For[n=1, n <= 200, n++,
{
    list = AppendTo[list, {n, n!}];
    semiloglist = AppendTo[semiloglist, {n, Log[n!]}];
    logloglist = AppendTo[logloglist, {Log[n], Log[n!]}];
    }];
Print[ListPlot[list]]; Print[ListPlot[semiloglist]]; Print[ListPlot[logloglist]];
```


Example: Factorial Function:

 Number ways to order \boldsymbol{n} objects when order matters:$$
n!=n *(n-1) * \bullet \bullet * 3 * 2 * 1 .
$$

Normal Plot

Semi-log Plot

Log-Log Plot

For large n, have $n!\approx n^{n} e^{-n} \sqrt{2 \pi n}$, so $\log n \approx \frac{n}{e} \log n$ (plus a much smaller term).

From M\&Ms to Mathematics, or, How I learned to answer questions and help my kids love math.

\author{
Steven J. Miller, Williams College
 ```
Steven.J.Miller@williams.edu

```
}
http://web.williams.edu/Mathematics/sjmiller/public_html/

ATMIM Spring Conference
Assabet Valley Regional Technical High School, 3/23/13


\section*{Using in the Classroom}

These slides are from the keynote address at the 2013 Spring Conference of ATMIM. If you are interested in using any of these topics (or anything from the math riddles page) in your class, please email me at sjm1@williams.edu, and I am happy to talk with you about implementation.

\section*{Thanks}

Wanted to thank many people who encouraged me and provided opportunities.
- Parents and brother.
- Math teachers from preschool to graduate school.
- Colleagues and students for many discussions.
- Henry Bolton (henry.bolter@gmail.com) from Teachers As Scholars: http://www.teachersasscholars.org/
- Mr. Anthony for stepping up so many times.

\section*{Some Issues for the Future}
- World is rapidly changing - powerful computing cheaply and readily available.
- What skills are we teaching? What skills should we be teaching?
- One of hardest skills: how to think / attack a new problem, how to see connections, what data to gather.

\section*{Goals of the Talk: Opportunities Everywhere!}
- Ask Questions! Often simple questions lead to good math.
- Gather data: observe, program and simulate.
- Use games to get to mathematics.
- Discuss implementation: Please interrupt!

Joint work with Cameron (age 6) and Kayla (age \(4-2 \epsilon\) ) Miller

My math riddles page:
http://mathriddles.williams.edu/

\section*{The M\&M Game}

\section*{Motivating Question}

Cam (4 years): If you're born on the same day, do you die on the same day?

\section*{M\&M Game Rules}

Cam (4 years): If you're born on the same day, do you die on the same day?

(1) Everyone starts off with \(k \mathrm{M} \& M \mathrm{Ms}\) (we did 5).
(2) All toss fair coins, eat an M\&M if and only if head.


\section*{Be active - ask questions!}

What are natural questions to ask?

\section*{Be active - ask questions!}

What are natural questions to ask?
Question 1: How likely is a tie (as a function of \(k\) )?
Question 2: How long until one dies?
Question 3: Generalize the game: More people? Biased coin?

Important to ask questions - curiousity is good and to be encouraged! Value to the journey and not knowing the answer.

Let's gather some data!

\section*{Probability of a tie in the M\&M game (2 players)}


Prob(tie) \(\approx 33 \%(1 \mathrm{M} \& \mathrm{M}), 19 \%(2 \mathrm{M} \& \mathrm{Ms}), 14 \%\) (3 M\&Ms), 10\% (4 M\&Ms).

\section*{Probability of a tie in the M\&M game (2 players)}


But we're celebrating 110 years of service, so....

\section*{Probability of a tie in the M\&M game (2 players)}

... where will the next 110 bring us?
Never too early to lay foundations for future classes.

\section*{Welcome to Statistics and Inference!}
\(\diamond\) Goal: Gather data, see pattern, extrapolate.
\(\diamond\) Methods: Simulation, analysis of special cases.
\(\diamond\) Presentation: It matters how we show data, and which data we show.

\section*{Viewing M\&M Plots}


Hard to predict what comes next.

\section*{Viewing M\&M Plots: Log-Log Plot}


Not just sadistic teachers: logarithms useful!

