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Chapter 1

From Generating Functions to the Central
Limit Theorem

The purpose of this note is to describe the theory and applications of generating functions, in par-
ticular, how they can be used to prove the Central Limit Theorem (CLT) in certain special cases.
Unfortunately a proof in general requires some results from complex or Fourier analysis; we will
state these needed results and discuss how the proof proceeds in general. We give several examples,
including how, appropriately scaled, the mean of n independent Poisson variables converges to the
standard normal distribution N(0, 1).

1.1 Generating Functions

1.1.1 Motivation
Frequently in mathematics we encounter complex data sets, and then do operations on it to make
it even more complex! For example, imagine the first data set is the probabilities that the random
variable X1 takes on given values, and the second set is the probabilities of another random vari-
able X2 taking on given values. From these we can, painfully through brute force, determine the
probabilities of X1 + X2 equaling anything; however, if at all possible we would like to avoid these
tedious computations.

Let’s consider the case when X1 has the Poisson distribution with parameter 5 and X2 is a
Poisson with parameter 7. This means

Prob(X1 = m) = 5me−5/m!

Prob(X2 = n) = 7ne−7/n!, (1.1.1)

where m and n range over the non-negative integers. Our answer is thus

Prob(X1 + X2 = k) =
k∑

`=0

Prob(X1 = `)Prob(X2 = k − `) =
k∑

`=0

5`e−5

`!
· 7k−`e−7

(k − `)!
. (1.1.2)
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6 CHAPTER 1. FROM GENERATING FUNCTIONS TO THE CENTRAL LIMIT THEOREM

For general sums of random variables, it would be hard to write this in a more illuminating manner;
however, we’re lucky for sums of Poisson random variables if we happen to think of the following
sequence of simplifications!

1. First, note that we have a factor of 1/`!(k− `)!. This is almost
(

k
`

)
, which is k!/`!(k− `)!. We

do one of the most useful tricks in mathematics, we multiply cleverly by 1, where we write 1
as k!/k!. Thus this factor becomes

(
k
`

)
/k!. As our sum is over `, we may pull the 1/k! outside

the `-sum.

2. The e−5 and e−7 inside the sum do not depend on `, so we may pull them out, giving us an
e−12.

3. We now have e−12

k!

∑k
`=0

(
k
`

)
5`7k−`. Recalling the Binomial Theorem, we see the `-sum is just

(5 + 7)k, or just 12k.

Putting all the pieces together, we find

Prob(X1 + X2 = k) =
12ke−12

k!
; (1.1.3)

note this is the probability density for a Poisson random variable with parameter 12 (and 12 = 5+7).
There is nothing special about 5 and 7 in the argument above. Working more generally, we see the
sum of two Poisson random variables with parameters λ1 and λ2 is a Poisson random variable with
parameter λ1 + λ2.

Exercise 1.1.1. Using induction, prove the sum of n Poisson random variables with parameters
λ1, . . . , λn is a Poisson random variable with parameter λ1 + · · ·+ λn.

We were fortunate in this case in that we found a ‘natural’ way to manipulate the algebra so
that we could recognize the answer. What would happen if we considered other sums of random
variables? We want a procedure that will work in general, which will not require us to see these
clever algebra tricks.

Fortunately, there is such an approach. It’s the theory of generating functions. We’ll first de-
scribe what generating functions are (there are several variants; depending on what you are studying,
some versions are more useful than others), and then show some applications.

1.1.2 Definitions
Definition 1.1.2 (Generating Function). Given a sequence {an}∞n=0, we define its generating func-
tion by

Ga(s) =
∞∑

n=0

ans
n (1.1.4)

for all s where the sum converges.



1.1. GENERATING FUNCTIONS 7

Depending on our data, it’s possible for the generating function to exist for all s, for only some
s, or sadly only s = 0 (as Gs(0) = a0, this isn’t really saying much!). For example,

1. If an = 1/n!, then Ga(s) =
∑∞

n=0 sn/n!. This is the definition of es, and hence Ga(s) exists
for all s.

2. If an = 2n, then Ga(s) =
∑∞

n=0(2s)
n. This is a geometric series with ratio 2s; the series

converges for |2s| < 1 and diverges if |2s| > 1. Thus Ga(s) = (1− 2s)−1 if |s| < 1/2.

3. If an = n!, a little inspection shows Ga(s) diverges for any |s| > 0. Probably the easiest way
to see that this series diverges is to note that the terms do not tend to zero. Stirling’s formula
gives n! ∼ (n/e)n

√
2πn, so n!sn > (ns/e)n, which doesn’t go to zero as whenever n > e/|s|

we have |n!sn| > 1. ADD REF TO STIRLING

If we are given a sequence {am}∞m=0, then clearly we know its generating function (it may not
be easy to write down a closed form expression for Ga(s), but we do have a formula for it). The
converse is also true: if we know a generating function Ga(s) (which converges for |s| < r for some
r), then we can recover the original sequence. This is easy if we can differentiate Ga(s) arbitrarily
many times, as then am = 1

m!
dmGa(s)

dsm . This result is extremely important; as we’ll use it frequently
later, it’s worth isolating as a theorem.

Theorem 1.1.3 (Uniqueness of generating functions of sequences). Let {am}∞m=0 and {bm}∞m=0 be
two sequences of numbers with generating functions Ga(s) and Gb(s) which converge for |s| < r.
Then the two sequences are equal (i.e., ai = bi for all i) if and only if Ga(s) = Gb(s) for all |s| < r.
We may recover the sequence from the generating function by differentiating: am = 1

m!
dmGa(s)

dsm .

