
MATH/STAT 341: PROBABILITY: SPRING 2015
COMMENTS ON HW PROBLEMS

STEVEN J. MILLER (SJM1@WILLIAMS.EDU): MATH/STAT 341, SPRING 2015

ABSTRACT. A key part of any math course is doing the homework. This ranges from reading the material in the book so that you
can do the problems to thinking about the problem statement,how you might go about solving it, and why some approaches work and
others don’t. Another important part, which is often forgotten, is how the problem fits into math. Is this a cookbook problem with made
up numbers and functions to test whether or not you’ve mastered the basic material, or does it have important applications throughout
math and industry? Below I’ll try and provide some comments to place the problems and their solutions in context.

Date: April 27, 2015.
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1. HW #2: DUE FEBRUARY 13, 2013

1.1. Assignment. First assignment:

#1: Section 1.2: Modify the basketball game so that there are2013 players, numbered 1, 2, ..., 2013. Playeri always gets a
basket with probability1/2i. What is the probability the first player wins?

#2: Section 1.2: Is the answer for Example 1.2.1 consistent with what you would expect in the limit asc tends to minus
infinity? (Note there is a typo in the book.)

#3: Section 1.2: Compute the first 42 terms of 1/998999 and comment on what you find; you may use a computer (but
Mathematica or some program like that is probably better!).

#4: Section 2.2.1: Find setsA andB such that|A| = |B|, A is a subset of the real line andB is a subset of the plane (i.e.,
R

2) but is not a subset of any line.
#5: Section 2.2.1: Write at most a paragraph on the continuumhypothesis.
#6: Section 2.2.2: Give an example of an open set, a closed set, and a set that is neither open nor closed (you may not use

the examples in the book); say a few words justifying your answer.
#7: Section 2.3: Give another proof that the probability of the empty set is zero.
#8: Find the probability of rolling exactlyk sixes when we roll five fair die for k = 0, 1, ..., 5. Compare the work needed

here to the complement approach in the book.
#9: If f andg are differentiable functions, prove the derivative off(x)g(x) is f ′(x)g(x) = f(x)g′(x). Emphasize where

you add zero.

1.2. Solutions. First assignment:

#1: Section 1.2: Modify the basketball game so that there are2013 players, numbered 1, 2, ..., 2013. Playeri always gets a
basket with probability1/2i. What is the probability the first player wins?
Solution: There is a very elegant way of solving this. We only care aboutthe probability of the first person winning. Thus, we
may group persons 2 through 2013 as a team. The probability the first person makes a basket is 1/2, and the probability the
first person misses is 1 - 1/2 = 1/2. What about the second person? The probability they miss is1 − 1/22, and in general the
probability thekth person misses is1− 1/2k. Thus the probability thateveryonemisses their first shot is

∏2013
k=1 (1− 1/2k); if

we call that productr we findr ≈ 0.288788.
We now argue as in the book. Ifx is the probability the first person wins, thenx = 1

2 + rx (if everyone misses their
first shot, then the first player has the ball and it’s like the game has just begun; by definition the probability they win in this
configuration is justx). Solving we findx = 1/2

1−r ≈ .703025.
When solving a problem, it’s always good to check and see if the answer is reasonable. Our answer is between 1/2 and 1.

Clearly the first person can’t have a greater than 100% chanceof winning; further, the odds must be at least 50%, as player 1
shoots first and hits half their shots. Thus our answer passesthe smell test and is reasonable.

A major theme of the class is to write simple code to see if youranswer is reasonable. Here is an uncommented Mathematica
code. Try to figure out the logic (hopefully the comments help!).

hoops[num_] := Module[{},
win = 0; (* keeps track of wins *)
For[n = 1, n <= num, n++, (* loops from game 1 to game num *)
{ (* starts the n loop *)

basket = 0; (* set basket to 0, stop game when someone gets one *)
While[basket == 0, (* do stuff below while no basket made *)
{ (* start the basket loop, keep shooting till someone gets it *)
For[k = 1, k <= 2013, k++, (* goes through all 2013 people *)
{
x = Random[]; (* chooses a random number uniformly in [0,1]*)
If[x <= 1/2^k, basket = 1]; (*player k shoots, if x < 1/2^k basket!*)
If[basket == 1 && k == 1, win = win + 1]; (*if basket and k=1, 1st player wins*)
If[basket == 1, k = 2222]; (* no matter what, if basket made stop game *)
}]; (* end k *)
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}]; (* end of while *)

}]; (* end n *)

Print["We played ", num, " games."]; (*says how many games played)
Print["Percent player one won: ", 1.0 win/num]; (*says percentage player 1 won*)
];

(* end module *)

Typing Timing[hoops[100000]] (which plays the game 100,000 times and records how long it takes to run), we observe the
first player winning with probability0.70203 (it took 5.64 minutes to run), which supports our predictionof .703025.

#2: Section 1.2: Is the answer for Example 1.2.1 consistent with what you would expect in the limit asc tends to minus
infinity? (Note there is a typo in the book.)
Solution: Yes. The claimed answer is

∫ π

0

ecx cosxdx = −ceπc + c

c2 + 1
.

As c → −∞ the integral tends to zero because the cosine factor is bounded but the exponential function rapidly approaches
zero. The right hand side looks like−c/(c2 + 1) for c large and negative, which also tends to zero.

#3: Section 1.2: Compute the first 42 terms of 1/998999 and comment on what you find; you may use a computer (but
Mathematica or some program like that is probably better!).
Solution: TypeSetAccuracy[1/998999, 50] in Mathematica or online at WolframAlpha (go to
http://www.wolframalpha.com/). This yields

.000001001002003005008013021034055089144233377610 . . . .

Notice the Fibonacci numbers! This is not a coincidence; we’ll see why this is true when we get to generating functions.
For more on this seeAn Unanticipated Decimal Expansionby Allen Schwenk in Math Horizons (September 2012), available
online (you may need to move forward a few pages) at
http://digitaleditions.walsworthprintgroup.com/publication/?i=123630&p=3.

#4: Section 2.2.1: Find setsA andB such that|A| = |B|, A is a subset of the real line andB is a subset of the plane (i.e.,
R

2) but is not a subset of any line.
Solution: There are many solutions. An easy one is to letB = {(a, a2) : a ∈ A} for any setA with at least 3 points (ifA had
just two points then we would get a line).

#5: Section 2.2.1: Write at most a paragraph on the continuumhypothesis.
Solution: The continuum hypothesis concerns whether or not there can be a set of cardinality strictly larger than that of the
integers and strictly smaller than that of the reals. As the reals are essentially the powerset of the integers, the question is
whether or not there is a set of size strictly betweenN andP(N). Work of Kurt Gödel and Paul Cohen proved the contin-
uum hypothesis is independent of the other standard axioms of set theory. Seehttp://en.wikipedia.org/wiki/
Continuum_hypothesis.

It’s interesting to think about whether or not itshouldbe true. For example, ifA is a finite set withn elements, then|A| = n
but |P(A)| = 2n. Note that|A| < |P(A)|; in fact, asn increases there aremanysets of size strictly betweenA andP(A).
Should something similar hold for|N| and|P(N)|? NoteN is the smallest infinity, whileP(N) has the same cardinality as the
real numbers (to see this, consider binary expansions of numbers in[0, 1], and this is essentially the same asP(N), as taking
integerk corresponds to having a 1 in the2−k digit of a base 2 expansion). This is a nice example where the infinite case may
have a very different behavior than the finite case – can you find another such example?

http://www.wolframalpha.com/
http://digitaleditions.walsworthprintgroup.com/publication/?i=123630&p=3
http://en.wikipedia.org/wiki/Continuum_hypothesis
http://en.wikipedia.org/wiki/Continuum_hypothesis
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#6: Section 2.2.2: Give an example of an open set, a closed set, and a set that is neither open nor closed (you may not use
the examples in the book); say a few words justifying your answer.
Solution: An open set in the plane would be{(x, y) : 0 < x < 1}; this is a vertical strip. Given any point(x0, y0) in the set,
the ball of radiusr = 1

2 min(x0, 1 − x0) is entirely contained in the strip. The set becomes closed ifwe include both vertical
lines, and is neither open nor closed if we include only one ofthe vertical lines.

#7: Section 2.3: Give another proof that the probability of the empty set is zero.
Solution: As ∅ ∪ ∅ = ∅, we have

Prob(∅) = Prob(∅ ∪ ∅) = Prob(∅) + Prob(∅) = 2Prob(∅).
HenceProb(∅) = 0.

#8: Find the probability of rolling exactlyk sixes when we roll five fair die for k = 0, 1, ..., 5. Compare the work needed
here to the complement approach in the book.
Solution: Somek are straightforward: ifk = 0 then the answer is(5/6)5 as we must get a non-six each time. Similarly if
k = 5 the answer is(1/6)5 as we need to get a six each time.

This leaves us withk = 1, 2 and 3. There are only five ‘ways’ to roll five die and get exactlyone six; letting∗ denote a roll
that isn’t a six, the possibilities are6 ∗ ∗ ∗ ∗, ∗6 ∗ ∗∗, ∗ ∗ 6 ∗ ∗, ∗ ∗ ∗6∗, and∗ ∗ ∗ ∗ 6. Each of these events has probability
(1/6)1(5/6)4 (there is a one in six chance of rolling a six, which must happen for one of the five rolls, and there is a five
out of six chance of rolling a non-six and that must happen four times). Thus the probability of rolling exactly one 6 is just
5 · (1/6)(5/6)4 = 3125/7776. Similarly the probability of exactly four 6s is5 · (1/6)4(5/6) = 25/7776.

What aboutk = 2? There are now 10 ways to roll exactly two 6s. It’s important to enumerate them in a good way so we
don’t miss anything. We start with all the ways where thefirst six rolled is from the first die. After we exhaust all those, we
then turn to all the ways where thefirst six rolled is from the second die, and so on. Again letting∗ denote a non-6, we find

• 66 ∗ ∗∗, 6 ∗ 6 ∗ ∗, 6 ∗ ∗6∗, 6 ∗ ∗ ∗ 6,
• ∗66 ∗ ∗, ∗6 ∗ 6∗, ∗6 ∗ ∗6,
• ∗ ∗ 66∗, ∗ ∗ 6 ∗ 6,
• ∗ ∗ ∗66.

Each of these occurs with probability(1/6)2(5/6)3, and thus the total probability is10 · (1/6)2(5/6)3 = 625/3888.
We are left withk = 3. One way to do this would be to exhaustively list the possibilities again. This isa lot more painful,

though, as we now have three 6s to move around. Fortunately, there’s an easier way! There’s a wonderful duality between
k = 2 andk = 3 when we have five rolls. Notice that there is a one-to-one correspondence between rolling exactly two 6s in
five rolls and rolling exactly three 6s in five rolls! To see this, take a set of five rolls that has exactly two 6s; change the non-6s
to 6s and the 6s to non-6s! Thus, to enumerate our possibilities, we just have to take our list fromk = 2 and change each 6 to
a non-6 and each non-6 to a 6! This gives

• ∗ ∗ 666, ∗6 ∗ 66, ∗66 ∗ 6, ∗666∗,
• 6 ∗ ∗66, 6 ∗ 6 ∗ 6, 6 ∗ 66∗,
• 66 ∗ ∗6, 66 ∗ 6∗,
• 666 ∗ ∗.

Each of these possibilities happens with probability(1/6)3(5/6)2; as there are 10 of these the total probability of rolling
exactly three 6s is10 · (1/6)3(5/6)2 = 125/3888.

If we sum our five probabilities we get
(

5

6

)5

+ 5 ·
(

1

6

)(

5

6

)4

+ 10 ·
(

1

6

)2 (
5

6

)3

+ 10 ·
(

1

6

)3 (
5

6

)2

+ 5 ·
(

1

6

)4 (
5

6

)

+

(

1

6

)5

,

which does sum to 1!
If you know binomial coefficients, you can do this problem much faster; it’s fine to have done it this way. The probability

of getting exactlyk of the five choices to be 6 is just
(

5
k

)

(1/6)k(5/6)5−k if k ∈ {0, . . . , 5}.
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#9: If f andg are differentiable functions, prove the derivative off(x)g(x) is f ′(x)g(x) = f(x)g′(x). Emphasize where
you add zero.
Solution: Let f andg be differentiable functions, and setA(x) = f(x)g(x). It’s not unreasonable to hope that there’s a
nice formula for the derivative ofA in terms off, f ′, g andg′. A great way to guess this relationship is to take some special
examples. If we tryf(x) = x3 andg(x) = x4, thenA(x) = x7 soA′(x) = 7x6. At the same time,f ′(x) = 3x2 and
g′(x) = 4x3. There’s only two ways to combinef(x), f ′(x), g(x) andg′(x) and getx6: f ′(x)g(x) andf(x)g′(x). (Okay,
there are more ways if we allow divisions; there’s only two ways if we restrict ourselves to addition and multiplication.)
Interestingly, if we add these together we get3x2 · x4 + x3 · 4x3 = 7x6, which is justA′(x). This suggeststhatA′(x) =
f ′(x)g(x)+f(x)g′(x). If we try more and more examples, we’ll see this formula keeps working. While this is strong evidence,
it’s not a proof; however, itwill suggest the key step in our proof.

From the definition of the derivative and substitution,

A(x) = lim
h→0

A(x+ h)−A(x)

h
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h
. (1.1)

From our investigations above, we think the answer should bef ′(x)g(x) + f(x)g′(x). We can begin to see anf ′(x) and a
g′(x) lurking above. Imagine the last term weref(x)g(x+h) instead off(x)g(x). If this were the case, the limit would equal
f ′(x)g(x) (we pull out theg(x+h), which tends tog(x), and what’s left is the definition off ′(x)). Similarly, if the first piece
were insteadf(x)g(x+ h), then we’d getf(x)g′(x). What we see is that our expression istrying to look like the right things,
but we’re missing pieces. This can be remedied by adding zero, in the formf(x)g(x+h)− f(x)g(x+ h). Let’s see what this
does. In the algebra below we use the limit of a sum is the sum ofthe limits and the limit of a product is the product of the
limits; we can use these results as all these limits exist. Wefind

A′(x) = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)− f(x)

h
g(x+ h) + lim

h→0
f(x)

g(x+ h)− g(x)

h

= lim
h→0

f(x+ h)− f(x)

h
lim
h→0

g(x+ h) + lim
h→0

f(x) lim
h→0

g(x+ h)− g(x)

h
= f ′(x)g(x) + f(x)g′(x).

2

The above proof has a lot of nice features. First off, it’s theproof of a result you should know (at least if you’ve taken a
calculus class). Second, we were able to guess the form of theanswer by exploring some special cases. Finally, the proof
was a natural outgrowth of these cases. We saw terms likef ′(x)g(x) andf(x)g′(x) appearing, and thus asked ourselves:
So, what can we do to bring out these terms from what we have?This led to adding zero in a clever way. It’s fine to add
zero, as it doesn’t change the value. The advantage is we ended up with a new expression where we could now do some great
simplifications.

No written homework due next Friday due to no class! Instead use the time to build up your strategic reserve in the
book. We will not cover most of Chapter 3 in class – read the material and if there are calculations you are having
trouble with or want to see in class, let me know and I’ll do. Start reading Chapter Four. Monday’s class will be a
quick run of the Chapter Three material. For Wednesday and Monday the following week we will talk about some
applications of probability to mathematical modeling. There will not be reading assigned for this; the purpose of this
is to (1) quickly show you how useful probability can be, and (2) give you a sense of the tools and techniques we’ll see
later in the semester, and (3) give you plenty of time to read ahead and build up your strategic reserve (if you don’t take
advantage of this you will have some painful weeks down the road!). Classes on Wed and the following Mon will be in
the Auditorium in Lawrence 231.