\section*{Viewing M\&M Plots: Log-Log Plot}


Best fit line:
\(\log (\operatorname{Prob}(\) tie \())=-1.42022-0.545568 \log (\# \mathrm{M} \& \mathrm{Ms})\) or \(\operatorname{Prob}(k) \approx 0.2412 / k^{.5456}\).

\section*{Viewing M\&M Plots: Log-Log Plot}


Best fit line:
\(\log (\operatorname{Prob}(\) tie \())=-1.42022-0.545568 \log (\# \mathrm{M} \& \mathrm{Ms})\) or \(\operatorname{Prob}(k) \approx 0.2412 / k^{.5456}\).

Predicts probability of a tie when \(k=220\) is 0.01274 , but answer is 0.0137 . What gives?

\section*{Statistical Inference: Too Much Data Is Bad!}

Small values can mislead / distort. Let's go from \(k=50\) to 110 .

\section*{Statistical Inference: Too Much Data Is Bad!}

Small values can mislead / distort. Let's go from \(k=50\) to 110.


Best fit line:
\(\log (\operatorname{Prob}(\) tie \())=-1.58261-0.50553 \log (\# \mathrm{M} \& \mathrm{Ms})\) or \(\operatorname{Prob}(k) \approx 0.205437 / k^{.50553}\) (had 0.241662 \(/ k^{5456}\) ).

\section*{Statistical Inference: Too Much Data Is Bad!}

Small values can mislead / distort. Let's go from \(k=50\) to 110 .


Best fit line:
\(\log (\operatorname{Prob}(\) tie \())=-1.58261-0.50553 \log (\# \mathrm{M} \& \mathrm{Ms})\) or \(\operatorname{Prob}(k) \approx 0.205437 / k^{50553}\) (had 0.241662/k.5456).

Get 0.01344 for \(k=220\) (answer 0.01347 ); much better!

\section*{From Shooting Hoops to the Geometric Series Formula}

\section*{Simpler Game: Hoops}

Game of hoops: first basket wins, alternate shooting.


\section*{Simpler Game: Hoops: Mathematical Formulation}

Bird and Magic (l'm old!) alternate shooting; first basket wins.
- Bird always gets basket with probability \(p\).
- Magic always gets basket with probability \(q\).

Let \(x\) be the probability Bird wins - what is \(x\) ?

\section*{Solving the Hoop Game}

Classic solution involves the geometric series.
Break into cases:

\section*{Solving the Hoop Game}

Classic solution involves the geometric series.
Break into cases:
- Bird wins on \(1^{\text {st }}\) shot: \(p\).

\section*{Solving the Hoop Game}

Classic solution involves the geometric series.
Break into cases:
- Bird wins on \(1^{\text {st }}\) shot: \(p\).
- Bird wins on \(2^{\text {nd }}\) shot: \((1-p)(1-q) \cdot p\).

\section*{Solving the Hoop Game}

Classic solution involves the geometric series.
Break into cases:
- Bird wins on \(1^{\text {st }}\) shot: \(p\).
- Bird wins on \(2^{\text {nd }}\) shot: \((1-p)(1-q) \cdot p\).
- Bird wins on \(3^{\text {rd }}\) shot: \((1-p)(1-q) \cdot(1-p)(1-q) \cdot p\).

\section*{Solving the Hoop Game}

Classic solution involves the geometric series.
Break into cases:
- Bird wins on \(1^{\text {st }}\) shot: \(p\).
- Bird wins on \(2^{\text {nd }}\) shot: \((1-p)(1-q) \cdot p\).
- Bird wins on \(3^{\text {rd }}\) shot: \((1-p)(1-q) \cdot(1-p)(1-q) \cdot p\).
- Bird wins on \(\mathrm{n}^{\text {th }}\) shot:
\[
(1-p)(1-q) \cdot(1-p)(1-q) \cdots(1-p)(1-q) \cdot p
\]

\section*{Solving the Hoop Game}

Classic solution involves the geometric series.
Break into cases:
- Bird wins on \(1^{\text {st }}\) shot: \(p\).
- Bird wins on \(2^{\text {nd }}\) shot: \((1-p)(1-q) \cdot p\).
- Bird wins on \(3^{\text {rd }}\) shot: \((1-p)(1-q) \cdot(1-p)(1-q) \cdot p\).