Proof. Clearly if ai = bi then Ga(s) = Gb(s). For the other direction, if we can differentiate
arbitrarily many times, we find ai = 1

i!
diGa(s)

dsi and bi = 1
i!

diGb(s)
dsi ; as Ga(s) = Gb(s), their derivatives

are equal and thus ai = bi.

Remark 1.1.4. The division by n! is a little annoying; later we’ll see a related generating function
that doesn’t have this factor. If we don’t want to differentiate, then we get a0 by setting s = 0. We
can then find a1 by looking at (Ga(s) − a0)/s and setting s = 0 in this expression; continuing in
this manner we can find any am. Note how similar this is to differentiating!

A natural question to ask is why is it worth constructing a generating series. After all, if it is just
equivalent to our original sequence of data, what have we gained? There are advantages; the most
important is that it helps simplify the algebra we’ll encounter in probability. We give two examples
to remind the reader how useful it can be to simplify algebra.

The first is from calculus, and involves telescoping series.
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Example 1.1.5. Consider the following addition problem: evaluate

12 − 7

+ 45 − 12

+ 231 − 45

+ 7981 − 231

+ 9812 − 7981. (1.1.5)

The ‘natural’ way to do this is to do evaluate each line and then add; if we do this we get

5 + 33 + 186 + 7750 + 1831 = 9805 (1.1.6)

(or at least that’s what we got when we used Mathematica). A much faster way to do this is to
regroup; we have a +12 and a −12, and so these terms cancel. Similarly we have a +45 and a
−45, so these terms cancel. In the end we are left with

9812− 7 = 9805, (1.1.7)

a much simpler problem! (One application of telescoping series is in the proof of the fundamental
theorem of calculus, where they are used to show the area under the curve y = f(x) from x = a to
b is given by F (b)− F (a), where F is any anti-derivative of f .)

We turn to linear algebra for our second example.

Example 1.1.6. Consider the matrix

A =

(
1 0
1 1

)
; (1.1.8)

what is A100? If your probability (or linear algebra) grade depended on you getting this right, you
would be in good shape. So long as you don’t make any algebra errors, after a lot of brute force
computations (namely 99 matrix multiplications!) you’ll find

A100 =

(
218922995834555169026 354224848179261915075
354224848179261915075 573147844013817084101

)
. (1.1.9)

We can find this answer much faster if we diagonalize A. The eigenvalues of A are ϕ = 1+
√

5
2

and
−1/ϕ, with corresponding eigenvectors

−→v 1 =

( −1 + ϕ
1

)
and −→v 2 =

( −1− 1/ϕ
1

)
. (1.1.10)

Letting S = (−→v 1
−→v 2) and Λ =

(
ϕ 0
0 −1/ϕ

)
, we see A = SΛS−1. The key observation is that

S−1S = I , the 2× 2 identity matrix. Thus

A2 = (SΛS−1)(SΛS−1) = SΛ(S−1S)ΛS−1 = SΛ2S−1; (1.1.11)
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more generally,
An = SΛnS−1. (1.1.12)

If we only care about finding A2, this is significantly more work; however, there is a lot of savings if
n is large. Note how similar this is to the telescoping example, with all the S−1S terms canceling.

Remark 1.1.7. As you might have guessed, this is not a randomly chosen matrix! This matrix arises
in solving the Fibonacci difference equation, an+1 = an + an−1, and ϕ is the golden mean. If we let

−→v 0 =

(
0
1

)
and −→v n =

(
an

an+1

)
, (1.1.13)

then −→v n = An−→v 0. Thus, if we know An, we can quickly compute how many rabbits are alive at
time n without having to compute how many were alive at time 1, time 2, . . . , time n− 1.

Remark 1.1.8. There are two reasons to simplify algebra. One is for computational efficiency, the
other is to illuminate connections.

In the next subsection we show how generating functions behave nicely with convolution, and
from this we’ll finally get our examples of why generating functions are so useful.

1.1.3 Convolutions I: Discrete random variables
If we have two sequences {am}∞m=0 and {bn}∞n=0, we define their convolution to be the new sequence
{ck}∞k=0 given by

ck = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0 =
k∑

`=0

a`bk−`. (1.1.14)

We frequently write this as c = a ∗ b. This definition arises from multiplying polynomials; if
f(x) =

∑∞
m=0 amxm and g(x) =

∑∞
n=0 bnx

n, then assuming everything converges we have

h(x) = f(x)g(x) =
∞∑

k=0

ckx
k, (1.1.15)

with c = a ∗ b. For example, if f(x) = 2 + 3x − 4x2 and g(x) = 5 − x + x3, then f(x)g(x) =
10 + 13x− 23x2 + 6x3 + 3x4 − 4x5. According to our definition, c2 should equal

a0b2 + a1b1 + a2b0 = 2 · 0 + 3 · (−1) + (−4) · 5 = −23, (1.1.16)

which is exactly what we get from multiplying f(x) and g(x).
Replacing the dummy variable x with s, we find

Lemma 1.1.9. Let Ga(s) be the generating function for {am}∞m=0 and Gb(s) the generating function
for {bn}∞n=0. Then the generating function of c = a ∗ b is Gc(s) = Ga(s)Gb(s).
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We can now give our first application of how generating functions can simplify algebra.

Example 1.1.10. What is
∑n

m=0

(
n
m

)2? If we evaluate this sum for small values of n we find that
when n = 1 the sum is 1, when n = 2 it is 6, when n = 3 it is 20, then 70 and then 252. We
might realize that the answer seems to be

(
2n
n

)
, but even if we notice this, how would we prove it?