Also use this time to make sure you can do simple, basic coding. I don’t care what language you use (Mathematica,
R, Python, Fortran, ...), but you should be comfortable doing simple assignments. I’ll post a list of basic problems
you should be able to do. If you want to learn Mathematica, I have a template online and a YouTube tutorial. Just
go tohttp://web.williams.edu/Mathematics/sjmiller/public_html/math/handouts/latex.htm
(note you’ll also get links to using LaTeX).

http://web.williams.edu/Mathematics/sjmiller/public_html/math/handouts/latex.htm


6 STEVEN J. MILLER (SJM1@WILLIAMS.EDU): MATH/STAT 341, SPRING 2015

1.3. Assignment: HW #3: Due Friday, February 27, 2015.#1: Imagine we have a deck withs suits andN cards in each
suit. We play the gameAces Up, except now we put downs cards on each turn. What is the probability that the finals cards
are all in different suits? Write a computer program to simulate 1,000,000 deals and compare your observed probability with
your theoretical prediction; it is fine to just do the programfor s=4 and N=13 (a standard hand); you may earn 15 out of 10
points if you write general code for generals,N . #2: Consider all generalized games ofAces Upwith C cards ins suits
with N cards in a suit; thusC = sN . What values ofs andN give us the greatest chance of all the cards being in different
suits? Of being in the same suit? #3: The double factorial is defined as the product of every other integer down to 1 or 2;
thus6!! = 6 · 4 · 2 while 7!! = 7 · 5 · 3 · 1. One can write(2n − 1)!! asa!/(bcd!) wherea, b, c andd depend onn; find this
elegant formula!Hint: b turns out to be a constant, taking the same value for alln. #4: A regular straight is five cards (not
necessarily in the same suit) of five consecutive numbers; aces may be high or low, but we arenot allowed to wrap around. A
kangaroo straight differs in that the cards now differ by 2 (for example, 4 6 8 10 Q). What is the probability someone is dealt
a kangaroo straight in a hand of five cards? #5: A prisoner is given an interesting chance for parole. He’s blindfolded and told
to choose one of two bags; once he does, he is to reach in and pull out a marble. Each bag has 25 red and 25 blue marbles, and
the marbles all feel the same. If he pulls out a red marble he isset free; if it’s a black, his parole is denied. What is his chance
of winning parole? #6: The set-up is similar to the previous problem, except now the prisoner is free to distribute the marbles
among the two bags however he wishes, so long as all the marbles are distributed. He’s blindfolded again, chooses a bag at
random again, and then a marble. What is the best probabilityhe can do for being set free? While you can get some points for
writing down the correct answer, to receive full credit you mustproveyour answer is optimal!
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2. HW #3: DUE FRIDAY, FEBRUARY 27, 2015

2.1. Assignment (followed by solutions):#1: Imagine we have a deck withs suits andN cards in each suit. We play the
gameAces Up, except now we put downs cards on each turn. What is the probability that the finals cards are all in different
suits? Write a computer program to simulate 1,000,000 dealsand compare your observed probability with your theoretical
prediction; it is fine to just do the program for s=4 and N=13 (astandard hand); you may earn 15 out of 10 points if you write
general code for generals,N . #2: Consider all generalized games ofAces Upwith C cards ins suits withN cards in a suit;
thusC = sN . What values ofs andN give us the greatest chance of all the cards being in different suits? Of being in the
same suit? #3: The double factorial is defined as the product of every other integer down to 1 or 2; thus6!! = 6 · 4 · 2 while
7!! = 7 · 5 · 3 · 1. One can write(2n − 1)!! asa!/(bcd!) wherea, b, c andd depend onn; find this elegant formula!Hint: b
turns out to be a constant, taking the same value for alln. #4: A regular straight is five cards (not necessarily in the same suit)
of five consecutive numbers; aces may be high or low, but we arenot allowed to wrap around. A kangaroo straight differs in
that the cards now differ by 2 (for example, 4 6 8 10 Q). What is the probability someone is dealt a kangaroo straight in a hand
of five cards? #5: A prisoner is given an interesting chance for parole. He’s blindfolded and told to choose one of two bags;
once he does, he is to reach in and pull out a marble. Each bag has 25 red and 25 blue marbles, and the marbles all feel the
same. If he pulls out a red marble he is set free; if it’s a black, his parole is denied. What is his chance of winning parole?
#6: The set-up is similar to the previous problem, except nowthe prisoner is free to distribute the marbles among the two bags
however he wishes, so long as all the marbles are distributed. He’s blindfolded again, chooses a bag at random again, and then
a marble. What is the best probability he can do for being set free? While you can get some points for writing down the correct
answer, to receive full credit you mustproveyour answer is optimal!

#1: Imagine we have a deck withs suits andN cards in each suit. We play the gameAces Up, except now we put downs
cards on each turn. What is the probability that the finals cards are all in different suits? What is the probability that the finals
cards are all in different suits? Write a computer program tosimulate 1,000,000 deals and compare your observed probability
with your theoretical prediction; it is fine to just do the program for s=4 and N=13 (a standard hand); you may earn 15 out of
10 points if you write general code for generals,N .
Solution: There aresN cards and there are

(

sN
s

)

ways to chooses of them with order not mattering. How many ways are
there to choose one card from each suit? It’s

(

N
1

)(

N
1

)

· · ·
(

N
1

)

a total ofs times, orNs. Thus the answer isNs/
(

sN
s

)

=
Nss!(sN − s)!/(sN)!.

acesup[n_, S_, numdo_, option_] := Module[{},
(* n, S variables *)
(* n is number of cards in a suit;
can’t use C or N as variable in Mathematica *)
(* S is the number of suits *)
(* for this problem only care about suits of cards,
not numbers *)
(* if option = 1 do first coding approach,
if option = 2 do second *)
(* only care about the suit of the cards; creates a dec
of S suits with n cards in each suit *)
deck = {};
For[i = 1, i <= n, i++,
For[s = 1, s <= S, s++, deck = AppendTo[deck, s]]];

(* this counts how often the last s cards are all
different suits *)
lastsalldiffsuit = 0;
For[count = 1, count <= numdo, count++,
{
(* randomly chooses S cards from deck and sorts *)
(* we’ve seen it’s convenient to sort for comparing *)
temp = Sort[RandomSample[deck, S]];
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(* this is the first way to check and see if all different *)
(* we use unique factorization, a nice math concept! *)
(* if the numbers are all different we have each suit exactly
once, and thus the numbers are 1, 2, ..., S in that order.
By unique factorization the two sums are equal only when
each number from 1 to S occurs exactly once. If that happens
increase counter by 1. *)
If[option == 1,
If[Sum[10^temp[[s]], {s, 1, S}] == Sum[10^s, {s, 1, S}],
lastsalldiffsuit = lastsalldiffsuit + 1]];

(* Here is the second way to code. If option isn’t 1 do this.
As we’ve sorted we have S entries. The only way to have
all different suits is if our suits are 1, 2, ..., S in
that order, so just check and see! We set alldiffcheck
to 1; if the S suits are the S different values it stays
at 1, else it becomes zero. *)
If[option != 1,
{
alldiffcheck = 1;
For[s = 1, s <= S, s++,
If[temp[[s]] != s, alldiffcheck = 0]];

lastsalldiffsuit = lastsalldiffsuit + alldiffcheck;
}];

}]; (* end of count loop *)
(* Prints the numerical approximation *)
Print["Percent of time last S same suit is ",
100.0 lastsalldiffsuit / numdo];

(* Prints the theoretical prediction *)
Print["Theoretical prediction is ",
100.0 Product[(n S - j n)/(n S - j), {j, 0, S - 1}]];

];

For example, running with four suits, 13 cards in a suit, and doing 1,000,000 simulations gave us an observed probability
of 10.5343%, very close to the theoretical prediction of 10.5498%.

#2: Consider all generalized games ofAces Upwith C cards ins suits withN cards in a suit; thusC = sN . What values
of s andN give us the greatest chance of all the cards being in different suits? Of being in the same suit?
Solution: If s = 1 then all the cards are in the same suit; ifN = 1 then all the cards are in different suits.

#3: The double factorial is defined as the product of every other integer down to 1 or 2; thus6!! = 6·4·2 while7!! = 7·5·3·1.
One can write(2n − 1)!! asa!/(bcd!) wherea, b, c andd depend onn; find this elegant formula!Hint: b turns out to be a
constant, taking the same value for alln.
Solution: We have

(2n− 1)!! = (2n− 1)(2n− 3) · · · 3 · 1

= (2n− 1)(2n− 3) · · · 3 · 1 · 2n · (2n− 2) · · · 4 · 2
2n · (2n− 2) · · · 4 · 2

=
(2n)!

2n · (2n− 2) · · · 4 · 2 =
(2n)!

2nn!
;
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thusa = 2n, b = 2, c = n andd = n. It’s natural to multiply by the even numbers; we have a product over all odd numbers,
which isn’t a factorial because we’re missing the even numbers. The final bit is then noticing that in the denominator we have
all even numbers, and by pulling out a 2 from each we have a nicefactorial. Why is this problem useful? We’ll see later in the
semester how to approximate factorials (Stirling’s formula), which then immediately yields estimates on the double factorial
(which we’ll also see has combinatorial significance).

#4: A regular straight is five cards (not necessarily in the same suit) of five consecutive numbers; aces may be high or low,
but we arenot allowed to wrap around. A kangaroo straight differs in that the cards now differ by 2 (for example, 4 6 8 10 Q).
What is the probability someone is dealt a kangaroo straightin a hand of five cards?
Solution: The possibilities are A 3 5 7 9, 2 4 6 8 10, 3 5 7 9 J, 4 6 8 10 Q, 5 7 9 J K,6 8 10 Q A. There are thus six possibilities.
All we need to do is figure out the probability of one of these six and then multiply by six. For each fixed kangaroo straight,
we have four choices for each card, for a total of45 Kangaroo straights of a given pattern. Thus the total numberof Kangaroo
straights is6 ·45 = 6144. As the number of ways to choose five cards from 52 (with order not mattering) is

(

52
5

)

= 2, 598, 960,
we see the probability of a Kangaroos straight is128/54145 ≈ 0.00236402.

#5: A prisoner is given an interesting chance for parole. He’s blindfolded and told to choose one of two bags; once he does,
he is to reach in and pull out a marble. Each bag has 25 red and 25blue marbles, and the marbles all feel the same. If he pulls
out a red marble he is set free; if it’s a black, his parole is denied. What is his chance of winning parole?
Solution: His chance is 50%. Probably the easiest way to see this is thatthere is complete symmetry here between red and
blue marbles, and thus he has an equal chance of choosing either. Note there are 100 marbles in all (50 red and 50 blue).

#6: The set-up is similar to the previous problem, except nowthe prisoner is free to distribute the marbles among the two
bags however he wishes, so long as all the marbles are distributed. He’s blindfolded again, chooses a bag at random again,and
then a marble. What is the best probability he can do for beingset free? While you can get some points for writing down the
correct answer, to receive full credit you mustproveyour answer is optimal!
Solution: Let’s assume he placesr red marbles andb blue marbles in the first bag; thus the second bag has50− r red marbles
and50 − b blue marbles. If he picks the first bag, he earns parole with probability r

r+b , while if he picks the second bag he
earns parole with probability with 50−r

100−r−b . As each bag has probability 1/2 of being chosen, his probability of getting parole
is

1

2

r

r + b
+

1

2

50− r

100− r − b
=

b(25− r) + r(75 − r)

(100− b− r)(b + r)
.

It’s always worthwhile checking extreme cases. Ifr = b then the two jars are balanced, and we have a 50% chance. Can
we break 50%? What if we put all the reds in one and all the bluesin another? That gives us 50% as well. How about 15 red
and 35 blue in one jar? That also gives 50%.

You might be thinking that, no matter what we do, we always get50%. We’ve unfortunately made averycommon mistake
– we’re not freely investigating all possibilities. Note that each of these cases has the same number of marbles in each jar.
What if we try something else, say 20 red and 10 blue in one jar?That gives 23/42, or a tad over 54.7%. This is promising.
What if we keep the 20 red and decrease to 5 blue? Doing so yields 3/5 or 60%. It now becomes natural to keep sending the
number of blues in the first jar to zero. If we have 20 red in the first jar and no blue, we get 11/16 or 68.75%. Of course, it’s
wasteful to have 20 red in the first jar; if there are only reds then if we pick that jar wemustget a red. Thissuggestswe want
to have 1 red in the first jar and all the remaining marbles in the second. If we do this we get a red with probability 74/99, or
almost 75%.

Now that we have a conjectured answer, the question is how do we proveit? Assume we start withr red andb blue in the
first jar. If we transfer some blues to the second jar we increase the chance of getting a red in the first jar but decrease the
chance in the second, and we need to argue that we gain more than we lose. There are a lot of ways to try to do the algebra.
One is to quantify that this movement always helps us, and then once we have no blues in the first jar we transfer the remaining
reds.

Here is another approach. We break all the possibilities into cases depending on thesumof r andb. Thus, let’s look at all
pairs(r, b) such thatr + b = c. We might as well assumec ≤ 50 asoneof the jars must have at most 50 marbles. This gives
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us the function

gc(r) =
c(25− r) + 50r

c(100− c)
,

whose derivative (with respect tor) is

g′c(r) =
50− c

c(100− c)
.

As c is positive and at most 50, we see the derivative with respectto r is positive unlessc = 50 (in which case the derivative
is zero, which corresponds to our earlier result that the probability is independent ofr andb when each jar has 50 marbles).
We thus see that for a giventotal number of marbles in jar 1, the best we can do is to have all the marbles in jar 1 be red. This
means we only need to explore assignments where jar 1 is all red; however, now our earlier analysis is applicable. If jar 1 only
has red marbles, once we have one red marble the others are useless there, and are better used in jar 2 (moving those extra red
marbles over doesn’t change the probability of a red in jar 1,but does increase it in jar 2). Thus, the optimal solution is jar 1
consisting of just one red marble.

We give some Mathematica code to investigate the problem.
f[r1_, b1_, r2_, b2_] := (1/2) (r1 / (r1 + b1)) + (1/2) (r2 / (r2 + b2));
marblejar[red_, blue_] := Module[{},

maxprob = 0;
maxred = 0;
maxblue = 0;
For[r1 = 1, r1 <= red, r1++, (*
without loss of generality one jar has a red *)
For[b1 = 0, b1 <= blue, b1++,
If[r1 + b1 >= 1 && (red - r1) + (blue - b1) >= 1, (*
this is to make sure each jar is nonempty *)
{
x = f[r1, b1, red - r1, blue - b1];
If[x > maxprob,
{
maxprob = x;
maxred = r1;
maxblue = b1;
}]; (* end of x > maxprob *)

}]; (* end of if loop *)
]; (* end of b1 loop *)
]; (* end of r1 loop *)

Print["Max prob is ", maxprob, " or ", 100. maxprob, "%, and have ", maxred,
" red and ", maxblue,
" blue in first jar."];

]; (* end of module *)

To test how fast this is, type

Timing[marblejar[1000, 1000]]

Of course, this is not necessarily the fastest code. The problem is we investigate some pairs multiple times (if the distribution
of (red,blue) for the two jars are (10,40) and (40,10), that’s the same as (40,10) and (10,40). We instead loop on the totalnumber
of marbles in the first jar, and we may assume without loss of generality that the first jar has at most half the total number of
marbles (by the Pidgeon-hole principle, at least one jar hasat most half the marbles). This leads to faster code, which for 1000
red and 1000 blue runs in a little less than half the time.
f[r1_, b1_, r2_, b2_] := (1/2) (r1 / (r1 + b1)) + (1/2) (r2 / (r2 + b2));
fastmarblejar[red_, blue_] := Module[{},

maxprob = 0;
maxred = 0;
maxblue = 0;
For[num = 1, num <= (red + blue)/2, num++, (*
without loss of generality one jar has a red *)
For[r1 = 0, r1 <= num, r1++,
{
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b1 = num - r1;
x = f[r1, b1, red - r1, blue - b1];
If[x > maxprob,
{
maxprob = x;
maxred = r1;
maxblue = b1;
}]; (* end of x > maxprob *)

}]; (* end of r1 loop *)
]; (* end of num loop *)

Print["Max prob is ", maxprob, " or ", 100. maxprob, "%, and have ", maxred,
" red and ", maxblue,
" blue in first jar."];

]; (* end of module *)

To test how fast this is, type

Timing[marblejar[1000, 1000]]

It is possible to solve this entirely elementarily; i.e., nocalculus! The best we can do can’t be better than 75%. To see
this, imagine one jar has probabilityp > 1/2 of red; then there must be more blacks in the other jar than red, and it must
have a probabilityq < 1/2. The best possible case is whenp = 1 andq = 1/2 (it’s NOT clear that we can do this!), which
gives(p + q)/2 = 3/4 as our chance of winning. So we know we can’t do better than 75%. How close can we come? The
closerq is to 1/2, the better. We knowq has to be less than 1/2; the closest it can be is if wejust miss, which happens when
have 49 red and 50 blue. Why? In this case we get 49/99, so we miss 1/2 by1/198; note any other fractionr/(r + b) misses
1/2 by more (as the best case is whenr = b − 1, in which case we miss 1/2 by1/(4b − 2). Thus the best we can do is
(1 + 49/99)/2 = 74/99 ≈ 0.747475%.