- Bird wins on \(\mathrm{n}^{\text {th }}\) shot:
\[
(1-p)(1-q) \cdot(1-p)(1-q) \cdots(1-p)(1-q) \cdot p
\]

Let \(r=(1-p)(1-q)\). Then
\[
\begin{aligned}
x & =\operatorname{Prob}(\text { Bird wins }) \\
& =p+r p+r^{2} p+r^{3} p+\cdots \\
& =p\left(1+r+r^{2}+r^{3}+\cdots\right)
\end{aligned}
\]
the geometric series.

\section*{Solving the Hoop Game: The Power of Perspective}

Showed
\[
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
\]
will solve without the geometric series formula.

\section*{Solving the Hoop Game: The Power of Perspective}

Showed
\[
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
\]
will solve without the geometric series formula.
Have
\[
x=\operatorname{Prob}(\text { Bird wins })=p+
\]

\section*{Solving the Hoop Game: The Power of Perspective}

Showed
\[
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
\]
will solve without the geometric series formula.
Have
\[
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q)
\]

\section*{Solving the Hoop Game: The Power of Perspective}

Showed
\[
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
\]
will solve without the geometric series formula.
Have
\[
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q) x
\]

\section*{Solving the Hoop Game: The Power of Perspective}

Showed
\[
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
\]
will solve without the geometric series formula.
Have
\[
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q) x=p+r x .
\]

\section*{Solving the Hoop Game: The Power of Perspective}

Showed
\[
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
\]
will solve without the geometric series formula.
Have
\[
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q) x=p+r x .
\]

Thus
\[
(1-r) x=p \text { or } x=\frac{p}{1-r} .
\]

\section*{Solving the Hoop Game: The Power of Perspective}

Showed
\[
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
\]
will solve without the geometric series formula.
Have
\[
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q) x=p+r x .
\]

Thus
\[
(1-r) x=p \text { or } x=\frac{p}{1-r} .
\]

As \(x=p\left(1+r+r^{2}+r^{3}+\cdots\right)\), find
\[
1+r+r^{2}+r^{3}+\cdots=\frac{1}{1-r} .
\]

\section*{Lessons from Hoop Problem}
\(\diamond\) Power of Perspective: Memoryless process.
\(\diamond\) Can circumvent algebra with deeper understanding! (Hard)
\(\diamond\) Depth of a problem not always what expect.
\(\diamond\) Importance of knowing more than the minimum: connections.
\(\diamond\) Math is fun!

\section*{The M\&M Game}

\section*{Solving the M\&M Game}

Overpower with algebra: Assume \(k\) M\&Ms, two people, fair coins:
\[
\operatorname{Prob}(\mathrm{tie})=\sum_{n=k}^{\infty}\binom{n-1}{k-1}\left(\frac{1}{2}\right)^{n-1} \frac{1}{2} \cdot\binom{n-1}{k-1}\left(\frac{1}{2}\right)^{n-1} \frac{1}{2},
\]
where
\[
\binom{n}{r}=\frac{n!}{r!(n-r)!}
\]
is a binomial coefficient.

\section*{Solving the M\&M Game}

Overpower with algebra: Assume \(k\) M\&Ms, two people, fair coins:
\[
\operatorname{Prob}(\mathrm{tie})=\sum_{n=k}^{\infty}\binom{n-1}{k-1}\left(\frac{1}{2}\right)^{n-1} \frac{1}{2} \cdot\binom{n-1}{k-1}\left(\frac{1}{2}\right)^{n-1} \frac{1}{2}
\]
where
\[
\binom{n}{r}=\frac{n!}{r!(n-r)!}
\]
is a binomial coefficient.
"Simplifies" to \(4^{-k}{ }_{2} F_{1}(k, k, 1,1 / 4)\), a special value of a hypergeometric function! (Look up / write report.)

Obviously way beyond the classroom - is there a better way?

\section*{Solving the M\&M Game (cont)}

Where did formula come from? Each turn one of four equally likely events happens:
- Both eat an M\&M.
- Cam eats and M\&M but Kayla does not.
- Kayla eats an M\&M but Cam does not.
- Neither eat.

Probability of each event is \(1 / 4\) or \(25 \%\).

\section*{Solving the M\&M Game (cont)}

Where did formula come from? Each turn one of four equally likely events happens:
- Both eat an M\&M.
- Cam eats and M\&M but Kayla does not.
- Kayla eats an M\&M but Cam does not.
- Neither eat.

Probability of each event is \(1 / 4\) or \(25 \%\).