A natural idea is to try induction. We could write
(

n
m

)2 as
((

n−1
m−1

)
+

(
n−1
m

))2
(noting that we have

to be careful when m = 0). If we expand the square we get two sums similar to the initial sum but
with an n− 1 instead of an n, which we would know by induction; the difficulty is that we have the
cross term

(
n−1
m−1

)(
n−1
m

)
to evaluate, which requires some effort to get this to look like something nice

times something like
(

n−1
`

)2
.

Using generating functions, the answer just pops out. Let a = {am}n
m=0, where am =

(
n
m

)
. Thus

Ga(s) =
n∑

m=0

(
n

m

)
sm =

n∑
m=0

(
n

m

)
sm1n−m = (1 + s)n (1.1.17)

(when we have binomial sums such as this, it is very useful to introduce factors such as 1n−m, which
facilitates using the Binomial Theorem).

Let c = a ∗ a, so by Lemma 1.1.9 we have Gc(s) = Ga(s)Ga(s) = Ga(s)
2. At first this doesn’t

seem too useful, until we note that

cn =
n∑

`=0

a`an−` =
n∑

`=0

(
n

`

)(
n

n− `

)
=

n∑

`=0

(
n

`

)2

(1.1.18)

as
(

n
n−`

)
=

(
n
`

)
. Thus the answer to our problem is cn. We don’t know cn, but we do know its

generating function, and the entire point of this exercise is to show sometimes it is more useful to
know one and deduce the other. We have

2n∑

k=0

cks
k = Gc(s) = Ga(s)

2 = (1 + s)n · (1 + s)n = (1 + s)2n =
2n∑

k=0

(
2n

k

)
sk. (1.1.19)

Thus cn =
(
2n
n

)
as claimed.

While we have finally found an example where it is easier to study the problem through gener-
ating functions, some things are unsatisfying about this problem. The first is we still needed to have
some combinatorial expertise, noting

(
n
`

)
=

(
n

n−`

)
; this is minor for two reasons. First, this is one

of the most important properties of binomial coefficients (the number of ways of choosing ` people
from n people when order doesn’t matter is the same as the number of ways of excluding n − `).
The second is more severe: why would one ever consider convolving our sequence a with itself to
solve this problem!

The answer to the second objection is that convolutions arise all the time in probability, and thus
it is natural to study any process which is nice with respect to convolution. To see this, we define
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Definition 1.1.11 (Probability generating function). Let X be a discrete random variable taking on
values in the integers. Let GX(s) be the generating function to {am}∞m=−∞ with am = Prob(X =
m). Then GX(s) is called the probability generating function. If X is only non-zero at non-negative
integers, a very useful way of computing GX(s) is to note that

GX(s) = E[sX ] =
∞∑

m=0

smProb(X = m). (1.1.20)

The function GX(s) can be a bit more complicated than the other generating functions we’ve
seen if X takes on negative values; if this is the case, we are no longer guaranteed that GX(0) makes
sense! One way we can get around this problem is by restricting to s with 0 < α < |s| < β for some
α, β; another is to restrict ourselves to random variables taking on non-negative integer values. We
concentrate on the latter. While this does restrict a bit the distributions we may study, so many of
the common, important probability distributions take on non-negative integer values that we will
still have a wealth of examples and applications.

We can now state one of the most important results for probability generating functions.

Theorem 1.1.12. Let X1 and X2 be independent discrete random variables taking on non-negative
integer values, with corresponding probability generating functions GX1(s) and GX2(s). Then
GX1+X2(s) = GX1(s)GX2(s).

Proof. The proof proceeds from unwinding the definitions. We have

Prob(X1 + X2 = k) =
∞∑

`=0

Prob(X1 = `)Prob(X2 = k − `). (1.1.21)

If we let am = Prob(X1 = m), bn = Prob(X2 = n) and ck = Prob(X1 + X2 = k), we see that
c = a ∗ b. Thus Gc(s) = Ga(s)Gb(s), or equivalently, GX1+X2(s) = GX1(s)GX2(s).

Remark 1.1.13. Whenever you see a theorem, you should remove a hypothesis and ask if it is still
true. Usually the answer is a resounding NO! (or, if true, the proof is usually significantly harder).
In the theorem above, how important is it for the random variables to be independent? As an
extreme example consider what would happen if X2 = −X1. Then X1 + X2 is identically zero, but
GX1+X2(s) 6= GX1(s)G−X1(s).

The above shows why generating functions play such a central role in probability: the density of
the sum of two independent random variables is the convolution of their probabilities!

Exercise 1.1.14. Generalize Theorem 1.1.12 to the sum of a finite number of independent random
variables. In particular, if X, X1, . . . , Xn are independent, identically distributed discrete random
variables taking on values in the non-negative integers, prove GX1+···+Xn(s) = GX(s)n.
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1.1.4 Convolutions II: Continuous random variables
The results of the previous subsection readily generalize to continuous random variables. We first
generalize the notion of convolution, and then show how this applies to continuous random vari-
ables.