Assignment: HW #4: Due Friday, March 6: Note Mathematical Induction might be useful for some of these problems. #1:
Let {An}∞n=1 be a countable sequence of events such that for eachn, Prob(An) = 1. Prove the probability of the intersection
of all theAn’s is 1. #2: Prove the number of ways to match2n people inton pairs of 2 is(2n− 1)!! (recall the double factorial
is the product of every other integer, continuing down to 2 or1). #3: Assume0 < Prob(X),Prob(Y ) < 1 andX andY
are independent. AreXc andY c independent? (NoteXc is notX , orΩ \X). Prove your answer. #4: Using the Method of
Inclusion-Exclusion, count how many hands of 5 cards have atleast one ace. You need to determine what the eventsAi should
be. Do not find the answer by using the Law of Total Probabilityand complements (though you should use this to check your
answer). #5: We are going to divide 15 identical cookies among four people. How many ways are there to divide the cookies
if all that matters is how many cookies a person receives? Redo this problem but now only consider divisions of the cookies
where personi gets at leasti cookies (thus person 1 must get at least one cookie, and so on). #6: Redo the previous problem
(15 identical cookies and 4 people), but with the following constraints: each person gets at most 10 cookies (it’s thus possible
some people get no cookies). #7: Find a discrete random variable, or prove none exists, with probability density function fX
such thatfX(x) = 2 for somex between 17 and 17.01. #8: Find a continuous random variable,or prove none exists, with
probability density functionfX such thatfX(x) = 2 for all x between 17 and 17.01. #9: LetX be a continuous random
variable with pdffX satisfyingfX(x) = fX(−x). What can you deduce aboutFX , the cdf? #10: Find if you can, or say why
you cannot, the first five Taylor coefficients of (a)log(1− u) atu = 0; (b) log(1− u2) atu = 0; (c) x sin(1/x) atx = 0. #11:
LetX be a continuous random variable. (a) ProveFX is a non-decreasing function; this meansFX(x) ≤ FX(y) if x < y. (b)
Let U be a random variable with cdfFU (x) = 0 if u < 0, FU (x) = x if 0 < x < 1, andFU (x) = 1 if 1 < x. LetF be any
continuous function such thatF is strictly increasing and the limit asx approaches negative infinity ofF (x) is 0 and the limit
asx approaches positive infinity is 1. ProveY = F−1(U) is a random variable with cdfF .
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3. HW #4: DUE FRIDAY, MARCH 6, 2015

3.1. Assignment: HW #4: Due Friday, March 6: Note Mathematical Induction might be useful for some of these problems.
#1: Let {An}∞n=1 be a countable sequence of events such that for eachn, Prob(An) = 1. Prove the probability of the
intersection of all theAn’s is 1. #2: Prove the number of ways to match2n people inton pairs of 2 is(2n − 1)!! (recall the
double factorial is the product of every other integer, continuing down to 2 or 1). #3: Assume0 < Prob(X),Prob(Y ) < 1
andX andY are independent. AreXc andY c independent? (NoteXc is notX , orΩ \X). Prove your answer. #4: Using the
Method of Inclusion -Exclusion, count how many hands of 5 cards have at least one ace. You need to determine what the events
Ai should be. Do not find the answer by using the Law of Total Probability and complements (though you should use this to
check your answer). #5: We are going to divide 15 identical cookies among four people. How many ways are there to divide
the cookies if all that matters is how many cookies a person receives? Redo this problem but now only consider divisions of
the cookies where personi gets at leasti cookies (thus person 1 must get at least one cookie, and so on). #6: Redo the previous
problem (15 identical cookies and 4 people), but with the following constraints: each person gets at most 10 cookies (it’s thus
possible some people get no cookies). #7: Find a discrete random variable, or prove none exists, with probability density
functionfX such thatfX(x) = 2 for somex between 17 and 17.01. #8: Find a continuous random variable,or prove none
exists, with probability density functionfX such thatfX(x) = 2 for all x between 17 and 17.01. #9: LetX be a continuous
random variable with pdffX satisfyingfX(x) = fX(−x). What can you deduce aboutFX , the cdf? #10: Find if you can, or
say why you cannot, the first five Taylor coefficients of (a)log(1 − u) atu = 0; (b) log(1 − u2) at u = 0; (c) x sin(1/x) at
x = 0. #11: LetX be a continuous random variable. (a) ProveFX is a non-decreasing function; this meansFX(x) ≤ FX(y)
if x < y. (b) LetU be a random variable with cdfFU (x) = 0 if u < 0, FU (x) = x if 0 < x < 1, andFU (x) = 1 if 1 < x.
LetF be any continuous function such thatF is strictly increasing and the limit asx approaches negative infinity ofF (x) is 0
and the limit asx approaches positive infinity is 1. ProveY = F−1(U) is a random variable with cdfF .

3.2. Solutions:

#1: Let {An}∞n=1 be a countable sequence of events such that for eachn, Prob(An) = 1. Prove the probability of the
intersection of all theAn’s is 1.
Solution: If P(An) = 1 thenP(Ac

n) = 0. If we look at the intersection of the eventsAn, we see this is all elements ineach
An. In other words, it is the complement of the union of the eventsAc

n. Let’s prove this carefully.

Claim: ∩∞
n=1An = (∪∞

n=1A
c
n)

c. Proof: A standard way to establish set-theoretic identities such as this is to show every
element in the left hand side is in the right, and every element in the right hand side is in the left. This implies the two sets
have the same elements, and are therefore equal.

Imagine nowx ∈ ∩∞
n=1An. Thenx ∈ An for eachn, which meansx 6∈ Ac

n for eachn, which impliesx 6∈ ∪∞
n=1A

c
n, and

then taking complements yieldsx ∈ (∪∞
n=1A

c
n)

c.
For the other direction, imaginex ∈ (∪∞

n=1A
c
n)

c. Thenx 6∈ ∪∞
n=1A

c
n, which means that for eachn we havex 6∈ Ac

n. This
immediately impliesx ∈ An for all n, and hencex ∈ ∩∞

n=1An as desired. 2

The reason we did this is we have results relating the probability of a union to the sum of the probabilities. It’s thus natural
to try and recast the problem in terms of unions.

Returning to the proof, we haveP(Ac
n) = 0. Imagine we could prove that the probability of the union of theAc

n’s is 0; i.e.,
P(∪∞

n=1A
c
n) = 0. Then the complement of this union is 1, but from our analysisabove the complement is∩∞

n=1An. In other
words, if we proveP(∪∞

n=1A
c
n) = 0 then we deduceP(∩∞

n=1An) = 1, which is our goal.
We’re thus left with provingP(∪∞

n=1A
c
n) = 0. If the eventsAc

n were disjoint we would be done, as the probability of a
countable union of disjoint events is the sum of the probabilities, and each probability is 0. Unfortunately the events{Ac

n}
need not be disjoint, so some care is needed. When we look atAc

1 ∪ Ac
2, what matters is what is inAc

2 that is not inAc
1, as

anything inAc
1 is already included. We can write the union of these two events asAc

1 ∪ (Ac
2 ∩ A1). This is a disjoint union,

and sinceAc
2 ∩A1 ⊂ Ac

2, it still has probability zero sinceAc
2 has probability zero. What we’re doing is we’re throwing away

anything inAc
2 that’s inA2.

To help highlight what’s going on, letB1 = Ac
1, B2 = Ac

2 ∩ Bc
1 (the items inAc

2 not in B1 = Ac
1). We then let

B3 = Ac
3 ∩ (Ac

1 ∪ Ac
2), the new items that are inAc

3 but not inAc
1 orAc

2. AsB3 ⊂ Ac
3 andP(Ac

3) = 0, we findP(B3) = 0.
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We continue in this manner, settingBn = Ac
n ∩ (Ac

1 ∪ · · · ∪Ac
n−1), andP(Bn) = 0. TheBn’s are now a disjoint union of

events of probability zero, and thusP(∪∞
n=1Bn) =

∑∞
n=1 P(Bn) = 0. This completes the proof, as∪∞

n=1Bn = ∪∞
n=1A

c
n. 2

Actually, we don’t need all the arguments above. We can avoidintroducing theBn’s by usingP(∪∞
n=1A

c
n) ≤

∑∞
n=1 P(A

c
n).

As each summand on the right hand side is zero, the double counting is harmless and we again find this union has probability
zero.

Remark:What we really want to do is remark thatlimN→∞ P(∩N
n=1An) = P(limn→∞ ∩N

n=1An). In other words, we want
to interchange the limit and the probability. The argumentsabove are to help us make such a justification.Assumeyou knew
this fact from other sources. We present another proof that the probability of the intersection is 1. Notice the right hand side
is readily analyzed, asP(limn→∞ ∩N

n=1An) = P(∩∞
n=1An). For the left hand side, if we can show for each finiteN that

P(∩N
n=1An) = 1 then the limit is 1.

The simplest way to prove this is by induction. IfX andY happen with probability one, thenP(X ∩Y ) = P(X)+P(Y )−
P(X∪Y ). Note every probability on the right hand side equals 1 (no event can have probability greater than 1, andX ⊂ X∪Y
soP(A ∪ Y ) = 1). This impliesP(X ∩ Y ) = 1. We’ve thus shown if two events each have probability one then their union
has probability one. We now proceed by induction, settingX = ∪N−1

n=1 An andY = AN to getP(∩N
n=1An) = 1 for all N . So

for any finiteN we haveP(∩N
n=1An) = 1. We now take the limit asN → ∞, and we getlimN→∞ P(∩N

n=1An) = 1.
We could have argued slightly differently above. The key is provingP(X ∩ Y ) = 1; another approach is to use partitions,

and observeP(X) = P(X ∩ Y ) + P(X ∩ Y c). AsP(Y ) = 1, P(Y c) = 0 and thusP(X ∩ Y c) = 0 (asX ∩ Y c ⊂ Y c). Thus
P(X) = P(X ∩Y ), and asP(X) = 1 we finally deduceP(X ∩Y ) = 1. Note how important in this problem then = 2 case is
in the inductive proof. Frequently in induction proofs we just need to use the result withn to proven+ 1; however, a sizable
number of times the general proof basically just reduces to understanding then = 2 case.

#2: Prove the number of ways to match2n people inton pairs of 2 is(2n − 1)!! (recall the double factorial is the product of
every other integer, continuing down to 2 or 1).
Solution: As anyone can be matched with anyone, there are(2n− 1)!! ways to do this, where the double factorial means we
take the product of every other term (6!! = 6 · 4 · 2 and5!! = 5 · 3 · 1). One way to see this is to note this is just

(

2n

2

)(

2n− 2

2

)

· · ·
(

4

2

)(

2

2

)

· 1

n!
;

we divide byn! as we have attached labels to each pair of people, and there aren’t supposed to be labels. We now do some
algebra. Noting

(

2i
2

)

= 2i(2i−1)
2 , we get our product is

2n(2n− 1)

2

(2n− 2)(2n− 3)

2
· · · 2 · 1

2

1

n!

=
n(2n− 1) · (n− 1)(2n− 3) · · · 1(1)

n(n− 1) · · · 2 · 1
= (2n− 1)(2n− 3) · · · 1. (3.1)

We could also proceed by induction. The first person must be matched with someone; there are2n− 1 ways to do this. We
now pair off the remaining2n− 2 people, which by induction happens(2n− 3)!! ways, so there are(2n− 1) · (2n− 3)!! =
(2n− 1)!! ways. If you must be matched with someone from the opposite side, there are onlyn! ways.

#3: Assume0 < Prob(X),Prob(Y ) < 1 andX andY are independent. AreXc andY c independent? (NoteXc is notX , or
Ω \X). Prove your answer.
Solution: SinceX andY are independent, we haveP(X ∩ Y ) = P(X)P(Y ). We want to showP(Xc ∩ Y c) = P(Xc)P(Y c).
We haveP(Xc) = 1− P(X) andP(Y c) = 1− P(Y ), therefore

P(Xc)P(Y c) = (1− P(X))(1− P(Y ))

= 1− P(X)− P(Y ) + P(X)P(Y )

= 1− P(X)− P(Y ) + P(X ∩ Y ).

We need to work on the right hand side to make it look likeP(Xc ∩ Y c). Using

P(X ∪ Y ) = P(X) + P(Y )− P(X ∩ Y )
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(essentially the double counting formula), we recognize the right hand side as1− P(X ∪ Y ). We’re making progress, and we
now have

P(Xc)P(Y c) = 1− P(X ∪ Y ) = P ((X ∪ Y )c)

from the Law of Total Probability. Now we just need to observethat(X ∪ Y )c = Xc ∩ Y c. This is a basic fact in set theory,
and completes the proof. Thus,Xc andY c are independent.

Appendix to the problem:The proof that(X ∪Y )c = Xc ∩Y c involves a nice technique; you didn’t need to prove this, but
it’s good to see. We show that anyt in the set on the left hand side is in the set on the right hand side, and anys in the right
hand side is in the left hand side. Thus the two sets have the same elements, and must be equal.

Imaginet ∈ (X ∪ Y )c. This meanst is not in X ∪ Y , sot ∈ Xc andt ∈ Y c, hencet ∈ Xc ∩ Y c.
What if s ∈ Xc ∩ Y c? Thens ∈ Xc ands ∈ Y c (it must be in each if it is in the intersection), sos is not inX ∪ Y , which

meanss is in (X ∪ Y )c.

Note: Alternative proof:There is another way to do this problem, and it illustrates a nice technique. The philosopher David
Hume asked what happens if each day you replace a different board on a ship. Clearly it’s still the same point when you go
from dayn to dayn + 1, but at some point there are no longer any of the original boards left! What does that have to do
with this problem? We can move in stages. We start withX andY are independent. Step 1 is to show that ifA andB are
independent events then so too areA andBc. Why does this help? We then go from(X,Y ) independent to(X,Y c) are
independent, which of course is the same as(Y c, X) are independent. We now apply this observation again (so nowA = Y c

andB = X) and find(Y c, Xc) are independent! We thus “move” to the point we want in successive stages. You might
have seen this method before in a calculus class (it can occurin the multidimensional chain rule, trying to figure out where to
evaluate points).

#4: Using the Method of Inclusion-Exclusion, count how manyhands of 5 cards have at least one ace. You need to determine
what the eventsAi should be. Do not find the answer by using the Law of Total Probability and complements (though you
should use this to check your answer).
Solution: Let Ai be the event that the ace in suiti is in our hand (we’ll let spades be the first suit, hearts the second suit,
diamonds the third and clubs the fourth, though of course these labels don’t matter). The eventA1 ∪A2 ∪A3 ∪A4 is the event
that our hand has at least one ace. We give two “proofs” of thisresult.Read carefully below. Are they both right? If not, which
one is wrong? It is good to occasionally see wrong answers, asthese can highlight subtle issues.

Note that#Ai =
(

1
1

)(

48
4

)

for eachi (we have to have a specific ace, cannot have any other aces, andthen must choose 4
cards from the 48 non-aces).

Similarly, for all pairsi 6= j, we have#(Ai ∩ Aj) =
(

1
1

)(

1
1

)(

48
3

)

. Continuing along these lines we find for each triple

i < j < k we have#(Ai ∩Aj ∩ Ak) =
(

1
1

)3(48
2

)

and finally#(A1 ∩ A2 ∩ A3 ∩ A4) =
(

48
1

)

.
The Inclusion-Exclusion Formula is “nice” to use here, as all that matters is how many pairs (or triples or quadruples) of

indices we have, as all the options have the same count. IfNaces is the number of hands, we find

Naces =

4
∑

i=1

#Ai −
∑

1≤i<j≤4

#(Ai ∩ Aj) +
∑

1≤i<j<k≤4

#(Ai ∩ Aj ∩Ak)

−#(A1 ∩ A2 ∩ A3 ∩ A4).

The number of pairs with1 ≤ i < j ≤ 4 is the number of ways to choose two elements from four with order not mattering, or
(

4
2

)

= 6. Similarly the number of triples with1 ≤ i < j < k ≤ 4 is
(

4
3

)

= 4. We find

Naces = 4#A1 − 6#(A1 ∩ A2) + 4#(A1 ∩ A2 ∩ A3)−#(A1 ∩A2 ∩ A3 ∩ A4)

= 4

(

48

4

)

− 6

(

48

3

)

+ 4

(

48

2

)

−
(

48

1

)

= 679, 008.

Equivalently, as there are
(

52
5

)

= 2, 598, 960 possible hands, we see the probability of getting a hand withat least one ace is
679008
2598960 ≈ 26.1%.

Is this answer reasonable? The probability of getting one specific ace in five cards is
(

1
1

)(

48
4

)

/
(

52
5

)

≈ 7.5%; if we multiply
this by 4 we get about 30%. This is close to the correct answer.Further, it’s off in the right way – we expect to be over-
estimating, as multiplying by 4 leads to double (and triple and quadruple) counting.
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Let’s also check by using complements. The probability of getting no aces in a hand of five cards is just
(

48
5

)

/
(

52
5

)

. Thus 1
minus this, which is1 −

(

48
5

)

/
(

52
5

)

= 18472
54145 , is the probability of getting at least one ace. If we approximate the fraction, we

get about 34.1%.
Something must be wrong – we can’t have two different answers! While you should get in the habit of running computer

simulations to get a feel for the answer, it’s a very important skill to be able to do this when you have two different answers.
Let’s do a simulation and see if we can determine which answeris right. The code is

acetest[num_] := Module[{},
count = 0;
For[n = 1, n <= num, n++,
{
x =
RandomSample[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52}, 5];

isin = 0;
For[j = 1, j <= 4, j++,
If[MemberQ[x, j] == True, isin = 1];
];

If[isin > 0, count = count + 1];
}];

Print[100. count / num];
];

Simulating 100,000 times yielded about 34.077%, very closeto the second method. Thus, it’s quite likely we made a
mistake in the first method, but where?