Each person has exactly \(k-1\) heads in first \(n-1\) tosses, then ends with a head.
\[
\operatorname{Prob}(\text { tie })=\sum_{n=k}^{\infty}\binom{n-1}{k-1}\left(\frac{1}{2}\right)^{n-1} \frac{1}{2} \cdot\binom{n-1}{k-1}\left(\frac{1}{2}\right)^{n-1} \frac{1}{2} .
\]

\section*{Solving the M\&M Game (cont)}

Use the lesson from the Hoops Game: Memoryless process!

\section*{Solving the M\&M Game (cont)}

Use the lesson from the Hoops Game: Memoryless process!
If neither eat, as if toss didn't happen. Now game is finite.

\section*{Solving the M\&M Game (cont)}

Use the lesson from the Hoops Game: Memoryless process!
If neither eat, as if toss didn't happen. Now game is finite.
Much better perspective: each "turn" one of three equally likely events happens:
- Both eat an M\&M.
- Cam eats and M\&M but Kayla does not.
- Kayla eats an M\&M but Cam does not.

Probability of each event is \(1 / 3\) or about \(33 \%\)
\[
\sum_{n=0}^{k-1}\binom{2 k-n-2}{n}\left(\frac{1}{3}\right)^{n}\binom{2 k-2 n-2}{k-n-1}\left(\frac{1}{3}\right)^{k-n-1}\left(\frac{1}{3}\right)^{k-n-1}\binom{1}{1} \frac{1}{3} .
\]


\section*{Solving the M\&M Game (cont)}

Interpretation: Let Cam have \(c\) M\&Ms and Kayla have \(k\); write as \((c, k)\).

Then each of the following happens \(1 / 3\) of the time after a 'turn':
- \((c, k) \longrightarrow(c-1, k-1)\).
- \((c, k) \longrightarrow(c-1, k)\).
- \((c, k) \longrightarrow(c, k-1)\).


\section*{Solving the M\&M Game (cont): Assume \(k=4\)}


Figure: The M\&M game when \(k=4\). Count the paths! Answer 1/3 of probability hit \((1,1)\).

\section*{Solving the M\&M Game (cont): Assume \(k=4\)}


Figure: The M\&M game when \(k=4\), going down one level.

\section*{Solving the M\&M Game (cont): Assume \(k=4\)}


Figure: The M\&M game when \(k=4\), removing probability from the second level.

\section*{Solving the M\&M Game (cont): Assume \(k=4\)}


Figure: Removing probability from two outer on third level.

\section*{Solving the M\&M Game (cont): Assume \(k=4\)}




Figure: Removing probability from the \((3,2)\) and \((2,3)\) vertices.

\section*{Solving the M\&M Game (cont): Assume \(k=4\)}
\((4,1)\)
1/27
\((1,4)\)
\(1 / 27\)

Figure: Removing probability from the \((2,2)\) vertex.

\section*{Solving the M\&M Game (cont): Assume \(k=4\)}


Figure: Removing probability from the \((4,1)\) and \((1,4)\) vertices.

\section*{Solving the M\&M Game (cont): Assume \(k=4\)}


Figure: Removing probability from the \((3,1)\) and \((1,3)\) vertices.

\section*{Solving the M\&M Game (cont): Assume \(k=4\)}


Figure: Removing probability from \((2,1)\) and \((1,2)\) vertices. Answer is \(1 / 3\) of \((1,1)\) vertex, or \(245 / 2187\) (about \(11 \%\) ).

\section*{Interpreting Proof: Connections to the Fibonacci Numbers!}

Fibonaccis: \(F_{n+2}=F_{n+1}+F_{n}\) with \(F_{0}=0, F_{1}=1\).
Starts \(0,1,1,2,3,5,8,13,21, \ldots\).
http://www.youtube.com/watch?v=kkGeOWYOFoA.

Binet's Formula (can prove via 'generating functions'):
\[
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
\]

\section*{Interpreting Proof: Connections to the Fibonacci Numbers!}

Fibonaccis: \(F_{n+2}=F_{n+1}+F_{n}\) with \(F_{0}=0, F_{1}=1\).

Starts 0, 1, 1, 2, 3, 5, 8, 13, 21, ...
http://www.youtube.com/watch?v=kkGeOWYOFoA.