Definition 1.1.15 (Convolution). The convolution of two functions f1 and f2, denoted f1 ∗ f2, is

(f1 ∗ f2)(x) =

∫ ∞

−∞
f1(t)f2(x− t)dt. (1.1.22)

Let X1 and X2 be continuous random variables with densities f1 and f2, and set X = X1 + X2.
Consider the convolution of their densities:

(f1 ∗ f2)(x) =

∫ ∞

−∞
f1(t)f2(x− t)dt. (1.1.23)

Note that if we want X1 + X2 = x, then X1 = t for some t and X2 is then forced to be x− t. Thus
this integral gives the probability density for X1 + X2, which we denote by f . In other words,

f(x) = (f1 ∗ f2)(x) =

∫ ∞

−∞
f1(t)f2(x− t)dt. (1.1.24)

We check that f is a density. As f1 and f2 are densities, they are non-negative and thus the
integral defining f(x) is clearly non-negative. We must show that if we integrate over all x that we
get 1. We have

∫ ∞

x=−∞
f(x)dx =

∫ ∞

x=−∞

∫ ∞

t=−∞
f1(t)f2(x− t)dtdx

=

∫ ∞

t=−∞
f1(t)

[∫ ∞

x=−∞
f2(x− t)dx

]
dt

=

∫ ∞

t=−∞
f1(t)

[∫ ∞

u=−∞
f2(u)du

]
dt

=

∫ ∞

t=−∞
f1(t) · 1dt = 1. (1.1.25)

(In analysis classes we are constantly told to be careful about interchanging orders of integration;
this is always permissible in probability theory as our densities take on non-negative values, and
thus Fubini’s theorem holds.)

This is a natural generalization of the convolution of two sequences, where ck =
∑

a`bk−`

becomes (f1 ∗ f2)(x) =
∫

f1(t)f2(x− t).
It is worth isolating the following result:

Lemma 1.1.16. The convolution of two sequences or functions is commutative; in other words,
a ∗ b = b ∗ a or f1 ∗ f2 = f2 ∗ f1.
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Proof. The proof follows immediately from simple algebra. For example,

Ga∗b(s) = Ga(s)Gb(s) = Gb(s)Ga(s) = Gb∗a(s); (1.1.26)

we could also perform the algebra in the defining sums for ck, but this is cleaner. We may also
see this is true by noting the probabilistic interpretation; if X1 and X2 are independent random
variables, then X1 + X2 = X2 + X1 (in fact, this is what we’re doing when we look at the product
of the generating functions).

1.1.5 Definition and properties of moment generating functions
In Remark 1.1.4 we commented that we can recover our sequence from the generating function
through differentiation. In particular, if a = {am}∞m=0 and Ga(s) = amsm, then am = 1

m!
dmGa(s)

dsm ;
however, the factor 1/m! is annoying. There is a related generating function that does not have
this factor, the moment generating function. Before defining it, we briefly recall the definition of
moments.

Definition 1.1.17 (Moments). Let X be a random variable with density f . Its kth moment, denoted
µ′k, is defined by

µ′k :=
∞∑

m=0

xk
mf(xm) (1.1.27)

if X is discrete, taking non-zero values only at the xm’s, and

µ′k :=

∫ ∞

−∞
xkf(x)dx (1.1.28)

if X is continuous. In both cases we denote this as µ′k = E[Xk]. We define the kth centered moment,
µk, by µk := E[(X − µ′1)

k]. We frequently write µ for µ′1 and σ2 for µ2.

Whenever we deal with a discrete random variable, we let {xm}∞m=−∞ or {xm}∞m=0 or {xm}∞m=1

denote the set of points where the probability density is non-zero. In most applications, we have
{xm}∞m=−∞ = {0, 1, 2, . . . }.

Definition 1.1.18 (Moment generating function). Let X be a random variable. The moment gen-
erating function of X , denoted MX(t), is given by MX(t) = E[etX ]. Explicitly, if X is discrete
then

MX(t) =
∞∑

m=−∞
etxmf(xm), (1.1.29)

while if X is continuous then

MX(t) =

∫ ∞

−∞
etxf(x)dx. (1.1.30)
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Of course, it is not clear that MX(t) exists for any value of t. Frequently what happens is that it
exists for some, but not all, t. Usually this is enough to allow us to deduce an amazing number of
facts. We now collect many of the nice properties of the moment generating function, which show
its usefulness in probability.

Theorem 1.1.19. Let X be a random variable with moments µ′k.

1. We have

MX(t) = 1 + µ′1t +
µ′2t

2

2!
+

µ′3t
3

3!
+ · · · ; (1.1.31)

in particular, µ′k = dkMX(t)/dtk
∣∣∣
t=0

.

2. Let α and β be constants. Then

MαX+β(t) = eβtMX(αt). (1.1.32)

Useful special cases are MX+β(t) = eβtMX(t) and MαX(t) = MX(αt); when proving the
central limit theorem, it is also useful to have M(X+β)/α(t) = eβt/αMX(t/α).

3. Let X1 and X2 be independent random variables with moment generating functions MX1(t)
and MX2(t) which converge for |t| < r. Then

MX1+X2(t) = MX1(t)MX2(t). (1.1.33)

More generally, if X1, . . . , XN are independent random variables with moment generating
functions MXi

(t) which converge for |t| < δ, then

MX1+···+XN
(t) = MX1(t)MX2(t) · · ·MXN

(t). (1.1.34)

If the random variables all have the same moment generating function MX(t), then the right
hand side becomes MX(t)N .

Proof. For notational convenience, we only prove the claims when X is a continuous random vari-
able with density f .

1. As the first claim is so important (this is the reason moment generating functions are stud-
ied!) we provide two proofs. The two proofs are similar, and both require some results from
analysis for general f .

For our first proof, we use the series expansion for the exponential function: etx =
∑∞

k=0(tx)k/k!.
We have

MX(t) =

∫ ∞

−∞

∞∑

k=0

xktk

k!
f(x)dx

=
∞∑

k=0

tk

k!

∫ ∞

−∞
xkf(x)dx; (1.1.35)
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the claim follows by noting the integral is just the definition of the kth moment µ′k. Note this
proof requires us to switch the order of an integral and a sum; this can be justified if MX(t)
converges for |t| < δ for some positive δ.