The problem is that the eventAi is just getting a specific ace; it doesn’t mean we can’t getmore aces. Thus#Ai =
(

1
1

)(

51
4

)

instead of
(

1
1

)(

48
4

)

. We have to continue down the line and correct all the probabilities. We get

Naces = 4#A1 − 6#(A1 ∩ A2) + 4#(A1 ∩ A2 ∩ A3)−#(A1 ∩A2 ∩ A3 ∩ A4)

= 4

(

51

4

)

− 6

(

50

3

)

+ 4

(

49

2

)

−
(

48

1

)

=
18472

54145
≈ 34.1%,

exactly as before.
We also must revisit our calculation as to whether or not our answer is reasonable. The probability of getting one specificace

in five cards is
(

1
1

)(

51
4

)

/
(

52
5

)

≈ 9.6%; if we multiply this by 4 we get about 38%. This is close to thecorrect answer. Further,
it’s off in the right way – we expect to be over-estimating, asmultiplying by 4 leads to double (and triple and quadruple)
counting.

#5: We are going to divide 15 identical cookies among four people. How many ways are there to divide the cookies if all
that matters is how many cookies a person receives? Redo thisproblem but now only consider divisions of the cookies where
personi gets at leasti cookies (thus person 1 must get at least one cookie, and so on).
Solution: From the cookie problem, if there areC identical cookies andP people, the number of ways to divide is

(

C+P−1
P−1

)

;

thus the answer to the first part is
(

15+4−1
4−1

)

=
(

18
3

)

= 816. We have just solved the equationx1 + x2 + x3 + x4 = 816. We
now letxj = yj + j (to deal with the constraints), and findy1+y2+y3+y4+10 = 15, or equivalentlyy1+y2+y3+y4 = 5.
This is thus the same as looking at a cookie problem with 5 cookies and 4 people, so the answer is

(

5+4−1
4−1

)

=
(

8
3

)

= 56.

#6: Redo the previous problem (15 identical cookies and 4 people), but with the following constraints: each person gets at
most 10 cookies (it’s thus possible some people get no cookies).
Solution: We can use the Law of Total Probability (or of complementary events). We find out the number of ways without the
restriction (which is just

(

15+4−1
4−1

)

=
(

18
3

)

= 816), then subtract off the number of ways when the restriction is violated. The
key observation is that it’s impossible for two or more people to each get at least 11 cookies, as there are only 15 cookies.Thus
we just need to break into cases based on who gets the 11 cookies. We might as well assume the first person gets the eleven or
more cookies, and then multiply by 4 for the remaining cases.
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Thus, letx1 = 11 + y1 andxj = yj for j ≥ 3. The number of ways when the first person has at least 11 cookies is
11 + y1 + y2 + y3 + y4 = 15, or y1 + y2 + y3 + y4 = 4. This is the same as a cookie problem with 4 cookies and 4 people;
the solution to that is

(

4+4−1
4−1

)

=
(

7
3

)

= 35. Remembering to multiply by 4 (as there are four different people who could have
11 or more) we get 140.

Thus the number of ways to divide 15 identical cookies among 4distinct people such that each person gets at most 10
cookies is

(

18
3

)

− 4
(

7
3

)

= 816− 140 = 676.
As always, it’s good to write some simple code to check. The following is not the most efficient, but it runs very fast as the

numbers are small, and it’s easily coded.
count = 0;
For[x1 = 0, x1 <= 10, x1++,

For[x2 = 0, x2 <= 10, x2++,
For[x3 = 0, x3 <= 10, x3++,
If[15 - x1 - x2 - x3 >= 0 && 15 - x1 - x2 - x3 <= 10,
count = count + 1]

]]];
Print[count];

#7: Find a discrete random variable, or prove none exists, with probability density functionfX such thatfX(x) = 2 for
somex between 17 and 17.01.
Solution: There is no such discrete random variable. The probability of any event is at most 1, and this would assign a
probability of 2 to an event.

#8: Find a continuous random variable, or prove none exists,with probability density functionfX such thatfX(x) = 2 for
all x between 17 and 17.01.
Solution: While we cannot assign a probability greater than 1 to an event, for a continuous random variable it is possible for
the probability density function to exceed 1, as probabilities are found by integrating the pdf over intervals. Thus, solong as
the interval is short, we can havefX(x) = 2. The simplest example is a uniform distribution on the interval [17, 17.5]. If we
take

fX(x) =

{

2 if 17 ≤ x ≤ 17.5

0 otherwise

then
∫∞
−∞ fX(x)dx = 1, fX(x) ≥ 0 andfX(x) = 2 from 17 to 17.01.

#9: LetX be a continuous random variable with pdffX satisfyingfX(x) = fX(−x). What can you deduce aboutFX , the
cdf?
Solution: We must haveFX(0) = 1/2. The reason is the evenness of the pdf implies that half the probability is before 0, and
half after. To see this mathematically, note

1 =

∫ ∞

−∞
fX(x)dx =

∫ 0

−∞
fX(x)dx +

∫ ∞

0

fX(x)dx =

∫ 0

−∞
fX(−x)dx +

∫ ∞

0

fX(x)dx.

Let’s change variables in the first integral. Lettingt = −x we seedx = −dt and the integration runs fromt = ∞ to t = 0;
we can thus use the minus sign in−dt to have the integral range from 0 to infinity, and we find

1 =

∫ ∞

0

fX(t)dt+

∫ ∞

0

fX(x)dx = 2

∫ ∞

0

fX(x)dx;

thus half the probability is after zero (and similarly half the probability is before).

#10: Find if you can, or say why you cannot, the first five Taylorcoefficients of (a)log(1− u) atu = 0; (b) log(1− u2) at
u = 0; (c) x sin(1/x) atx = 0.
Solution: (a) Taking derivatives we find that iff(u) = log(1−u) thenf ′(u) = −(1−u)−1, f ′′(u) = −(−1)(1−u)−2(−1) =
−(1− u)−2, f ′′′(u) = −2(1− u)−3 andf ′′′′(u) = −3 · 2(1− u)−4. At u = 0 we findf(0) = 0, f ′(0) = −1, f ′′(0) = −1,
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f ′′′(0) = −2 andf ′′′′(0) = −6. Thus the fourth order Taylor series is

T4(u) = f(0) + f ′(0)u+
f ′′(0)

2!
u2 +

f ′′′(0)

3!
u3 +

f ′′′′(0)

4!
u4 = −u− u2

2
− u3

3
− u4

4
.

(b) There are lots of ways to do this problem, but my favorite is the ‘lazy’ way. If instead oflog(1− u) we hadlog(1 + u),
all that we need do is replaceu with −u above, and we get

log(1 + u) = u− u2

2
+

u3

3
− u4

4
+ · · · .

Why is this helpful? Note

log(1− u2) = log ((1− u)(1 + u)) = log(1− u) + log(1 + u).

Thus there’s no need to go through the Taylor series arguments again; we can simply combine our two expansions and we find

log(1− u2) = −u2 − u4

2
− · · · .

Of course, there’s another way we could have found this; we could take the Taylor series expansion forlog(1 − u) and
substituteu2 for u. The point is that if we spend some time thinking about our problem, we can often eliminate the need to do
a lot of tedious algebra; however, if you don’t see these simplifications you can still solve the problem, just with more work.
For example, if we letf(u) = log(1 − u2) thenf ′(u) = −2u/(1 − u2), and then the quotient rule and some algebra gives
f ′′(u) = −2(1 + u2)/(1− u2), f ′′′(u) = −4u(3 + u2)/(1− u2) and so on.

(c) This function isnot differentiable at the origin, though it is continuous at zero (asx → 0, x sin(1/x) → 0 as
| sin(1/x)| ≤ 1 and |x| → 0). The only way to make this function continuous at zero is to define it to be zero there; this
is reasonable asx sin(1/x) does go to zero as long asx → 0. To find the derivative off(x) = x sin(1/x) at the origin we use
the limit formula:

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

h sin(1/h)

h
= lim

h→0
sin(1/h);

however, this last limit does not exist and thus our functionis not differentiable. If it isn’t differentiable, it can’thave a Taylor
series expansion.

#11: LetX be a continuous random variable. (a) ProveFX is a non-decreasing function; this meansFX(x) ≤ FX(y) if
x < y. (b) LetU be a random variable with cdfFU (x) = 0 if u < 0, FU (x) = x if 0 < x < 1, andFU (x) = 1 if 1 < x. Let
F be any continuous function such thatF is strictly increasing and the limit asx approaches negative infinity ofF (x) is 0 and
the limit asx approaches positive infinity is 1. ProveY = F−1(U) is a random variable with cdfF .
Solution: (a) Assumex < y. ThenFX(y) = Prob(X ≤ y) whileFX(x) = Prob(X ≤ x). Therefore

FX(y)− FX(x) = Prob(x < X ≤ y) ≥ 0

(it is non-negative as it is a probability, and probabilities are non-negative). IfFX(y) − FX(x) ≥ 0 thenFX(y) ≥ FX(x),
which provesFX is a non-decreasing function.

(b) This is perhaps one of the most important problems in the entire course! AsF is continuous and strictly increasing, it
has a continuous inverseF−1. NoteP(Y ≤ y) = P(F−1(U) ≤ y); however,F−1(U) ≤ y meansU ≤ F (y). ThenP(Y ≤ y)
equalsP(U ≤ F (y)); asF (y) ∈ [0, 1], from the givens of the problemP(U ≤ F (y)) = F (y), which completes the proof.

Why is this problem so important? One way of interpreting theresult is to say that if we can simulate any random variable
that is uniformly distributed (or equidistributed) on[0, 1], then we can simulate any random variable whose cumulative dis-
tribution function is strictly increasing. Of course, how does one generate a random number uniformly? This is a very hard
question. See for instancehttp://www.random.org/.

Let’s do a bit more with this problem. Consider the Cauchy distribution, where the density isfY (y) = 1
π

1
1+y2 . The

cumulative distribution function is the integral offY from−∞ to y:

FY (y) =

∫ y

−∞

1

π

dt

1 + t2
=

arctan(y)− arctan(−∞)

π
=

arctan(y) + π/2

π
.

We needF−1
Y ; settingFY (y) = u we can solve fory in terms ofu:

u =
arctan(y) + π/2

π
⇒ y = tan(πu − π/2) = F−1

Y (u).
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FIGURE 1. Comparing methods to simulate Cauchy random variables. Left is using the inverse CDF
method, right is using Mathematica’s built in function.

We have our strictly increasing functionF−1
Y , and can now simulate from a Cauchy. This is amazing, as the Cauchy has infinite

variance!
Below is some Mathematica code to simulate from the Cauchy. We go through a few ways to display the data, as there are

issues in comparing a histogram of discrete data to continuous data drawn from a Cauchy.
Finv[u_] := Tan[Pi u - Pi/2];
temp = {};
prunedtemp = {};
truncatetemp = {};
num = 100000;
For[n = 1, n <= num, n++,

{
y = Finv[Random[]];
temp = AppendTo[temp, y];
If[Abs[y] <= 30,
{
prunedtemp = AppendTo[prunedtemp, y];
t = Floor[y - .5]/1 + .5;
truncatetemp = AppendTo[truncatetemp, t];
}];

};];
Print[Length[prunedtemp] 100. / Length[temp]];
Print[Histogram[temp, Automatic, "Probability"]];
Print[Histogram[prunedtemp, Automatic, "Probability"]];
Print[Histogram[truncatetemp, Automatic, "Probability"]];
Print[Plot[{.2, (1/Pi) 1/(1 + x^2)}, {x, -30, 30}]];

Of course, Mathematica has the ability to directly simulatefrom Cauchy distributions.
ctemp = {};
ptemp = {};
For[n = 1, n <= 100000, n++,

{
y = Random[CauchyDistribution[0, 1]];
ctemp = AppendTo[ctemp, y];
If[Abs[y] < 30, ptemp = AppendTo[ptemp, y]];
}];

Print[Histogram[ptemp, Automatic, "Probability"]]

We compare the two methods in Figure 1.

3.3. Assignment #5: Due March 20, 2015:#1: We tossn fair coins. Every coin that lands on heads is tossed again. What
is the probability density function for the number of heads after the second set of tosses (i.e., after we have retossed all the
coins that landed on heads)? If you want, imagine you have left the room and return after all the tossing is done; what is
the pdf for the number of heads you see? #2: Is there aC such thatf(x) = C exp(−x − exp(−x)) is a probability density
function? Here−∞ < x < ∞. #3: LetX be a discrete random variable. Prove or disprove:E[1/X ] = 1/E[X ]. #4: Let
X1, . . . , Xn be independent, identically distributed random variablesthat have zero probability of taking on a non-positive
value. ProveE[(X1 + · · · + Xm)/(X1 + · · · + Xn)] = m/n for 1 ≤ m ≤ n. Does this result seem surprising? Write a
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computer program to investigate when the random variables are drawn from a uniform distribution on[0, 1]. #5: LetX andY
be two continuous random variables with densitiesfX andfY . (a) For whatc is cfX(x) + (1 − c)fY (x) a density? (b) Can
there be a continuous random variable with pdf equal tofX(x)fY (x)? #6: The standard normal has density1√

2π
exp(−x2/2)

(this means this integrates to 1). Find the first four moments. #7: Find the errorS in the following code:

hoops[p_, q_, need_, num_] := Module[{},
birdwin = 0;
For[n = 1, n <= num,
{
If[Mod[n, num/10] == 0, Print["We have done ", 100. n/num, "%."]];
birdbasket = 0;
magicbasket = 0;
While[birdbasket < need || magicbasket < need,
{
If[Random[] <= p, birdbasket = birdbasket + 1];
If[Random[] <= q, magicbasket = magicbasket + 1];
}]; (* end of while loop *)

If[birdbasket == need, birdwin == birdwin + 1];
}]; (* end of for loop *)

Print["Bird wins ", 100. birdwin/num, "%."];
Print["Magic wins ", 100. - 100. birdwin/num, "%."];
];

hoops[.32, .33, 5, 100]
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4. HW #5: DUE MARCH 20, 2015

4.1. Assignment: #1: We tossn fair coins. Every coin that lands on heads is tossed again. What is the probability density
function for the number of heads after the second set of tosses (i.e., after we have retossed all the coins that landed on
heads)? If you want, imagine you have left the room and returnafter all the tossing is done; what is the pdf for the number
of heads you see? #2: Is there aC such thatf(x) = C exp(−x − exp(−x)) is a probability density function? Here
−∞ < x < ∞. #3: LetX be a discrete random variable. Prove or disprove:E[1/X ] = 1/E[X ]. #4: LetX1, . . . , Xn

be independent, identically distributed random variablesthat have zero probability of taking on a non-positive value. Prove
E[(X1 + · · ·+Xm)/(X1 + · · ·+Xn)] = m/n for 1 ≤ m ≤ n. Does this result seem surprising? Write a computer program
to investigate when the random variables are drawn from a uniform distribution on[0, 1]. #5: LetX andY be two continuous
random variables with densitiesfX andfY . (a) For whatc is cfX(x)+ (1− c)fY (x) a density? (b) Can there be a continuous
random variable with pdf equal tofX(x)fY (x)? #6: The standard normal has density1√

2π
exp(−x2/2) (this means this

integrates to 1). Find the first four moments. #7: Find the errorS in the following code:

hoops[p_, q_, need_, num_] := Module[{},
birdwin = 0;
For[n = 1, n <= num,
{
If[Mod[n, num/10] == 0, Print["We have done ", 100. n/num, "%."]];
birdbasket = 0;
magicbasket = 0;
While[birdbasket < need || magicbasket < need,
{
If[Random[] <= p, birdbasket = birdbasket + 1];
If[Random[] <= q, magicbasket = magicbasket + 1];
}]; (* end of while loop *)

If[birdbasket == need, birdwin == birdwin + 1];
}]; (* end of for loop *)

Print["Bird wins ", 100. birdwin/num, "%."];
Print["Magic wins ", 100. - 100. birdwin/num, "%."];
];

hoops[.32, .33, 5, 100]

4.2. Solutions:

#1: We tossn fair coins. Every coin that lands on heads is tossed again. What is the probability density function for the
number of heads after the second set of tosses (i.e., after wehave retossed all the coins that landed on heads)?
Solution: We solve this problem two ways. The first is the ‘natural’ approach. It has the advantage of being a reasonable
method to try, but leads to a very messy formula. It’s not thatmuch more work to solve when the coin isn’t fair, so let’s assume
there’s a probabilityp of heads and1 − p of tails. There’s another advantage to this. If the coin is fair, (1/2)m(1/2)n−m =
(1/2)n, and behavior is blended; if the coin is biased, we havepm(1 − p)m, and this might focus our thoughts on the process
a bit more.