Binet's Formula (can prove via 'generating functions'):
\[
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
\]

M\&Ms: For \(c, k \geq 1: x_{c, 0}=x_{0, k}=0 ; x_{0,0}=1\), and if \(c, k \geq 1\) :
\[
x_{c, k}=\frac{1}{3} x_{c-1, k-1}+\frac{1}{3} x_{c-1, k}+\frac{1}{3} x_{c, k-1} .
\]

Reproduces the tree but a lot 'cleaner'.

\section*{Interpreting Proof: Finding the Recurrence}

What if we didn't see the 'simple' recurrence?
\[
x_{c, k}=\frac{1}{3} x_{c-1, k-1}+\frac{1}{3} x_{c-1, k}+\frac{1}{3} x_{c, k-1} .
\]

\section*{Interpreting Proof: Finding the Recurrence}

What if we didn't see the 'simple' recurrence?
\[
x_{c, k}=\frac{1}{3} x_{c-1, k-1}+\frac{1}{3} x_{c-1, k}+\frac{1}{3} x_{c, k-1} .
\]

The following recurrence is 'natural':
\[
x_{c, k}=\frac{1}{4} x_{c, k}+\frac{1}{4} x_{c-1, k-1}+\frac{1}{4} x_{c-1, k}+\frac{1}{4} x_{c, k-1} .
\]

\section*{Interpreting Proof: Finding the Recurrence}

What if we didn't see the 'simple' recurrence?
\[
x_{c, k}=\frac{1}{3} x_{c-1, k-1}+\frac{1}{3} x_{c-1, k}+\frac{1}{3} x_{c, k-1} .
\]

The following recurrence is 'natural':
\[
x_{c, k}=\frac{1}{4} x_{c, k}+\frac{1}{4} x_{c-1, k-1}+\frac{1}{4} x_{c-1, k}+\frac{1}{4} x_{c, k-1} .
\]

Obtain 'simple' recurrence by algebra: subtract \(\frac{1}{4} x_{c, k}\) :
\[
\begin{aligned}
\frac{3}{4} x_{c, k} & =\frac{1}{4} x_{C-1, k-1}+\frac{1}{4} x_{C-1, k}+\frac{1}{4} x_{c, k-1} \\
\text { therefore } x_{c, k} & =\frac{1}{3} x_{C-1, k-1}+\frac{1}{3} x_{c-1, k}+\frac{1}{3} x_{c, k-1}
\end{aligned}
\]

\section*{Solving the Recurrence}
\[
x_{c, k}=\frac{1}{3} x_{c-1, k-1}+\frac{1}{3} x_{c-1, k}+\frac{1}{3} x_{c, k-1} .
\]

\section*{Solving the Recurrence}
\[
x_{c, k}=\frac{1}{3} x_{C-1, k-1}+\frac{1}{3} x_{c-1, k}+\frac{1}{3} x_{c, k-1} .
\]
- \(x_{0,0}=1\).

\section*{Solving the Recurrence}
\[
x_{c, k}=\frac{1}{3} x_{c-1, k-1}+\frac{1}{3} x_{c-1, k}+\frac{1}{3} x_{c, k-1} .
\]
- \(x_{0,0}=1\).
- \(x_{1,0}=x_{0,1}=0\).
- \(x_{1,1}=\frac{1}{3} x_{0,0}+\frac{1}{3} x_{0,1}+\frac{1}{3} x_{1,0}=\frac{1}{3} \approx 33.3 \%\).

\section*{Solving the Recurrence}
\[
x_{c, k}=\frac{1}{3} x_{c-1, k-1}+\frac{1}{3} x_{c-1, k}+\frac{1}{3} x_{c, k-1} .
\]
- \(x_{0,0}=1\).
- \(x_{1,0}=x_{0,1}=0\).
- \(x_{1,1}=\frac{1}{3} x_{0,0}+\frac{1}{3} x_{0,1}+\frac{1}{3} x_{1,0}=\frac{1}{3} \approx 33.3 \%\).
- \(x_{2,0}=x_{0,2}=0\).
- \(x_{2,1}=\frac{1}{3} x_{1,0}+\frac{1}{3} x_{1,1}+\frac{1}{3} x_{2,0}=\frac{1}{9}=x_{1,2}\).
- \(x_{2,2}=\frac{1}{3} x_{1,1}+\frac{1}{3} x_{1,2}+\frac{1}{3} x_{2,1}=\frac{1}{9}+\frac{1}{27}+\frac{1}{27}=\frac{5}{27} \approx 18.5 \%\).

\section*{Try Simpler Cases!!!}

Try and find an easier problem and build intuition.