For our second proof, differentiate MX(t) a total of k times. Arguing that the derivative of
the integral is the integral of the derivative GIVE REF!, and noting the only t-dependence in
the integrand is the etx factor, we find

dkMX

dtk
=

∫ ∞

−∞

[
dketx

dtk

]
f(x)dx =

∫ ∞

−∞
xketxf(x)dx; (1.1.36)

the claim now follows from taking t = 0 and recalling the definition of the moments.

2. We now turn to the second claim. We have

MαX+β(t) =

∫ ∞

−∞
et(αx+β)f(x)dx

= eβt

∫ ∞

−∞
etαxf(x)dx = eβtMX(αt), (1.1.37)

as the last integral is just the moment generating function evaluated at αt instead of t. The
special cases now readily follow.

3. The third property follows from the fact that the expected value of independent random vari-
ables is the product of the expected values. If X1 and X2 are independent, so too is the pair
etX1 and etX2 (remember t is fixed). Thus

MX1+X2(t) = E[et(X1+X2)]

= E[etX1etX2 ]

= E[etX1 ]E[etX2 ] = MX1(t)MX2(t). (1.1.38)

1.1.6 Applications of moment generating functions

Let’s do some examples where we compute moment generating functions and see how useful they
can be.

Example 1.1.20. Let X be a Poisson random variable with parameter λ and density f ; this means
that

f(n) = Prob(X = n) =
λne−λ

n!
(1.1.39)
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for n ≥ 0, and 0 otherwise. The moment generating function is

MX(t) =
∞∑

n=0

etnf(n)

=
∞∑

n=0

etn λne−λ

n!

= e−λ

∞∑
n=0

λnetn

n!

= e−λ

∞∑
n=0

(λet)n

n!

= e−λeλet

= eλ(et−1). (1.1.40)

From part (3) of Theorem 1.1.19, if X1 and X2 are independent Poisson random variables with
parameters λ1 and λ2, then

MX1+X2(t) = MX1(t)MX2(t)

= eλ1(et−1)eλ2(et−1)

= e(λ1+λ2)(et−1). (1.1.41)

Note this is exactly the moment generating function of a Poisson random variable with parameter
λ1 + λ2, obtained with significantly less work than the brute force approach! Does this imply that
X1 + X2 is a Poisson random variable with parameter λ1 + λ2? Yes, because of the following
theorem.

Theorem 1.1.21 (Uniqueness of moment generating functions for discrete random variables). Let
X and Y be discrete random variables taking on non-negative integer values (i.e., they are non-zero
only in {0, 1, 2, . . . }) with moment generating functions MX(t) and MY (t), each of which converges
for |t| < δ. Then X and Y have the same distribution if and only if MX(t) = MY (t) for |t| < δ.

In other words, discrete random variables are uniquely determined by their moment generating
functions (if they converge).

Proof. One direction is trivial; namely, if X and Y have the same distribution then clearly MX(t) =
MY (t). What about the other direction? We’ll first prove the claim in a simpler case, and then tackle
the general setting.

If X and Y are non-zero only finitely often, the proof is much simpler. Imagine this is the case;
let X take on non-zero values 0 ≤ x1 < x2 < · · · < xm with positive probabilities p1, . . . , pm, and
let Y take on non-zero values 0 ≤ y1 < y2 < · · · < yn with positive probabilities q1, . . . , qn. As the
moment generating functions are equal, by part (3) of Theorem 1.1.19 all the moments are equal, as

MX(t) = 1 + µ′1t +
µ′2t

2

2!
+

µ′3t
3

3!
+ · · · = MY (t). (1.1.42)



1.1. GENERATING FUNCTIONS 17

For the kth moment, this means

p1x
k
1 + · · ·+ pmxk

m = q1y
k
1 + · · ·+ qnyk

n. (1.1.43)

As this must hold for all k, it seems absurd that it could be true unless m = n, xi = yi and
pi = qi. There are many ways to see this. Assume xm 6= yn; without loss of generality let’s assume
yn > xm. For k enormous, the left hand side of (1.1.43) is essentially pmxk

m, while the right hand
side is basically qny

k
n, and the right hand side will be magnitudes larger. For example, imagine

pm = .3, xm = 100, qn = .001 and yn = 150. When k = 5, pmxk
m ≈ 3 · 109 while qnyk

n ≈ 7.5 · 107;
when k = 21 these numbers become approximately 3 · 1041 and 5 · 1042, while if k = 1001 it
becomes approximately 3 · 102001 and 2 · 102175. The proof is completed by induction; we leave the
details to the reader as we’ll give another, more complete proof below. The reason this proof works
is that, for a distribution non-zero only finitely often, the high moments are essentially controlled
by the largest value.

The following proof is more direct, and works for any discrete distributions. From Theorem
1.1.3, we know that two sequences {am}∞m=0 and {bn}∞n=0 are equal if and only if their generating
functions are equal. Let am = Prob(X = m) and bn = Prob(Y = n). The generating functions
are (see Definition 1.1.2)

Ga(s) = E[sX ] =
∞∑

m=0

smProb(X = m)

Gb(s) = E[sY ] =
∞∑

n=0

snProb(Y = n); (1.1.44)

however, the generating functions are trivially related to the moment generating functions through

MX(t) = E[etX ], MY (t) = E[etY ]. (1.1.45)

If we let s = et, we find Ga(e
t) = MX(t) and Gb(e

t) = MY (t); as MX(t) = MY (t), Ga(e
t) =

Gb(e
t). We now know that the generating functions are equal, and hence by Theorem 1.1.3 the

corresponding sequences are equal. But this means Prob(X = i) = Prob(Y = i) for all i, and so
the two densities are the same.