Our first solution uses conditional probability. Let’s say we want to compute all the ways of havingm heads on the second
toss, with clearly0 ≤ m ≤ n. We can express this probability as

P(m heads at end) =

n
∑

k=m

P(m heads on second toss|k heads on first) · P(k heads on first toss).

Why? We must have tossed some number of heads on the first toss,which we denote byk. Clearlyk ≥ m as otherwise we
can’t havem heads on the second. The answer is thus

n
∑

k=m

(

k

m

)

pm(1 − p)k−m ·
(

n

k

)

pk(1− p)n−k.

It is worth asking what would happen if we forgot about the restriction thatm < n; for example, what ifn = 4 andm = 6?
We would have the binomial coefficient

(

4
6

)

– how is this defined? We might at first expect it to be4!6!(−2)! ; this works but
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you need to know that(−2)! is defined to be infinity! We’ll discuss this later when we talkabout the Gamma function, which
generalizes the factorial function. There is another way to‘see’ what the definition should be. We expect the answer to be
zero, as the combinatorial interpretation is:how many ways are there to choose 6 objects from 4 when order doesn’t matter?
Clearly there arenosuch ways, and thus the answer should be zero. Another way of defining

(

n
k

)

is

n(n− 1) · · · (n− (k − 1))

k(k − 1) · · · 1 .

In our case, we would have
(

4

6

)

=
4 · 3 · 2 · 1 · 0 · (−1)

6 · 5 · 4 · 3 · 2 · 1 = 0

as we have a 0 in the numerator.
Remember, in mathematics we can make almost any definition wewant – the question is when our definition is useful.

The above is a great way to define the choose function when the bottom exceeds the top, and agrees with our combinatorial
intuition.

Let’s see if we can simplify the sum a bit. We have

P(m heads at end) =

n
∑

k=m

(

k

m

)

pm(1− p)k−m ·
(

n

k

)

pk(1 − p)n−k

=
n
∑

k=m

k!

m!(k −m)!

n!

k!(n− k)!
pm(1− p)n−mpk

= pm(1− p)n−m
n
∑

k=m

n!

m!(k −m)!(n− k)!
pk

= pm(1− p)n−m
n
∑

k=m

n!

m!(n−m)!

(n−m)!

(k −m)!(n− k)!
pk,

where in the last step we multiplied by 1 in the form1 = (n−m)!/(n−m)!. Why would we do this? When looking at the ratio
of the factorials we notice ann!/m!; this isalmost

(

n
m

)

. It would be, except it’s missing an(n−m)! in the denominator. Thus,
we must multiply by(n −m)!/(n −m)! so we can recognize the binomial coefficient. Notice that at the end of the day we
want exactlym heads out ofn coins, and thus we should be thinking of an

(

n
m

)

somewhere. Further, the factorpm(1− p)n−m

outside is right in line with such an interpretation.
We now continue simplifying the algebra. We change summation variables and letℓ = k−m (sok = m+ ℓ). Sincek runs

fromm to n we haveℓ runs from0 to n−m, andpk becomespℓ+m. We find

P(m heads at end) =

(

n

m

)

pm(1− p)n−m
n−m
∑

ℓ=0

(n−m)!

ℓ!(n−m− ℓ)!
pm+ℓ

=

(

n

m

)

pm(1− p)n−mpm
n−m
∑

ℓ=0

(

n−m

ℓ

)

pℓ1n−m−ℓ

=

(

n

m

)

pm(1− p)n−mpm(1 + p)n−m,

where we wrote1n−m to highlight the application of the binomial theorem. Note1−p and1+p are both to then−m power;
combining them gives(1 − p2)n−m, and we obtain our final simplification:

P(m heads at end) =

(

n

m

)

(p2)m(1− p2)n−m.

Notice that this is the density of a binomial random variablewith probabilityp2 of success and thus1 − p2 of failure. As
this is such a beautiful answer with such a nice interpretation, it is highly suggestive that there is amuch better approach to
this problemthen the algebraic nightmare we did above!

We now give an alternate solution. While the problem says we only re-flip the coins that landed heads initially, we can
re-flip all if we want, but only count as a ‘heads’ coins that are heads on both tosses. A much better way to look at this problem
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is to think what must happen for a coin to end up heads after twotosses. The only way this can occur is if the first and second
tosses are heads, which (since the coin lands on heads with probabilityp) happens with probabilityp · p = p2. Our situation
turns out to be equivalent to the following:Toss a biased coin (with probabilityp2 of landing on heads) a total ofn times;
what is the probability mass function?The answer is just

P(m heads) =

(

n

m

)

(

p2
)m (

1− p2
)n−m

=

(

n

m

)

p2m(1− p2)n−m.

The above analysis illustrates one of the most common ways toprove combinatorial identities. Namely, we calculate a
given quantity two different ways. As both count the same object, they must be equal. Typically one is easily computed, and
thus the other, harder combinatorial expression must equalthe easier one. For example, in our case above the second approach
was fairly easy to compute. If we takep = 1/2 and set the first and second solutions equal to each other, we find

n
∑

k=m

(

k

m

)(

n

k

)(

1

2

)n+k

=

(

n

m

)

3n−m

22n
.

We can verify this identity for any choices ofm ≤ n; however, is there a way of proving this directly (and not relying on us
being clever and noticing this counting problem was equivalent to another)?

#2: Is there aC such thatf(x) = C exp(−x− exp(−x)) is a probability density function? Here−∞ < x < ∞.
Solution: Our proposed density is again non-negative, so the questionis just whether or not it will integrate to 1 for some
choice ofC. We have

∫ ∞

−∞
C exp(−x− exp(−x))dx = C

∫ ∞

−∞
exp(−x) exp(− exp(−x))dx.

We do au substitution. Let
u = exp(− exp(−x))

so
du = exp(−x) exp(− exp(−x))dx,

andx : −∞ → ∞ becomesu : 0 → 1. Thus our integral is

C

∫ 1

0

du = 1.

There are other change of variables we could make, but this isthe simplest. The integral is thus equal to 1 ifC = 1.

#3: LetX be a discrete random variable. Prove or disprove:E[1/X ] = 1/E[X ].
Solution: UsuallyE[1/X ] is not 1/E[X ]. Almost anything is a counter-example. A trivial one is to take X = ±1 with
probability 1/2 for each. Another example is to takeX = 2 or 4 with probability 1/2 for each, as

E[1/X ] =
1

2
· 1
2
+

1

4
· 1
2

=
3

8
,

while
1

E[X ]
=

1

2 · 1
2 + 4 · 1

2

=
1

3
.

It is possible for them to be equal – this is always the case ifX = x with probability 1 for some non-zerox. Assume we have
X = xi with probabilitypi for i ∈ {1, 2} and we want these two to be equal. Asp2 = 1− p1, lettingp = p1 that then requires

p

x1
+

1− p

x2
=

1

x1p+ x2(1− p)

or
x1(1− p) + px2

x1x2
=

1

x1p+ x2(1− p)
,

which simplifies to
(x1(1− p) + px2) (x1p+ x2(1− p))− x1x2 = 0.
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Are there any non-trivial solutions to this? We have three unknowns and only one equation, so this should be solvable. Of
course, we do have restrictions:0 < p < 1 andx1 6= x2. (We takep 6= 0, 1 as otherwise this reduces to the trivial solution.)

By symmetry, so long asx1 6= 0 we can takex1 = 1 (this is just multiplying both sides byx1). This reduces our equation
to

−x2 + (p+ (1− p)x2)(1 − p+ px2) = 0;

unfortunately this equation has a double root at 1 and thus there are no non-zero solutions where the probability is concentrated
on two distinct masses.

#4: LetX1, . . . , Xn be independent, identically distributed random variablesthat have zero probability of taking on a non-
positive value. ProveE[(X1 + · · ·+Xm)/(X1 + · · ·+Xn)] = m/n for 1 ≤ m ≤ n. Does this result seem surprising? Write
a computer program to investigate when the random variablesare drawn from a uniform distribution on[0, 1].
Solution: This is one of my favorite problems. At first the answer seems too good to be true, as it is independent of the
distribution of theXi’s! All that matters is that they are identically distributed and that the sum is non-zero (so the division
makes sense). LetX have the same distribution as theXi’s. The key technique here is to multiply by 1. We start with

E

[

1

1

]

= 1;

this trivial observation is the key to the proof. We now write1/1 in a clever way, and uselinearity of expectation:

1 = E

[

X1 + · · ·+Xn

X1 + · · ·+Xn

]

= E

[

n
∑

k=1

Xk

X1 + · · ·+Xn

]

=

n
∑

k=1

E

[

Xk

X1 + · · ·+Xn

]

= nE

[

X

X1 + · · ·+Xn

]

,

and so

E

[

X

X1 + · · ·+Xn

]

= E

[

Xk

X1 + · · ·+Xn

]

=
1

n
.

The key step above is that as theXk’s are identically distributed, the expected value of any one of them over the sum is the
same as that of any other over the sum. We now calculate the quantity of interest:

E

[

X1 + · · ·+Xm

X1 + · · ·+Xn

]

=

m
∑

k=1

E

[

Xk

X1 + · · ·+Xn

]

=
m

n
.

Note an alternative way to view our solution is to do the casem = n first; this is a natural choice, as then the fraction is just 1.
Here is some code.

ratiotest[m_, n_, numiter_, listwork_] := Module[{},
(* m and n parameters from problem *)
(* numiter is number of times do it *)
(* if listwork = 1 we save each run and do a histogram at end *)
(* initialize list and sum of ratios to 0 *)
list = {};
sumratio = 0;
(* loop numiter times *)
For[i = 1, i <= numiter, i++,
{
(* print out every ten percent *)
If[Mod[i, numiter/10] == 0,
Print["Have done ", 100. i/numiter, "%."]];

(* calculates the numerator and denominator, sums of unif rvs *)
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numerator = Sum[Random[], {k, 1, m}];
denominator =
numerator + If[m == n, 0, Sum[Random[], {j, 1, n - m}]];

(* calculates the ratio, updates sum of ratios *)
ratio = numerator 1.0 / denominator;
sumratio = sumratio + ratio;
(* if listwork is 1 saves to list *)
If[listwork == 1, list = AppendTo[list, ratio]];
}]; (* end of i loop *)

(* calculates average ratio, prints results *)
averatio = sumratio / numiter;
Print["Average ratio for m = ", m, " and n = ", n, " is ",
1.00 averatio];

Print["Compare to m/n = ", m/n, " = ", 1.0 m/n];
If[listwork == 1,
{
Print[Histogram[list, Automatic, "Probability"]];
}];

]

#5: LetX andY be two continuous random variables with densitiesfX andfY . (a) For whatc is cfX(x) + (1− c)fY (x)
a density? (b) Can there be a random variable with pdf equal tofX(x)fY (x)?
Solution: (a) It is definitely a density whenc ∈ [0, 1], as then the function is non-negative and integrates to 1:

∫ ∞

−∞
[cfX(x) + (1 − c)fY (x)] dx = c

∫ ∞

−∞
fX(x)dx + (1− c)

∫ ∞

−∞
fY (x)dx = c+ (1− c) = 1.

It’s possible for it to work for allc (it does if fX = fY ). If, however,c 6∈ [0, 1] then it is always possible to find a pair of
densities such thatcfX(x) + (1− c)fY (x) is not a density. To see this, just take

fX(x) =

{

1 if 0 ≤ x ≤ 1

0 otherwise

fY (x) =

{

1 if 2 ≤ x ≤ 3

0 otherwise.

Note that ifc 6∈ [0, 1] then this density is negative for somex. For example, ifc < 0 then thecfX(x) term is negative for
0 ≤ x ≤ 1, while if c > 1 the second factor is negative for2 ≤ x ≤ 3. Thus, while it is possible to be a density for certain
choices offX andfY , the only choices ofc such that it isalwaysa density are0 ≤ c ≤ 1.

(b) It’s not always the case thatfX(x)fY (x) is a density. A nice example isf is the uniform density on[0, 1] andg the
uniform density on[2, 3]. Then

fX(x) =

{

1 if 0 ≤ x ≤ 1

0 otherwise

and

fY (x) =

{

1 if 2 ≤ x ≤ 3

0 otherwise.

Thenf(x)g(x) = 0 for all x. It’s often a good idea to play around searching for counterexamples, or seeing what makes
examples succeed. Just becausef andg are non-negative and integrate to 1, nothing implies the same must be true for their
product.

Of course, the problem only asks whether or not therecanbe a random variable with pdf equal to the productfX(x)fY (x),
not whether or not the productmustbe a density. There are examples where this is a density. The simplest isfX(x) = fY (x)
for 0 ≤ x ≤ 1 and 0 otherwise; note in this casefX(x)fY (x) = 1.
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A more interesting example is

fX(x) =

{

2 if 0 ≤ x ≤ 1/2

0 otherwise
fY (x) =

{

2 if 1/4 ≤ x ≤ 3/4

0 otherwise.

Note

fX(x)fY (x) =

{

4 if 1/4 ≤ x ≤ 1/2

0 otherwise,

which is a density function (it is non-negative and integrates to 1). The continuous case is very different from the discrete case.
In the discrete case, the only way we can have a solution is if all the mass of each is concentrated at one point. The reason is
the probabilities are multiplied andmustdecrease as the probabilities are at most 1; in the continuous case, the density can be
greater than 1 at a point or in short intervals. This is one of the reasons for the earlier problem on whether or not densities can
exceed 1 at a point.

#6: The standard normal has density1√
2π

exp(−x2/2) (this means this integrates to 1). Find the first four moments.
Solution: We need to compute

∫ ∞

−∞
xk · 1√

2π
e−x2/2dx

for k ∈ {1, 2, 3, 4}. There are several ways to proceed. First, notice that sincethe integrand is odd whenk is odd and the
region is symmetric about the symmetry point, the integral vanishes fork = 1 or 3, while for the even values it’s just double
the integral from 0 to∞.

One way to finish the problem is to useu-substitution. Given

1√
2π

∫ ∞

−∞
x2ℓe−x2/2dx

(for k = 2ℓ) we see if we letu = x2 thendu = 2xdx and the integral equals

2√
2π

∫ ∞

−∞
xℓ−1e−u/22du.

There’s no problem ifℓ = 1. IF ℓ = 2 we integrate by parts. Doing the algebra we find the second moment is 1 and the fourth
moment is 3. The algebra isn’t too bad because we already did theu-substitution by replacingx2 with u; this lead to terms
like e−u/2 instead ofe−x2/2. This is very important, as there is no closed form for an anti-derivative ofe−x2/2. We discuss
this issue a bit in some of the integration exercises in the book.

Now that we haveonesolution, let’s look for another. We define

I(k) :=

∫ ∞

−∞
xk 1√

2π
e−x2/2dx =

1√
2π

∫ ∞

−∞
xke−x2/2.

While we could do theu-substitution, let’s see what happens if we don’t. We try to integrate by parts. This is a good thing to
try. The reason is that our integrand israpidly decaying asx → ±∞, so we won’t have to worry about boundary terms. We
have to decide what to makeu and what to makedv. We want the polynomial to go down in degree, so it’s natural to think
of settingu = xk, but this doesn’t work. The issues is thendv = e−x2/2dx, and we can’t integrate that. We needxdx notx
(really,−xdx). So, we pull off one factor ofx from xk, and write

I(k) =
1√
2π

∫ ∞

−∞
xk−1 · e−x2/2xdx.

We now set
u = xk−1, dv = e−x2/2xdx

and find
du = (k − 1)xk−2, v = −e−x2/2.

Using
∫ ∞

−∞
udv = uv

∣

∣

∣

∞

−∞
−
∫ ∞

−∞
vdu,
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we obtain

I(k) =
1√
2π

[

−xk−1e−x2/2
∣

∣

∣

∞

−∞
+

∫ ∞

−∞
(k − 1)xk−2e−x2/2dx

]

= (k − 1)I(k − 2)

(note the boundary terms vanish as the exponential decay dwarfs the polynomial growth). We’ve discovered a recurrence
relation:

I(k) = (k − 1)I(k − 2).