\section*{Try Simpler Cases!!!}

Try and find an easier problem and build intuition.
Walking from ( 0,0 ) to \((k, k\) ) with allowable steps ( 1,0 ), \((0,1)\) and \((1,1)\), hit ( \(k, k\) ) before hit top or right sides.

\section*{Try Simpler Cases!!!}

Try and find an easier problem and build intuition.
Walking from ( 0,0 ) to ( \(k, k\) ) with allowable steps ( 1,0 ), ( 0,1 ) and \((1,1)\), hit ( \(k, k\) ) before hit top or right sides.

Generalization of the Catalan problem. There don't have (1,1) and stay on or below the main diagonal.

\section*{Try Simpler Cases!!!}

Try and find an easier problem and build intuition.
Walking from ( 0,0 ) to ( \(k, k\) ) with allowable steps ( 1,0 ), ( 0,1 ) and \((1,1)\), hit ( \(k, k\) ) before hit top or right sides.

Generalization of the Catalan problem. There don't have (1,1) and stay on or below the main diagonal.


Interpretation: Catalan numbers are valid placings of (and).

\section*{Aside: Fun Riddle Related to Catalan Numbers}

Young Saul, a budding mathematician and printer, is making himself a fake ID. He needs it to say he's 21 . The problem is he's not using a computer, but rather he has some symbols he's bought from the store, and that's it. He has one 1, one 5, one 6, one 7, and an unlimited supply of + - \(^{*} /\) (the operations addition, subtraction, multiplication and division). Using each number exactly once (but you can use any number of + , any number of,\(- \ldots\) ) how, oh how, can he get 21 from 1,5, 6,7? Note: you can't do things like \(15+6=21\). You have to use the four operations as 'binary' operations: \(\left((1+5)^{*} 6\right)+7\). Problem submitted by ohadbp@infolink.net.il, phrasing by yours truly.

Solution involves valid sentences: \(((w+x)+y)+z, w+((x+y)+z), \ldots\).
For more riddles see my riddles page:
http://mathriddles.williams.edu/.

\section*{Examining Probabilities of a Tie}

When \(k=1, \operatorname{Prob}(\) tie \()=1 / 3\).
When \(k=2, \operatorname{Prob}(t i e)=5 / 27\).
When \(k=3, \operatorname{Prob}(\) tie \()=11 / 81\).
When \(k=4, \operatorname{Prob}(\) tie \()=245 / 2187\).
When \(k=5\), \(\operatorname{Prob}(\) tie \()=1921 / 19683\).
When \(k=6, \operatorname{Prob}(\) tie \()=575 / 6561\).
When \(k=7, \operatorname{Prob}(t i e)=42635 / 531441\).
When \(k=8, \operatorname{Prob}(\) tie \()=355975 / 4782969\).

\section*{Examining Ties: Multiply by \(3^{2 k-1}\) to clear denominators.}

When \(k=1\), get 1 .
When \(k=2\), get 5 .
When \(k=3\), get 33 .
When \(k=4\), get 245 .
When \(k=5\), get 1921 .
When \(k=6\), get 15525 .
When \(k=7\), get 127905 .
When \(k=8\), get 1067925 .

\section*{OESS}

Get sequence of integers: \(1,5,33,245,1921,15525, \ldots\).

\section*{OESS}

Get sequence of integers: \(1,5,33,245,1921,15525, \ldots\).
OEIS: http://oeis.org/.

\section*{OEIS}

Get sequence of integers: \(1,5,33,245,1921,15525, \ldots\).
OEIS: http://oeis.org/.
Our sequence: http://oeis.org/A084771.
The web exists! Use it to build conjectures, suggest proofs....

\section*{OEIS (continued)}
```

A084771 Coefficients of 1/sqrt(1-10*x+9**}\mp@subsup{x}{}{\wedge}2);\mathrm{ ;also, a(n) is the central coefficient of (1+5** x+4**^2)^n.