Remark 1.1.22. There is a lot to remark about in the theorem above. It is very useful; it says
that the moment generating function of a discrete random variable which is non-zero only at the
non-negative integers uniquely determines the distribution! While there are a lot of hypotheses in
this statement, these are fairly mild ones. Most of the discrete distributions we study and use are
supported on the non-negative integers, so this is not that restrictive an assumption. Arguing as in
Remark 1.1.4, however, we can remove this hypothesis. Imagine first that the random variables only
take on non-negative values, so we have

Ga(s) = E[sX ] =
∞∑

m=0

amsxm

Gb(s) = E[sY ] =
∞∑

n=0

bns
yn . (1.1.46)
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Without loss of generality, assume x0 ≤ y0. As Ga(s)/s
x0 = Gb(s)/s

x0 for all s, sending s → 0
gives a0 = b0 lims→0 sy0−x0; as each am 6= 0, the only way this can hold is if y0 = x0 and a0 = b0.
We continue in this manner (specifically, we play this game again, except now our two functions are
Ga(s)− a0s

x0 and Gb(s)− a0s
x0).

We now return to Example 1.1.20. Using moment generating functions, we saw the sum of two
Poisson random variables with parameters λ1 and λ2 had its moment generating function equal to
e(λ1+λ2)(et−1). As the moment generating function of a Poisson random variable with parameter λ is
just eλ(et−1), by Theorem 1.1.21 we can now conclude that the sum of two Poisson random variables
with parameters λ1 and λ2 is a Poisson random variable, with parameter equal to the λ1 + λ2 (see
also Exercise 1.1.1).

We now consider a continuous example.

Example 1.1.23. Let X be an exponentially distributed random variable with parameter λ, so its
density function is f(x) = λ−1e−x/λ for x ≥ 0 and 0 otherwise. We can calculate its moment
generating function:

MX(t) =

∫ ∞

−∞
etx · e−x/λ

λ
dx

=
1

λ

∫ ∞

−∞
e−(λ−1−t)xdx. (1.1.47)

We change variables by setting u = (λ−1− t)x, so dx = du/(λ−1− t). As long as λ−1 > t (in other
words, so long as t < 1/λ) the exponential has a negative argument, and thus converges. We find

MX(t) =
1

λ

∫ ∞

−∞
e−u du

λ−1 − t
=

1

1− λt

∫ ∞

−∞
e−udu = (1− λt)−1. (1.1.48)

In our analysis we needed t < 1/λ; note that for such t, the resulting expression for MX(t) makes
sense. (While (1− λt)−1 makes sense for all t 6= 1/λ, clearly something is happening when t goes
from below 1/λ to above.)

If Xi (i ∈ {1, 2}) are independent exponentially distributed random variables with parameters
λi, from the example above and part (3) of Theorem 1.1.19 we find MX1+X2(t) = (1− λ1t)

−1(1−
λ2t)

−1. What does this imply about the distribution of X1 + X2? Is it anything nice? What if we
restrict to the special case λ1 = λ2 = λ? Can we say anything here?

The following dream theorem would make life easy: A probability distribution is uniquely de-
termined by its moments. This would be the natural analogue of Theorem 1.1.21 for continuous
random variables. Is it true? Sadly, this is not always the case; there exist distinct probability
distributions which have the same moments. The standard example given are the following two
densities, defined for x ≥ 0 by

f1(x) =
1√

2πx2
e−(log2 x)/2

f2(x) = f1(x) [1 + sin(2π log x)] . (1.1.49)
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In the next three subsections we explore what goes wrong with the functions from (1.1.49). After
seeing what the problem is, we discuss what additional properties we need to assume to prevent
such an occurance. The solution involves results from complex analysis, which will tell us when a
moment generating function (of a continuous random variable) uniquely determines a probability
distribution.

1.2 Complex Analysis Results

1.2.1 Warnings from real analysis
The following example is one of our favorites from real analysis. It indicates why real analysis is
hard, almost surely much harder than you might expect.

Example 1.2.1. Consider the function g : R→ R given by

g(x) =

{
e−1/x2

if x 6= 0

0 otherwise.
(1.2.1)

Using the definition of the derivative and L’Hopital’s rule, we can show that f is infinitely differen-
tiable, and all of its derivatives at the origin vanish. For example,

g′(0) = lim
h→0

e−1/h2 − 0

h

= lim
h→0

1/h

e1/h2

= lim
k→∞

k

ek2

= lim
k→∞

1

2kek2 = 0, (1.2.2)

where we used L’Hopital’s rule in the last step (limk→∞ A(k)/B(k) = limk→∞ A′(k)/B′(k) if
limk→∞ A(k) = limk→∞ B(k) = ∞). A similar analysis shows g(n)(0) = 0 for any n. If we
consider the Taylor series for g about 0, we find

g(x) = g(0) + g′(0)x +
g′′(0)x2

2!
+ · · · =

∞∑
n=0

g(n)(0)xn

n!
= 0; (1.2.3)

however, clearly g(x) 6= 0 if x 6= 0. We are thus in the ridiculous case where the Taylor series
(which converges for all x!) only agrees with the function when x = 0. This isn’t that impressive,
as the Taylor series is forced to agree with the original function at 0, as both are just g(0).

There is a lot we can learn from the above example. The first is that it is possible for a Taylor
series to converge for all x, but only agree with the function at one point! The second, which is far
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more important, is that a Taylor series does not uniquely determine a function! For example, both
sin x and sin x + g(x) (with g(x) the function from the previous example) have the same Taylor
series about x = 0.