We can keep iterating this. Each time we decrease the index by2. We know thatI(1) = 0 (as the integrand is odd) and
I(0) = 1 (as it is a probability density function, it integrates to 1). ThusI(k) = 0 if k is odd, while ifk = 2ℓ then

I(2ℓ) = (2ℓ− 1)I(2ℓ− 2) = (2ℓ− 1)(2ℓ− 3)I(2ℓ− 4) = (2ℓ− 1)(2ℓ− 3)(2ℓ− 5)I(2ℓ− 6) = · · · .
We continue until we hitI(0) = 1. Recalling the definition of the double factorial ((2m)!! = (2m−1)(2m−3)(2m−5) · · ·3 ·
1), we seeI(2ℓ) = (2ℓ− 1)!!; in particular,I(2) = 1!! = 1, I(4) = 3!! = 3 · 1 = 3.

It’s interesting to see acombinatorialquantity arising in the moments of our density; it turns out this hasprofoundimplica-
tions. In other words, this was not a busy-work problem!

#7: Find the errorS in the following code:

hoops[p_, q_, need_, num_] := Module[{},
birdwin = 0;
For[n = 1, n <= num,
{
If[Mod[n, num/10] == 0, Print["We have done ", 100. n/num, "%."]];
birdbasket = 0;
magicbasket = 0;
While[birdbasket < need || magicbasket < need,
{
If[Random[] <= p, birdbasket = birdbasket + 1];
If[Random[] <= q, magicbasket = magicbasket + 1];
}]; (* end of while loop *)

If[birdbasket == need, birdwin == birdwin + 1];
}]; (* end of for loop *)

Print["Bird wins ", 100. birdwin/num, "%."];
Print["Magic wins ", 100. - 100. birdwin/num, "%."];
];

hoops[.32, .33, 5, 100]

Solution: The for loop needs an n++, it should be && (for and) not || (for or) in the while statement, and in the If statement involving
birdbasket use a single = to assign birdwin + 1 to birdwin. Thecorrect code is:

hoops[p_, q_, need_, num_] := Module[{},
birdwin = 0;
For[n = 1, n <= num, n++,
{
birdbasket = 0;
magicbasket = 0;
While[birdbasket < need && magicbasket < need,
{
If[Random[] <= p, birdbasket = birdbasket + 1];
If[Random[] <= q, magicbasket = magicbasket + 1];
}]; (* end of while loop *)

If[birdbasket == need, birdwin = birdwin + 1];
}]; (* end of for loop *)

Print["Bird wins ", 100. birdwin/num, "%."];
Print["Magic wins ", 100. - 100. birdwin/num, "%."];
];
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4.3. Assignment: Due April 10, 2015: #1: Calculate the second and third moments ofX whenX ∼ Bin(n, p) (a binomial
random variable with parametersn andp). #2: We tossN coins (each of which is heads with probabilityp), where the
numberN is drawn from a Poisson random variable with parameter lambda. LetX denote the number of heads. What is the
probability density function ofX? Justify your answer. #3: Find the probability density function of Y whenY = exp(X)
for X ∼ N(0, 1). #4: Each box of cereal is equally likely to have exactly one of a set ofc prizes. Thus, every time you
open a box you have a1/c chance of getting prize 1, a1/c chance of getting prize 2, .... How many boxes to you expect to
have to open before you have at least one of each of thec prizes? If you have having trouble, doc = 2 for half credit. #5:
Let X1, . . . , Xn be independent Bernoulli random variables whereXk ∼ Bern(pk) (you can think of this asn independent
coin tosses, where coink is heads with probabilityp). If Y = X1 + · · · +Xn, what is the mean and what is the variance of
Y ? Assumep1 + · · · + pn = µ; what choice or choices of thepk ’s lead to the variance ofY being the largest possible? #6:
State anything you learned or enjoyed in Arms’ talk. One or two sentences suffice. #7: The kurtosis of a random variableX is
defined bykur(X) := E[(X−µ)4]/σ4, whereµ is the mean andσ is the standard deviation. The kurtosis measures how much
probability we have in the tails. IfX ∼ Poiss(λ), find the kurtosis ofX . #8: Consider a coin with probabilityp of heads. Find
the probability density function forX1, whereX1 is how long we must weight before we get ourfirst head. #9: Consider a
coin with probabilityp of heads. Find the probability density function forX2, whereX2 is how long we must weight before
we get oursecondhead. #10: Alice, Bob and Charlie are rolling a fair die in that order. They keep rolling until one of them
rolls a 6. What is the probability each of them wins? #11: Alice, Bob and Charlie are rolling a fair die in that order. What
is the probability Alice is the first person to roll a 6, Bob is the second and Charlie is the third? #12: Alice, Bob and Charlie
arestill rolling the fair die. What is the probability that the first 6 is rolled by Alice, the second 6 by Bob and the third 6 by
Charlie? #13: What are the mean and variance of a chi-square distribution with 2 degrees of freedom? IfX ∼ χ2(2), what is
the probability thatX takes on a value at least twice its mean? What is the probability X takes on a value at most half of its
mean?
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5. HW #6: DUE APRIL 10, 2015

5.1. Assignment: Due April 10, 2015: #1: Calculate the second and third moments ofX whenX ∼ Bin(n, p) (a binomial
random variable with parametersn andp). #2: We tossN coins (each of which is heads with probabilityp), where the
numberN is drawn from a Poisson random variable with parameter lambda. LetX denote the number of heads. What is the
probability density function ofX? Justify your answer. #3: Find the probability density function of Y whenY = exp(X)
for X ∼ N(0, 1). #4: Each box of cereal is equally likely to have exactly one of a set ofc prizes. Thus, every time you
open a box you have a1/c chance of getting prize 1, a1/c chance of getting prize 2, .... How many boxes to you expect to
have to open before you have at least one of each of thec prizes? If you have having trouble, doc = 2 for half credit. #5:
Let X1, . . . , Xn be independent Bernoulli random variables whereXk ∼ Bern(pk) (you can think of this asn independent
coin tosses, where coink is heads with probabilityp). If Y = X1 + · · · +Xn, what is the mean and what is the variance of
Y ? Assumep1 + · · · + pn = µ; what choice or choices of thepk ’s lead to the variance ofY being the largest possible? #6:
State anything you learned or enjoyed in Arms’ talk. One or two sentences suffice. #7: The kurtosis of a random variableX is
defined bykur(X) := E[(X−µ)4]/σ4, whereµ is the mean andσ is the standard deviation. The kurtosis measures how much
probability we have in the tails. IfX ∼ Poiss(λ), find the kurtosis ofX . #8: Consider a coin with probabilityp of heads. Find
the probability density function forX1, whereX1 is how long we must weight before we get ourfirst head. #9: Consider a
coin with probabilityp of heads. Find the probability density function forX2, whereX2 is how long we must weight before
we get oursecondhead. #10: Alice, Bob and Charlie are rolling a fair die in that order. They keep rolling until one of them
rolls a 6. What is the probability each of them wins? #11: Alice, Bob and Charlie are rolling a fair die in that order. What
is the probability Alice is the first person to roll a 6, Bob is the second and Charlie is the third? #12: Alice, Bob and Charlie
arestill rolling the fair die. What is the probability that the first 6 is rolled by Alice, the second 6 by Bob and the third 6 by
Charlie? #13: What are the mean and variance of a chi-square distribution with 2 degrees of freedom? IfX ∼ χ2(2), what is
the probability thatX takes on a value at least twice its mean? What is the probability X takes on a value at most half of its
mean?

5.2. Solutions: #1: Calculate the second and third moments ofX whenX ∼ Bin(n, p) (a binomial random variable with
parametersn andp).

Solution: The problem only asks us to findE[X2] andE[X3], but we’ll compute the centered momentsE[(X − µ)2] and
E[(X − µ)3] below, as this allows us to highlight more techniques and discuss more issues.

One natural way to compute these quantities is from the definition. To evaluate the second moment, we either need to
computeE[(X − µ)2] orE[X2]− E[X ]2. In the latter, this leads us to finding

n
∑

k=0

k2 ·
(

n

k

)

pk(1− p)n−k.

While we can do this through differentiating identities, itis faster to use linearity of expectation. LetX1, . . . , Xn be i.i.d.r.v.
(independent identically distributed random variables) with the Bernoulli distribution with parameterp. Note these are inde-
pendent, and we have the probabilityXi is 1 isp and the probabilityXi is 0 is1 − p. LetX = X1 + · · · +Xn. As they are
independent, the variance of the sum is the sum of the variances:

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+Var(Xn) = np(1− p),

as the variance of eachXi is justp(1− p). To see this, note

E[(Xi − µi)
2] = E[(Xi − p)2] = (1− p)2p+ (0− p)2(1− p) = p(1− p)(1− p+ p) = p(1− p).

We redo the calculations in a way that will help with the analysis of the third moment. We have

E[X2] = E[(X1 + · · ·+Xn)
2]

= E[X2
1 + · · ·+X2

n + 2X1X2 + 2X2X3 + · · ·+ 2Xn−1Xn]

=
n
∑

i=1

E[X2
i ] +

n−1
∑

i=1

n
∑

j=i+1

E[XiXj ].
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As theX ’s are independent,E[XiXj ] = E[Xi]E[Xj ] = p2 (so long asi 6= j); note there are
(

n
2

)

pairs(i, j) with 1 ≤ i < j ≤
n. What aboutE[X2

i ]? That is readily seen to be just12 · p+ 02 · (1 − p) = p. Substituting gives

E[X2] =

n
∑

i=1

p+ 2

n−1
∑

i=1

n
∑

j=i+1

p2 = np+

(

n

2

)

p2.

Thus the variance is

E[X2]− E[X ]2 = np+ 2
n(n− 1)p2

2
− (np)2 = np− np2 = np(1− p).

We thus recover our result from above.
How should we handle the third moment? AsE[X ] = np andE[X2] = p, we have

E[(X − µ)3] = E[X3 − 3X2µ+ 3Xµ2 − µ3]

= E[X3]− 3npE[X2] + 3(np)2E[X ]− (np)3

= E[X3]− 3n2p2(1− p) + 3n3p3 − n3p3.

We can complete the analysis in a similar manner as above, namely expanding out

X3 = (X1 + · · ·+Xn)
3

and then using linearity of expectation. At this point, differentiating identities isn’t looking so bad!
To solve this with differentiating identities, we must evaluate a sum such as

n
∑

k=0

k3 ·
(

n

k

)

pk(1− p)n−k.

We start with the identity

(x+ y)n =
n
∑

k=0

(

n

k

)

xkyn−k.

We apply the operatorx d
dx three times to each side, and find (after some tedious but straightforward algebra and calculus) that

the left hand side equals

nx(x + y)n−3
(

n2x2 + 3nxy − y(x− y)
)

.

Settingy = 1− x andx = p yields

np
(

1 + 3(n− 1)p+ (n2 − 3n+ 2)p2
)

=
n
∑

k=0

k3 ·
(

n

k

)

pk(1− p)n−k.

The above is quite messy, and there is a very good chance we have made an algebra mistake. Thus, let’s see if we can find
another approach which will lead to cleaner algebra. Instead of applyingx d

dx three times, let’s applyx3 d3

dx3 . Applying this to
(x + y)n is very easy, givingx3 · n(n − 1)(n − 2)(x + y)n−3; applying it to the combinatorial expansion gives notk3 and
k(k − 1)(k − 2). Collecting, we find

n(n− 1)(n− 2)x3(x+ y)n−3 = x3
n
∑

k=0

k(k − 1)(k − 2)

(

n

k

)

xk−3yn−k

=

n
∑

k=0

(

k3 − 3k2 + 2k
)

(

n

k

)

xkyn−k

=

n
∑

k=0

k3
(

n

k

)

xkyn−k − 3

n
∑

k=0

k2
(

n

k

)

xkyn−k

+ 2

n
∑

k=0

k

(

n

k

)

xkyn−k.

Settingx = p andy = 1− p yields

n(n− 1)(n− 2)p3 = E[X3]− 3E[X2] + 2E[X ].
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We have made a lot of progress, as we already knowE[X ] andE[X2] and can thus solve forE[X3]. The point is that it is
easiernot to try and find E[X ] directly, but rather to find a related quantity. Note, of course, that this method requires us
to knowE[X ] andE[X2] before we can deduce the value ofE[X3]; this is not an unreasonable request, as typically we want
to know all the moments up to a certain point.

The general principle here is that algebra can be hard, painful and tedious, but if you look at a problem the right way, you
can minimize how much algebra you need to do. It’s worthwhileto spend a few minutes thinking about how we can try and
approach a problem, as often this leads to a way with significantly less messy computations.

#2: We tossN coins (each of which is heads with probabilityp), where the numberN is drawn from a Poisson random
variable with parameter lambda. LetX denote the number of heads. What is the probability density function ofX? Justify
your answer.

Solution: We tossN coins (each of which is heads with probabilityp), whereN ∼ Poisson(λ), and letX denote the number
of heads. What is the probability mass function ofX? We compute it by calculating the probability of gettingm heads when
we tossn coins, and weight that by the probability of havingn coins to toss. Thus the answer is

Prob(X = m) =

∞
∑

n=m

Prob(X = m|N = n) · Prob(N = n)

=
∞
∑

n=m

(

n

m

)

pm(1− p)n−m · λ
ne−λ

n!

= pme−λ
∞
∑

n=m

n!

m!(n−m)!
(1 − p)n−mλn

n!

=
pme−λ

m!

∞
∑

n=m

(1− p)n−mλn

(n−m)!
.

We need to be ‘clever’ here to simplify the algebra and get a nice, clean expression, but note the very large ‘hints’ we get by
looking at the expression so far. First off, we have a factor of pme−λ/m! outside. This looks a bit like the mass function of a
Poisson, but not quite. Second, the sum above has two pieces that depend onn − m and one piece that depends onn. This
suggests we should add zero, and write

λn = λn−m+m = λn−m · λm.

We can then pull theλm outside of the sum and we find

Prob(X = m) =
pmλme−λ

m!

∞
∑

n=m

(1− p)n−mλn−m

(n−m)!
.

We now letk = n−m so the sum runs from 0 to∞. We also combine the factors, and obtain

Prob(X = m) =
(pλ)me−λ

m!

∞
∑

k=0

((1− p)λ)k

k!

=
(pλ)me−λ

m!
e(1−p)λ

from the definition ofex as

ex =

∞
∑

k=0

xk

k!
.

Simplifying the above expression, we finally obtain

Prob(X = m) =
(pλ)me−pλ

m!
,

which is the probability mass function for a Poisson random variable with parameterpλ.
It takes awhile to become proficient and fluent with such algebraic manipulations. A good guiding principle is that we want

to manipulate the expressions towards some known end, whichguides us in how to multiply by 1 or add 0. Here the key step
was writingλn andλn−mλm.
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The following is not needed for the problem, but provides another opportunity to review some of the concepts we’ve seen,
and their application. Let’s compute the average value of a random variableY with the Poisson distribution with parameterλ.
We have

E[Y ] =

∞
∑

n=0

n · λ
ne−λ

n!

=
∞
∑

n=1

n · λ
ne−λ

n!

= e−λ
∞
∑

n=1

λn

(n− 1)!
.

To finish the evaluation, it’s natural to writeλn andλn−1λ. The reason for this is that we have a sum where the denominator
involvesn− 1, and thus it is helpful to make the numerator depend onn− 1 as well. If we letk = n− 1, then asn runs from
1 to∞ we havek runs from 0 to∞, and we find

E[Y ] = e−λ
∞
∑

k=0

λk · λ
k!

= λe−λ
∞
∑

k=0

λk

k!
= λe−λeλ = λ,

where again we made use of the series expansion ofex.

Using this fact, we can find the expected number of heads in theassigned problemwithoutactually proving thatX is given
by the Poisson distribution with parameterλp. To see this, we claim that if

Prob(X = m) =

∞
∑

n=m

Prob(X = m|N = n) · Prob(N = n),

then

E[X ] =

∞
∑

n=0

E[X |N = n] · Prob(N = n),

which leads to

E[X ] =
∞
∑

n=0

np · λ
ne−λ

n!

= p

∞
∑

n=0

n · λ
ne−λ

n!
;

the last sum is just the expected value of the Poisson distribution with parameterλ, which we know isλ. ThusE[X ] = pλ.

#3: Find the probability density function ofY whenY = exp(X) for X ∼ N(0, 1).

Solution: We want to compute the density ofY = eX , whereX ∼ N(0, 1). The latter means thatX has the standard normal
distribution, namely that the density function ofX , fX , satisfies

fX(x) =
1√
2π

e−x2/2.

One very easy way to compute the answer to problems like this is by using cumulative distribution functions, and noting the
probability density is the derivative. LetFX andFY represent the cumulative distribution functions ofX andY , and letfX
andfY denote their densities. We have

FY (y) = Prob(Y ≤ y)

= Prob(eX ≤ y)

= Prob(X ≤ log y)

= FX(log y).
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We now differentiate, using the chain rule.

fY (y) = F ′
X(log y) · (log y)′ = fX(log y) · 1

y
.

Substituting forfX , we obtain

fY (y) =
1√
2π

1

y
e−

log2(y)
2 .