1, 5, 33, 245, 1921, 15525, 127905, 1067925, 9004545, 76499525, 653808673, 5614995765,
48416454529, 418895174885, 3634723102113, 31616937184725, 275621102802945,
2407331941640325, 21061836725455905, 184550106298084725 (list; graph; refs; listen; history; text; internal
format)
OFFSET 0,2
COMMENTS Also number of paths from (0,0) to (}\textrm{n},0)\mathrm{ using steps }\textrm{U}=(1,1),\textrm{H}=(1,0)\mathrm{ and
D=(1,-1), the U steps come in four colors and the H steps come in five
colors. - N-E. Fahssi, Mar 30 2008
Number of lattice paths from (0,0) to (}n,n)\mathrm{ using steps (1,0), (0,1), and
three kinds of steps (1,1). [Joerg Arndt, Jul 01 2011]
Sums of squares of coefficients of (1+2*x)^n. [Joerg Arndt, Jul 06 2011]
The Hankel transform of this sequence gives A103488 . - Philippe DELEHAM,
Dec 02 2007
REFERENCES
LINKS
FORMILA
Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan
Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012,
\#12.4.8.- From N. J. A. Sloane, Oct 08 2012
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the
Hankel Iransform, Journal of Integer Sequences, Vol. 9 (2006), Article
06.1.1.
Table of n, a(n) for }n=0..19
Tony D. Noe, On the Divisibilitv of Generalized Central Irinomial
Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article
06.2.7.
G.f.: 1/sqrt(1-10*x+9*x^2).
Binomial transform of {059304. G.f.: Sum_{k>=0} binomial (2*k, k)*
(2*x)^k/(1-x)^(k+1). E.g.f.: exp (5*x)*BesselI (0, 4*x). - Vladeta Jovovic
(vladeta(AT) eunet.rs), Aug 20 2003
a(n) = sum(k=0···n, sum(j=0..n-k,C(n,j)*C(n-j,k)*C(2*n-2*j,n-j))). - Paul
Barry, May 19 2006
a(n) = sum(k=0..n, 4^k* (C (n,k))^2) [From heruneedollar
(heruneedollar(AT) gmail.com), Mar 20 2010]
Asymptotic: a(n) ~ 3^(2*n+1)/(2*sqrt (2*Pi*n)). [Vaclav Kotesovec, Sep 11
20121
Conjecture: n*a(n) +5* (-2*n+1)*a(n-1) +9* (n-1)*a(n-2)=0. - R. J. Mathar,

```

\section*{Takeaways}

\section*{Lessons}
\(\diamond\) Always ask questions.
\(\diamond\) Many ways to solve a problem.
\(\diamond\) Experience is useful and a great guide.
\(\diamond\) Need to look at the data the right way.
\(\diamond\) Often don't know where the math will take you.
\(\diamond\) Value of continuing education: more math is better.
\(\diamond\) Connections: My favorite quote: If all you have is a hammer, pretty soon every problem looks like a nail.

\section*{Generating Functions}

\section*{Generating Function (Example: Binet's Formula)}

\section*{Binet's Formula}
\[
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
\]
- Recurrence relation: \(\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}\)
- Generating function: \(g(x)=\sum_{n>0} F_{n} x^{n}\).
\[
\begin{aligned}
(1) & \Rightarrow \sum_{n \geq 2} \boldsymbol{F}_{n+1} x^{n+1}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 2} \boldsymbol{F}_{n-1} x^{n+1} \\
& \Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 1} \boldsymbol{F}_{n} x^{n+2} \\
& \Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=x \sum_{n \geq 2} \boldsymbol{F}_{n} x^{n}+x^{2} \sum_{n \geq 1} \boldsymbol{F}_{n} x^{n} \\
& \Rightarrow g(x)-\boldsymbol{F}_{1} x-\boldsymbol{F}_{2} x^{2}=x\left(g(x)-\boldsymbol{F}_{1} x\right)+x^{2} g(x) \\
& \Rightarrow g(x)=x /\left(1-x-x^{2}\right) .
\end{aligned}
\]

\section*{Partial Fraction Expansion (Example: Binet's Formula)}
- Generating function: \(g(x)=\sum_{n>0} F_{n} x^{n}=\frac{x}{1-x-x^{2}}\).
- Partial fraction expansion:
\[
\Rightarrow g(x)=\frac{x}{1-x-x^{2}}=\frac{1}{\sqrt{5}}\left(\frac{\frac{1+\sqrt{5}}{2} x}{1-\frac{1+\sqrt{5}}{2} x}-\frac{\frac{-1+\sqrt{5}}{2} x}{1-\frac{-1+\sqrt{5}}{2} x}\right) .
\]

Coefficient of \(x^{n}\) (power series expansion):
\[
\boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] \text { - Binet's Formula! }
\]
(using geometric series: \(\frac{1}{1-r}=1+r+r^{2}+r^{3}+\cdots\) ).```