The reason this is so important for us is that we want to understand when a moment generating
function uniquely determines a probability distribution. If our distribution was discrete, there was
no problem (Theorem 1.1.21). For continuous distributions, however, it is much harder, as we saw
in (1.1.21) where we met two densities that had the same moments.

It is therefore apparant that we must impose some additional conditions for continuous random
variables. For discrete random variables, it was enough to know all the moments; this doesn’t suffice
for continuous random variables. What should those conditions be?

Let’s consider again the pair of functions in (1.1.21). A nice calculus exercise shows that µ′k =
ek2/2. This means that the moment generating function is

MX(t) =
∞∑

k=0

µ′kt
k

k!
=

∞∑

k=0

ek2/2tk

k!
; (1.2.4)

for what t does this series converge? We claim it converges only when t = 0! To see this, it suffices
to show that the terms do not tend to zero. As k! ≤ kk, for any fixed t, for k sufficiently large
tk/k! ≥ (t/k)k; moreover, ek2/2 = (ek/2)k, so the kth term is at least as large as (ek/2t/k). For any
t 6= 0, this clearly does not tend to zero, and thus the moment generating function has a radius of
convergence of zero!

This leads us to the following conjecture: If the moment generating function converges for
|t| < δ for some r, then it uniquely determines a density. We’ll explore this conjecture in the
following subsections.

1.2.2 Complex analysis definitions

Our purpose here is to give a flavor of what kind of inputs are needed to ensure that a moment
generating function uniquely determines a probability density. We first collect some definitions,
and then state some useful results from complex analysis.

Definition 1.2.2 (Complex variable, complex function). Any complex number z can be written as
z = x+ iy, with x and y real. A complex function is a map f from C to C; in other words f(z) ∈ C.
Frequently one writes x = Re(z), y = Im(z), and f(z) = u(x, y)+ iv(x, y) with u and v functions
from R2 to R.

Definition 1.2.3 (Differentiable). We say a complex function f is differentiable at z0 if it is differen-
tiable with respect to the complex variable z, which means

lim
h→0

f(z0 + h)− f(z0)

h
(1.2.5)
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exists, where h tends to zero along any path in the complex plane. If the limit exists we write f ′(z0)
for the limit. If f is differentiable, then f satisfies the Cauchy-Riemann equations:

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= −i

∂u

∂y
+

∂v

∂y
(1.2.6)

(one direction is easy, arising from sending h → 0 along the paths h̃ and ih̃, with h̃ ∈ R).

Many of the theorems below deal with open sets. We briefly review their definition and give
some examples.

Definition 1.2.4 (Open set, closed set). A subset U of C is an open set if for any z0 ∈ U there is a δ
such that whenever |z− z0| < δ then z ∈ U (note δ is allowed to depend on z0). A set C is closed if
its complement, C \ C, is open.

Example 1.2.5. The following are examples of open sets in C:

1. U1 = {z : |z| < r} for any r > 0. This is usually called the ball of radius r centered at the
origin.

2. U2 = {z : Re(z) > 0}. To see this is open, if z0 ∈ U2 then we can write z0 = x0 + iy0, with
x0 > 0. Letting δ = x0/2, for z = x + iy we see that if |z − z0| < δ then |x − x0| < x0/2,
which implies x > x0/2 > 0. U2 is often called the open right half-plane.

For examples of closed sets, consider

1. C1 = {z : |z| ≤ r}. Note that if we take z0 to be any point on the boundary, then the ball of
radius δ centered at z0 will contain points more than r units from the origin, and thus C1 is
not open. A little work shows, however, that C1 is closed (in fact, C1 is called the closed ball
of radius r about the origin).

2. C2 = {z : Re(z) ≥ 0}. To see this set is not open, consider any z0 = iy with y ∈ R. A
similar calculation as the one we did for U2 shows C2 is closed.

For a set that is neither open nor closed, consider S = U1 ∪ C2.

Definition 1.2.6 (Holomorphic, analytic). Let U be an open subset of C, and let f be a complex
function. We say f is holomorphic on U if f is differentiable at every point z ∈ U , and we say f is
analytic on U if f has a series expansion that converges and agrees with f on U . This means that
for any z0 ∈ U , for z close to z0 we can choose an’s such that

f(z) =
∞∑

n=0

an(z − z0)
n. (1.2.7)

Saying a function of a complex variable is differentiable turns out to imply far more than saying
a function of a real variable is differentiable, as the following theorem shows us.
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Theorem 1.2.7. Let f be a complex function and U an open set. Then f is holomorphic on U if and
only if f is analytic on U , and the series expansion for f is its Taylor series.

The above theorem is amazing; its result seems to good to be true. Namely, as soon as we know
f is differentiable once, it is infinitely differentiable and f agrees with its Taylor series expansion!
This is very different than what happens in the case of functions of a real variable. For instance, the
function

h(x) = x3 sin(1/x) (1.2.8)

is differentiable once and only once at x = 0, and while the function g(x) from (1.2.1) is infinitely
differentiable, the Taylor series expansion only agrees with g(x) at x = 0.

The next theorem provides a very nice condition for when a function is identically zero. It
involves the notion of a limit or accumulation point, which we define first.

Definition 1.2.8 (Limit or accumulation point). We say z is a limit (or an accumulation) point of a
sequence {zn}∞n=0 if there exists a subsequence {znk

}∞k=0 converging to z.

Example 1.2.9. We give some examples.