#4: Each box of cereal is equally likely to have exactly one ofa set ofc prizes. Thus, every time you open a box you have
a1/c chance of getting prize 1, a1/c chance of getting prize 2, .... How many boxes to you expect tohave to open before you
have at least one of each of thec prizes? If you have having trouble, doc = 2 for half credit.

Solution: This is a beautiful problem illustrating the power of expectation. Not surprisingly, it starts off as another geometric
series problem (i.e., waiting for the first success). LetYj be the random variable which denotes how much time we need to
wait to get the next new prize given that we havej distinct prizes (of thec prizes). For each pick, the probability we get one of
thej prizes we already have isjc , and thus the probabilityp we get a new prize isp = 1− j

c = c−j
c . Thus, lettingp = c−j

c we
find the probability that we get the next new prize on pickn is just(1− p)n−1p, so the expected value is

∞
∑

n=1

n · (1− p)n−1p =

∞
∑

n=1

(

j

c

)n−1
c− j

c
;

asp = c−j
c and the expected value is1/p, we haveE[Yj ] =

c
c−j . Note the answer is reasonable. Whenj = 0 the expected

wait is just one pick (which makes sense, as we have no prizes so anything is new). Whenj = c− 1 we are missing only one
prize, and the answer is an expected wait ofc (also reasonable!).

If Y is the random variable which denotes how long we must wait to get all the prizes, thenY = Y0 + · · · + Yc−1. As
expectation is linear,

E[Y ] = E[Y0] + · · ·+ E[Yc−1] =
c

c− 0
+ · · ·+ c

c− (c− 1)
.

If we read the sum in reverse order and factor out ac, we notice it is

E[Y ] = c

(

1 +
1

2
+

1

3
+ · · ·+ 1

c

)

≈ c log c,

as the sum is thecth harmonic numberHc, which is aboutlog c (a better approximation islog c + γ, whereγ is the Euler-
Mascheroni constant and is about .5772156649). See

http://en.wikipedia.org/wiki/Harmonic_number

for more information.

As it’s often hard to see how to attack the general case immediately, it’s a good idea to try a simple case first and detect the
pattern. Let’s tryc = 2. Our first box has to give us a prize we don’t have; without lossof generality let’s say we got the first
prize. We keep picking until we get the second prize. Each boxwe open from this point onward has a 50% chance of getting
us that second prize and ending our picking. Thus the probability we need one more box (or two total) is 1/2, that we need two
more boxes (or three total) is(1/2)2 = 1/4, that we need three more boxes (or four total) is(1/2)3 = 1/8 and so on. IfY1

denotes how long we have to wait from getting the first prize togetting the second, we seeProb(Y1 = n) = (1/2)n. ThusY1

is a geometric random variable with parameter 1/2, and the total wait to get both prizes is1 + Y1. As the expected value of a
geometric random variable with parameterp is 1/p, E[1 + Y1] = 1 + 2 = 3.

#5: LetX1, . . . , Xn be independent Bernoulli random variables whereXk ∼ Bern(pk) (you can think of this asn indepen-
dent coin tosses, where coink is heads with probabilityp). If Y = X1 + · · ·+Xn, what is the mean and what is the variance
of Y ? Assumep1 + · · ·+ pn = µ; what choice or choices of thepk ’s lead to the variance ofY being the largest possible?

Solution: By linearity of expectation,E[Y ] = E[X1]+ · · ·+E[Xn] andVar(Y ) = Var(X1)+ · · ·+Var(Xn). AsE[Xk] = pk
andVar(Xk) = pk(1 − pk) we findE[Y ] = p1 + · · · + pn andVar(Y ) = p1(1 − p1) + · · · + pn(1 − pn). We now turn to
finding the choice that leads to the largest possible variance.

We first claim that there must be at least one choice which gives a maximum variance. To see this, we appeal to a result
from real analysis: a continuous function on a compact set (i.e., a set that is closed and bounded) attains its maximum and

http://en.wikipedia.org/wiki/Harmonic_number
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minimum values. If you’re not familiar with this, look at thethird proof below (the one using Lagrange multipliers) and think
about how that was presented in your Calc III class.

It turns out to be sufficient to study the special case whenn = 2; before explaining why, we’ll analyze this case in detail.
We give the ‘standard’ proof using techniques from calculus. While the idea is simple, the algebra quickly gets involvedand
tedious, though everything does work out if we’re patient enough. As this much algebra is unenlightening, we give an alternate,
simpler proof below as well.

First proof: long algebra.We first give the standard proof that one might give after taking a calculus class. Namely, we
convert everything to a function of one variable, and just plow ahead with the differentiation, finding the critical points and
comparing the values at the critical points to the end-points. While this is exactly what we’ve been taught to do in calculus,
we’ll quickly see the algebra becomes involved and unenlightening, and thus we will givemanyalternate proofs afterwards!

Our situation is that we havep1 + p2 = µ and we want to maximizep1(1 − p1) + p2(1 − p2). As p2 = µ − p1, we must
maximize

g(p1) = p1(1 − p1) + (µ− p1)(1 − µ+ p1)

= p1 − p21 + µ(1 − µ)− p1(1 − µ) + p1µ− p21

= 2p1µ− 2p21 + µ(1 − µ).

To find the maximum, calculus tells us to find the critical points (the values ofp1 whereg′(p1) = 0) and compare that value
to the endpoints (which for this problem would bep1 = max(0, µ − 1) andp1 = min(µ, 1)). We haveg′(p1) = 2µ − 4p1,

so the critical point isp1 = µ/2 which givesg(µ/2) = µ− µ2

2 . Straightforward algebra now shows that this is larger thanthe
boundary values. Asg(p1) = g(1 − p1), it suffices to check the lower bounds. Ifp1 = 0 that means0 ≤ µ ≤ 1, and in this

casep2 = µ sog(0) = µ(1 − µ) = µ− µ2, which is clearly smaller thang(µ/2) = µ− µ2

2 . Similarly if p1 = µ− 1 (which
implies1 ≤ µ ≤ 2) thenp2 = 1 and thusg(µ− 1) = (µ− 1)(2 − µ) + 0 = −µ2 + 3µ− 2. If this were larger thang(µ/2),
we would have the following chain:

−µ2 + 3µ− 2 > µ− µ2

2

0 >
µ2

2
− 2µ+ 2

0 > µ2 − 4µ+ 4 > (µ− 2)2,

which is impossible. Thus, after tedious but straightforward algebra, we see the maximum value occurs not at a boundary point
but at the critical pointp1 = µ/2, which impliesp2 = µ/2 as well.

We now consider the case of generaln. Imagine we are at the maximum variance with valuesp1, · · · , pn. If any two of
thepk’s were unequal (say thei andj values), by the argument above (in the case of just two values) we could increase the
variance by replacingpi andpj with pi+pj

2 . Thus the maximum value of the variance occurs when all are equal.

Second proof: cleaner algebra.As the algebra is a bit tedious, we give another approach. Imagine (back in then = 2 case)
thatp1 6= p2. Let’s writep1 = µ

2 + x andp2 = µ
2 − x. We need to show the variance is maximized whenx = 0. If x = 0 the

variance is justµ− µ2

2 , while for generalx it is

(µ

2
+ x

)(

1− µ

2
− x

)

+
(µ

2
− x

)(

1− µ

2
+ x

)

= µ− µ2

2
− 2x2,

where the last step follows from multiplying everything out. Thus the variance is maximized in this case whenx = 0. Note
how much faster this approach is. We included the first approach as this is what we’re taught in calculus, namely find the
critical points and check the boundary points; however, especially in instances where we have some intuition as to what the
answer should be, there are frequently better ways of arranging the algebra.

Third proof: Lagrange multipliers.We give one more proof, though here the pre-requisites are more. We use Lagrange
multipliers: we want to maximizef(p1, p2) = p1(1 − p1) + p2(1 − p2) subject tog(p1, p2) = p1 + p2 − µ = 0. We need
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∇f = ∇g, so

f(p1, p2) = p1 − p21 + p2 − p22

g(p1, p2) = p1 + p2 − µ

∇f(p1, p2) = (1− 2p1, 1− 2p2)

∇g(p1, p2) = (1, 1).

As ∇f = λg and∇g(p1, p2) = (1, 1), we find1 − 2p1 = 1 − 2p2 or p1 = p2 as claimed. Note how readily this generalizes
to n variables, as in this case we would have

∇f(p1, . . . , pn) = (1− 2p1, . . . , 1− 2pn)

∇g(p1, . . . , pn) = (1, . . . , 1),

which implies all thepi’s are equal.

Fourth proof: geometry.We give yet another proof in the casen = 2 andp1 + p2 = µ. We are trying to maximize

p1(1− p1) + p2(1− p2) = p1 − p21 + p2 − p22 = µ− (p21 + p22).

As we are subtractingp21 + p22, we want that to be as small as possible. We may interpret thisas the distance of the point
(p1, p2) from the origin, given thatp1 + p2 = µ. Geometrically it should be clear that the closest point to the origin is the
midpoint of the line from(0, µ) to (µ, 0); if not and if we need to resort to calculus, this is at least aneasier problem. Namely,
let p2 = µ− p1 so we are trying to minimize

µ− (p21 + (µ− p1)
2) = µ− µ2 − (2p21 − 2µp1) = µ− µ2 − 2p1(p1 − µ).

We thus need to minimize the value of the quadraticp1(p1 − µ); as the roots of this are 0 andµ, the minimum is at the vertex
which is at the midpoint of the roots, namelyp1 = µ/2. In general, we are trying to minimize the functionµ− (p21+ · · ·+ p2n)
subject to0 ≤ p1, . . . , pn ≤ 1 andp1 + · · ·+ pn = µ. This is equivalent to finding the point on the hyperplane closest to the
origin in n-dimensional space, which is given by the point where they are all equal.

Finally, is this result surprising? If ever apk = 0 or 1, then there would be no variation in the contribution fromXk. Thus
the variance will be smallest when all thepk’s are in{0, 1}.

#6: State anything you learned or enjoyed in Arms’ talk. One or two sentences suffice.

Solution: Anything should be fine!

#7: The kurtosis of a random variableX is defined bykur(X) := E[(X − µ)4]/σ4, whereµ is the mean andσ is the
standard deviation. The kurtosis measures how much probability we have in the tails. IfX ∼ Poiss(λ), find the kurtosis ofX .
Solution: Let X ∼ Poiss(λ), so the mass function isf(n) = λne−λ/n! for n ≥ 0 and 0 otherwise. For a Poisson random
variable with parameterλ, the mean isλ and the standard deviation is

√
λ (or equivalently the variance isλ), and thus

kur(X) =

∑∞
n=0(n− λ)4λne−λ/n!

λ2
.

There are several ways to try and analyze this. One way is to expand out(n − λ)4. Whenever we have ann, we can cancel
that with then in n!, and we are left with terms such asnkλj/(n − 1)!. We could then writen as(n − 1) + 1, expand and
do some more canceling. While this will work, the algebra becomes tedious. The point of this exercise is to see that, while
there are numerous ways to solve a problem, it is important toweigh their advantages and disadvantages. For instance, wecan
either make the linear combinations easy at the cost of more involved differentiation, or we can have easier combinations at the
expense of more tedious differentiation. For this problem,it seems as if the easiest algebra is when we make the differentiation
hard but the combinations easy. It takes awhile to develop a feel for which approach will be most tractable for a given problem.
This is one reason why we provide so many different solutions.
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First solution. One of the best ways to compute the moments of Poisson (and other discrete) random variables is through
differentiating identities. Consider the identity

ex =
∞
∑

n=0

xn

n!
.

We could keep applying the operatorx d
dx to this and obtain the moments, and then by expanding(n − λ)4 piece everything

together. A faster way is to apply the operator−λ+ x d
dx four times and then setx = λ. If we do that we obtain

(

−λ+ x
d

dx

)(

−λ+ x
d

dx

)(

−λ+ x
d

dx

)(

−λ+ x
d

dx

)

ex
∣

∣

∣

x=λ
=

∞
∑

n=0

(n− λ)4 · λ
n

n!
.

After some long but standard differentiation, we find the derivative above equals

ex
(

λ4 − 4λ3x+ 6λ2x(1 + x)− 4λx(1 + 3x+ x2) + x(1 + 7x+ 6x2 + x3)
)

;

settingx = λ gives

λeλ + 3λ2eλ =

∞
∑

n=0

(n− λ)4 · λ
n

n!
,

which means the kurtosis is

kur(X) =
e−λ

λ2

(

λeλ + 3λ2eλ
)

= 3 +
1

λ
.

Second solution.In terms of keeping the algebra simple, it might be easier to expand(n− λ)4 and apply the operatorx d
dx

four times.

Third solution.Another possibility is to applyd/dx four times and then build back. For example, we start with

ex =

∞
∑

n=0

xn

n!
.

Differentiating with respect tox once gives

ex =

∞
∑

n=0

n · x
n−1

n!
.

Takingx = λ and multiplying both sides byλe−λ gives

λe−λ · eλ =

∞
∑

n=0

n · λ
ne−λ

n!
= E[X ],

which implies the mean isλ. If we differentiateex twice with respect tox, we find

ex =

∞
∑

n=0

n(n− 1) · x
n−2

n!
=

∞
∑

n=0

n2 · x
n−2

n!
−

∞
∑

n=0

n · x
n−2

n!
.

Takingx = λ again and multiplying both sides byλe−λ gives

λ2e−λeλ =

∞
∑

n=0

n2 · λ
ne−λ

n!
−

∞
∑

n=0

n · λ
ne−λ

n!
;

as the last sum isλ, we find

E[X2] =

∞
∑

n=0

n2 · λ
ne−λ

n!
= λ2 + λ.

Continuing in this way we can getE[X3] andE[X4], and then substitute into

E[(X − µ)4] = E[X4]− 4µE[X3] + 6µ2
E[X2]− 4µ3

E[X ] + µ4.
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Fourth solution.For our fourth solution, we use some ideas from linear algebra. We start, as always, with the identityex =
∑

∞

n=0
xn/n!,

and we differentiate this 4 times:

ex =

∞
∑

n=0

xn

n!

ex =

∞
∑

n=0

n ·
xn−1

n!

ex =

∞
∑

n=0

n(n− 1) ·
xn−2

n!

ex =

∞
∑

n=0

n(n− 1)(n− 2) ·
xn−3

n!

ex =
∞
∑

n=0

n(n− 1)(n− 2)(n− 3) ·
xn−4

n!
.

We takex = λ and multiply thekth equation above byλk, and find

eλ =
∞
∑

n=0

λn

n!

λeλ =
∞
∑

n=0

n ·
λn

n!

λ2eλ =
∞
∑

n=0

(n2
− n) ·

λn

n!

λ3eλ =

∞
∑

n=0

(n3
− 3n2 + 2n) ·

λn

n!

λ4eλ =

∞
∑

n=0

(n4
− 6n3 + 11n2

− 6n) ·
λn

n!
.

We want to evaluate

e−λ

λ2

∞
∑

n=0

(n− λ)4 ·
λn

n!
=

e−λ

λ2

∞
∑

n=0

(n4
− 4n3λ+ 6n2λ2

− 4nλ3 + λ4) ·
λn

n!
.

We writen4
− 4n3λ + 6n2λ2

− 4nλ3 + λ4 as a linear combination of the terms above. This is just solving a system of equations (for
example, we may regardn4

− 4n3λ + 6n2λ2
− 4nλ3 + λ4 as the vector(1,−4, 6,−4, 1, 0), with the last component 0 as there is no

constant term). Solving the associated system of equationsgives

n4
− 4n3λ+ 6n2λ2

− 4nλ3 + λ4

equals

1 · (n4
− 6n3 + 11n2

− 6n) + (6− 4λ) · (n3
− 3n2 + 2n) + (7− 12λ+ 6λ2) · (n2

− n)

+ (1− 4λ+ 6λ2
− 4λ3) · n + a4

· 1

and thus the kurtosis is

e−λ

λ2

[

1 · λ4eλ + (6− 4λ)λ3eλ + (7− 12λ+ 6λ2)λ2eλ +

(1− 4λ+ 6λ2
− 4λ3)λeλ + 1eλ

]

=
1

λ2

[

3λ2 + λ
]

= 3 +
1

λ
.

#8: Consider a coin with probabilityp of heads. Find the probability density function forX1, whereX1 is how long we
must wait before we get ourfirst head.
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Solution: ClearlyProb(X1 = n) = 0 unlessn ∈ {1, 2, 3, . . .}. Forn ∈ {1, 2, 3, . . .} we have to start withn− 1 tails (each
happening independently with probability1− p) and then end with a head (which happens with probabilityp. Thus

Prob(X1 = n) =

{

(1 − p)n−1p if n ∈ {1, 2, 3, . . .}
0 otherwise.

#9: Consider a coin with probabilityp of heads. Find the probability density function forX2, whereX2 is how long we
must weight before we get oursecondhead.

Solution: The solution is similar to the previous problem. There are two small changes. First, the non-zero probabilities are
for n ∈ {2, 3, 4, . . .}. Second, in the firstn− 1 tosses we now haven− 2 tails and 1 head; there are

(

n−1
1

)

= n− 1 ways to
choose which of the firstn − 1 tosses is the head. Each of thesen − 1 possibilities happens with probability(1 − p)n−2p2,
and we find

Prob(X2 = n) =

{

(n− 1)(1− p)n−2p2 if n ∈ {2, 3, 4, . . .}
0 otherwise.

#10: Alice, Bob and Charlie are rolling a fair die in that order. They keep rolling until one of them rolls a 6. What is the
probability each of them wins?

Solution: Let x be the probability Alice rolls the first six. We have

x =
1

6
+

5

6
· 5
6
· 5
6
· x;

to have Alice win, she either rolls a six on her first turn (which happens with probability 1/6) or all three don’t roll a six on
their first turn (which happens with probability5/6 · 5/6 · 5/6), at which point Alice now wins with probabilityx (we have a
memoryless process, and it’s as if we just started the game again. Thusx = 1

6 + 125
216x, orx = 36/91.

If we let y be the probability Bob wins the game, clearly Bob cannot win if Alice rolls a six on her first try. Thus we have

y =
5

6
· x;

this is because once Alice rolls a non-six (which happens 5/6of the time), the probability Bob wins is justx. We find
y = 5

6
36
91 = 30/91.

Similarly, if z is the probability Charlie wins, then

z =
5

6
· 5
6
· x,

as both Alice and Bob must roll non-sixes (which happens withprobability5/6 ·5/6), at which point the probability of Charlie
winning is justx. We findz = 5

6
5
6
36
91 = 25

91 .

Note there was no need to findz; we could have found it by notingz = 1− x− y. It’s good to calculate it from scratch as
this provides a check. Doesx+ y + z = 1? We have36/91 + 30/91 + 25/91 = 91/91, which is 1.

#11: Alice, Bob and Charlie are rolling a fair die in that order. What is the probability Alice is the first person to roll a 6,
Bob is the second and Charlie is the third?

Solution: After A throws a 6 we do not care if she (A is obviously named Alice) throws another 6 beforeB (clearly Bob) or
C (surely Charlie) does; all we care about is thatB then throws a 6 before Charlie. Letx be the probability thatA rolls the
first 6. Then

x =
1

6
+

(

5

6

)3

x;

this is because she either rolls a 6 on her first try, or she andB andC all miss, and then it is as if we’ve started the game fresh.
(Note how important the memoryless feature is in solving these problems!) We thus findx = 1

6 + 125
216x, or after some algebra

x = 36
91 . We now keep rolling, and we only care about the rolls ofB andC. It suffices to determine the probabilityB gets the
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next 6, as clearlyC will then be the last to roll. Letw be the probabilityB rolls a 6 beforeC, given thatB rolls first. A similar
analysis gives

w =
1

6
+

(

5

6

)2

w,

orw = 1
6 + 25

36y, which givesw = 6
11 . Thus the probability thatA is first, thenB and thenC is just

36

91
· 6

11
· 1 =

216

1001
.

As always, we should ask if this answer is reasonable. There are 3! = 6 ways to order 3 people. As the denominator is
1001, if all six orderings were equally likely we would get a fraction of (approximately) 167/1001. Thus our answer is a bit
higher than the case where all outcomes are equally likely. This is reasonable, as we do expectA to get the first six....

#12: Alice, Bob and Charlie arestill rolling the fair die. What is the probability that the first 6 is rolled by Alice, the second 6 by Bob
and the third 6 by Charlie?

Solution: Using the notation and results from the earlier problems, wenow wantA to roll the first 6, and then the next 6mustbe rolled by
B, and then the nextmustbe rolled byC; thus, we now care aboutA’s subsequent rolls. Fortunately we’ve already solved thisproblem! In
the analysis above, we may interpretx = 36/91 as the probability that the first 6 is rolled by the person currently rolling. Thus the answer
here is justx3 = (36/91)3; the reason is that onceA rolls a six, it is nowB’s turn to roll.

#13: What are the mean and variance of a chi-square distribution with 2 degrees of freedom? IfX ∼ χ2(2), what is the probability that
X takes on a value at least twice its mean? What is the probability X takes on a value at most half of its mean?
Solution: The probability density function of aχ2 random variable withν degrees of freedom is

(2ν/2Γ(ν/2))−1xν/2−1e−x/2

for x ≥ 0 and0 otherwise. Notice that ifν = 2 then the density is

f2(x) =

{

1

2
e−x/2 if x ≥ 0

0 otherwise;

this is an exponential random variable withλ = 2. We’ve shown in class that the mean of an exponential random variable with parameterλ
is λ. The answer to the first question is thus

Prob(X ≥ 2 · 2) =

∫

∞

4

1

2
e−x/2dx = −e−x/2

∣

∣

∣

∞

4

= e−2.

For the second question, we have

Prob(X ≤
1

2
· 2) =

∫

1

0

1

2
e−x/2 = −e−x/2

∣

∣

∣

1

0

= 1− e−1/2.

5.3. HW #7: Due Friday, April 17, 2015: #1: 10% of the numbers on a list are 15, 20% are 25, and the rest are 50. What is the average?
#2: All 100 numbers in a list are non-negative and the averageis 2. Prove that at most 25 exceed 8. #3:A andB are independent events
with indicator random variablesIA andIB; thusIA(x) = 1 with probabilityPr(A) and is 0 with probability1 − Pr(A). (a) What is the
distribution of(IA + IB)

2? (b) What isE[(IA + IB)2]? #4: Consider a random variableX with expectation 10 and standard deviation 5.
(a) Find the smallest upper bound you can forPX ≥ 20. (b) CouldX be a binomial random variable? #5: Suppose average family income
is $10,000. (a) Find an upper bound for the percentage of families with income over $50,000. (b) Redo (a) but with the addedknowledge
that the standard deviation is $8,000. #6: (a) LetX be a random variable with0 ≤ X ≤ 1 andE[X] = µ. Show that0 ≤ µ ≤ 1 and
0 ≤ Var(X) ≤ µ(1− µ) ≤ 1/4. (b) Generalize and consider the casea ≤ X ≤ b. (c) Assume0 ≤ X ≤ 9. Find a random variable where
the variance is as large as possible.
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6. HW #7: DUE FRIDAY, APRIL 17, 2015

6.1. HW #7: Due Friday, April 17, 2015: #1: 10% of the numbers on a list are 15, 20% are 25, and the rest are 50. What
is the average? #2: All 100 numbers in a list are non-negativeand the average is 2. Prove that at most 25 exceed 8. #3:A
andB are independent events with indicator random variablesIA andIB; thusIA(x) = 1 with probabilityPr(A) and is 0
with probability1 − Pr(A). (a) What is the distribution of(IA + IB)

2? (b) What isE[(IA + IB)
2]? #4: Consider a random

variableX with expectation 10 and standard deviation 5. (a) Find the smallest upper bound you can forPX ≥ 20. (b) Could
X be a binomial random variable? #5: Suppose average family income is $10,000. (a) Find an upper bound for the percentage
of families with income over $50,000. (b) Redo (a) but with the added knowledge that the standard deviation is $8,000. #6:
(a) LetX be a random variable with0 ≤ X ≤ 1 andE[X ] = µ. Show that0 ≤ µ ≤ 1 and0 ≤ Var(X) ≤ µ(1 − µ) ≤ 1/4.
(b) Generalize and consider the casea ≤ X ≤ b. (c) Assume0 ≤ X ≤ 9. Find a random variable where the variance is as
large as possible.

6.2. Solutions: #1: 10% of the numbers on a list are 15, 20% are 25, rest are 50. What is the average?
Solution: Let there ben numbers. The mean is10n100n · 15 + 20n

100n · 25 + 70n
100n · 50 = 150+500+3500

100 = 41.5. Note the answer is
greater than 15 (the smallest number on our list) and smallerthan 50 (the largest on our list). Also 70% of the numbers are 50,
so we expect the mean to be close to 50.

#2: All 100 numbers in list are non-negative and average is 2.Prove that at most 25 exceed 8.
Solution: Imagine there were 26 that were greater than 8. What would these contribute to the mean? Well, if the 26 numbers
were 8, we would have a contribution to the mean of26

100 · 8 = 2.08; as the other numbers are non-negative, the mean would
have to be at least 2.08, contradicting the fact that the meanis 2. In a sense, this question is poorly phrased, as we can do better.
We can show that there are at most 24 that exceed 8. The averageis smallest when 25 exceed 8 if 75 are 0 and 25 exceed 8,
which gives a mean exceeding 2.

#3:A andB independent events with indicator random variablesIA andIB; thusIA(x) = 1 with probabilityPr(A) and is
0 with probability1− Pr(A). (a) What is the distribution of(IA + IB)

2? (b) What isE[(IA + IB)
2]?

Solution: Squaring, it isI2A+2IAIB+I2B = IA+2IAIB+IB as the square of an indicator random variable is just the indicator.
It can only take on the values 0, 1, and 4. It is zero whenA andB don’t happen, or it is 0 with probability(1− PA)(1− PB).
It is 1 if exactly one ofA andB happens, so it is 1 with probabilityPA(1− PB) + (1− PA)PB. It is 2 if both happens, or it
is 2 with probabilityPAPB.

(b) We useI2A + 2IAIB + I2B = IA + 2IAIB + IB and the linearity of expectation to see that this isE[IA] + 2E[IAIB ] +
E[IB ]. The middle term is justE[IA]E[IB ] = PAPB as the random variables are independent, and so this answer is just
PA+ 2PAPB + PB. As an aside, if we had(IA + IB)

n, what do you think this will approximately equal forn large?

#4: Consider a random variableX with expectation 10 and standard deviation 5. (a) Find the smallest upper bound you can
for PX ≥ 20. (b) CouldX be a binomial random variable?
Solution: (a) Note that 20 is 2 standard deviations above the mean, and thus by Chebyshev’s inequality the probability of being
at least 20 is at most 1/4. (b) If yes, it would have somen and a probabilityp. We would have to solveE[X ] = np = 10,
Var(X) = np(1 − p) = 5. There are many ways to do the algebra. Substitute fornp, which must be 10, in the variance
equation to find10(1−p) = 5, so1−p = 1/2 or p = 1/2. This then gives usn = 20, so yes, it is possible. What if instead we
were told the mean was 10 and the standard deviation was 5? In that case we would have10(1− p) = 25, which is impossible
for a binomial random variable.

#5: Suppose average family income is $10,000. (a) Find upperbound for percentage of families with income over $50,000.
(b) Redo (a) but with the added knowledge that the standard deviation is $8,000.
Solution: (a) Note that income is non-negative (we hope!), so let’s tryMarkov’s inequality. SoPI ≥ $50, 000 ≤ E[I]/$50, 000
= 10000/50000 = 1/5. (b) If we know the standard deviation is $8,000, then we see that we are 4 standard deviations from
the mean, so by Chebyshev the probability of being at least 5 standard deviations away from the mean is at most1/52. Not
surprisingly, we can do much better when we know more.

#6: (a) LetX be a random variable with0 ≤ X ≤ 1 andE[X ] = µ. Show that0 ≤ µ ≤ 1 and0 ≤ Var(X) ≤ µ(1− µ) ≤
1/4. (b) Generalize and consider the casea ≤ X ≤ b. (c) Assume0 ≤ X ≤ 9. Find a random variable where the variance is
as large as possible.
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Solution: (a) As 0 ≤ X ≤ 1, 0 ≤ E[X ] = µ ≤ 1. For the second claim, note0 ≤ X2 ≤ X ≤ 1 as0 ≤ X ≤ 1. As
Var(X) = E[X2]−E[X ]2 = E[X2]−µ2, andE[X2] ≤ E[X ] ≤ µ, we haveVar(X) ≤ µ−µ2 = µ(1−µ). Sinceµ ∈ [0, 1],
a calculus exercise shows the maximum of the functiong(µ) = µ(1 − µ) occurs whenµ = 1/2, leading to the value 1/4.
Another way to see this is to noteµ(1− µ) = −µ2 − µ = −(µ− 1/2)2 − 1/4; as(µ− 1/2)2 ≥ 0 the minimum value is 1/4.
Note: the variance bound should be a function ofµ. If we letY = 1 −X then the mean ofY is 1 − µ but the variance ofY
is the same as the variance ofX ; thus we expect our variance bound to be a function of1 − µ. Thus the final result should
be a function ofµ(1 − µ), as we can’t tellX apart fromY if we only care about the variance.Still another way is to note
Var(X) = E[X2]− E[X ]2 = E[X2]− µ2, and then note

E[X2] =

∫ 1

0

x2p(x)dx ≤
∫

0

xp(x)dx = E[X ];

this is essentially the same calculation, just written differently.
(b) The argument proceeds similarly. Asa ≤ X ≤ b,

∫ b

a
ap(x)dx ≤

∫ b

a
xp(x)dx ≤

∫ b

a
bp(x)dx, soa ≤ E[X ] ≤ b. For

the variance, we could useVar(X) = E[X2] − E[X ]2, but it’s better to reduce to part (a). LetY = (X − a)/(b − a). Note
0 ≤ Y ≤ 1 andµY = (µX − a)/(b− a). By part (a), the variance ofY is at mostµY (1 − µY ), which gives

Var(X) ≤ µX − a

b− a

(

1− µX − a

b− a

)

=
(µX − a)(b − µX)

(b− a)2
.

Note thatVar(Y ) = Var((X − a)/(b− a)) = Var(X)/(b− a)2. ThusVar(X) ≤ (µX − a)(b−µX). Using calculus, we see
this is largest whenµX = b−a

2 , which gives after some algebraVar(X) ≤ 1
4 (b−a)2. (To see this, letf(u) = (u−a)(b−u) =

−u2 + (b− a)u− ab, sof ′(u) = −2u+ (b− a), so the critical point is whereu = (b − a)/2.)
(c) If half the numbers are 9 and half are 0, then the mean is 4.5and the standard deviation is 4.5 (so the variance is4.52),

as everything is 4.5 units from the mean. From part (b), the maximum the variance ofX can be is14 (9− 0)2 = 20.25 = 4.52.
Thus the variance is as large as possible. This forces the mean to be 4.5, and then the variance is maximized when half are 0
and half are 9. It’s not surprising that parts (a) and (b) are useful here.

7. HW #8: DUE MAY 1, 2015

No HW due April 24 because of the exam. First part of exam is dueon Friday April 24 by the start of class, rest by Monday
the 27th by start of class.

7.1. Assignment: #1: Continue working on your assigned chapter (due later in the semester). #2: Due Monday, May 4: Find
any math research paper or expository paper which uses probability and write an at most one page summary (preferably in
TeX). As you continue in your careers, you are going to need toread technical papers and summarize them to your superiors
/ colleagues / clients; this is thus potentially a very useful exercise. Make sure you describe clearly what the point of the
paper is, what techniques are used to study the problem, whatapplications there are (if any). Below is a sample review from
MathSciNet; if you would like to see more, you can go to their homepage or ask me and I’ll pass along many of the ones I’ve
written. I’ve chosen this one as it’s related to a paper on randomly shuffling cards: Bayer, Dave and Diaconis, Persi,Trailing
the dovetail shuffle to its lair, Ann. Appl. Probab.2 (1992), no. 2, 294–313.

Rarely does a new mathematical result make both the New York Times and the front page of my local paper, and even more
rarely is your reviewer asked to speak on commercial radio about a result, but such activity was caused by the preprint of this
paper. In layman’s terms, it says you should shuffle a deck of cards seven times before playing. More technically, the usual way
people shuffle is called a riffle shuffle, and a natural mathematical model of a random shuffle is to assume all possible riffle
shuffles are equally likely. With this model one can ask how close isk shuffles of an n-card deck to the uniform distribution
on all n! permutations, where ‘close’ is measured by variation distance. It was previously known that, asn → ∞, one needs
k(n) ∼ 32 log2 n shuffles to get close to uniform. This paper gives an elegant and careful treatment based on an explicit
formula for the exact distanced(k, n) to uniformity. To quote the abstract: ‘Key ingredients are the analysis of a card trick
and the determination of the idempotents of a natural commutative subalgebra in the symmetric group algebra.’ – Reviewed
by David J. Aldous

#3: Due Friday May 1: Assume two people randomly move in tic - tac - toe; what is the probability each wins (or that there
is a draw)? We do this both through simulation and theoretically. The number of possible games is small enough (9! is about
362, 880 ) that we can just do the theory by brute force computation. If we had a bigger board it would be very different and
then simulations would be the way to go.
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