1. If zn = 1/n, then 0 is a limit point.

2. If zn = cos(πn) then there are two limit points, namely 1 and −1. (If zn = cos(n) then every
point in [−1, 1] is a limit point of the sequence, though this is harder to show.)

3. If zn = (1+(−1)n)n +1/n, then 0 is a limit point. We can see this by taking the subsequence
{z1, z3, z5, z7, . . . }; note the subsequence {z0, z2, z4, . . . } diverges to infinity.

4. Let zn denote the number of distinct prime factors of n. Then every positive integer is a limit
point! For example, let’s show 5 is a limit point. The first five primes are 2, 3, 5, 7 and 11;
consider N = 2 · 3 · 5 · 7 · 11 = 2310. Consider the subsequence {zN , zN2 , zN3 , zN4 , . . . }; as
Nk has exactly 5 distinct prime factors for each k, 5 is a limit point.

5. If zn = n2 then there are no limit points, as limn→∞ zn = ∞.

6. Let z0 be any odd, positive integer, and set

zn+1 =

{
3zn + 1 if zn is odd
zn/2 if zn is even.

(1.2.9)

It is conjectured that 1 is always a limit point (and if some zm = 1, then the next few terms
have to be 4, 2, 1, 4, 2, 1, 4, 2, 1, . . . , and hence the sequence cycles). This is the famous 3x+1
problem. Kakutani called it a conspiracy to slow down American mathematics because of
the amount of time people spent on this; Erdos said mathematics is not yet ready for such
problems. ADD REFS TO LAGARIAS FOR MORE INFO.
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Figure 1.1: Plot of x3 sin(1/x).

Theorem 1.2.10. Let f be an analytic function on an open set U , with infinitely many zeros
z1, z2, z3, . . . . If limn→∞ zn ∈ U , then f is identically zero on U . In other words, if a function
is zero along a sequence in U whose accumulation point is also in U , then that function is identi-
cally zero in U .

Note the above is very different than what happens in real analysis. Consider again the function
from (1.2.8),

h(x) = x3 sin(1/x). (1.2.10)

This function is continuous and differentiable. It is zero whenever x = 1
πn

with n an integer. If
we let zn = 1

πn
, we see this sequence has 0 as a limit point, and our function is alos zero at 0 (see

Figure 1.1). It is clear, however, that this function is not identically zero. Yet again, we see a stark
difference between real and complex valued functions. As a nice exercise, show that x3 sin(1/x) is
not complex differentiable. It will help if you recall eiθ = cos θ + i sin θ, or sin θ = (eiθ − e−iθ)/2.

1.2.3 Integral transforms
Given a function K(x, y) and an interval I (which is frequently (−∞,∞) or [0,∞)), we can con-
struct a map from functions to functions as follows: send f to

∫
I
f(x)K(x, y)dx. As the integrand

depends on the two variables x and y and we only integrate out x, the result will be a function of y.
Obviously it does not matter what letters we use for the dummy variables; other common choices
are K(t, x) or K(t, s) or K(x, ξ).

Integral transforms are useful for studying a variety of problems. Their utility stems from the
fact that the related function leads to simpler algebra for the problem at hand. We define two of the
most important integral transforms, the Laplace and the Fourier transforms.

Definition 1.2.11 (Laplace Transform). Let K(t, s) = e−ts. The Laplace transform of f , denoted
Lf , is given by

(Lf)(s) =

∫ ∞

0

f(t)e−stdt. (1.2.11)
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Given a function g, its inverse Laplace transform, L−1g, is

(L−1g)(t) = lim
T→∞

1

2πi

∫ c+iT

c−iT

estg(s)ds = lim
T→∞

1

2πi

∫ T

−T

e(c+iτ)tg(c + iτ)idτ. (1.2.12)

Definition 1.2.12 (Fourier Transform). Let K(x, y) = e−2πixy. The Fourier transform of f , denoted
Ff or f̂ , is given by

f̂(y) =

∫ ∞

−∞
f(x)e−2πixydx, (1.2.13)

where

eiθ :=
∞∑

n=0

θn

n!
= cos θ + i sin θ. (1.2.14)

The inverse Fourier transform of g, denoted F−1g, is

(F−1g)(x) =

∫ ∞

−∞
g(y)e2πixydy. (1.2.15)

Note other books define the Fourier transform differently, sometimes using K(x, y) = e−ixy or
K(x, y) = e−ixy/

√
2π.

Remark 1.2.13. The Laplace and Fourier transforms are related. If we let s = 2πiy and consider
functions f(x) which vanish for x ≤ 0, we see the Laplace and Fourier transforms are equal.

Given a function f we can compute its transform. What about the other direction? If we are told
g is the transform of some function f , can we recover f from knowing g? If yes, is the corresponding
f unique? Fortunately, the answer to both questions turns out to be ‘yes’, provided f and g satisfy
certain nice conditions. A particularly nice set of functions to study is the Schwartz space.

Definition 1.2.14 (Schwartz space). The Schwartz space, S(R), is the set of all infinitely differen-
tiable functions f such that, for any non-negative integers m and n,

sup
x∈R

∣∣∣∣(1 + x2)m dnf

dxn

∣∣∣∣ < ∞, (1.2.16)

where supx∈R |g(x)| is the smallest number B such that |g(x)| ≤ B for all x (think ‘maximum value’
whenever you see supremum).

Theorem 1.2.15 (Inversion Theorems). ADD STUFF ON LAPLACE! Let f ∈ S(R), the Schwartz
space. Then

f(x) =

∫ ∞

−∞
f̂(y)e2πixydy, (1.2.17)

where f̂ is the Fourier transform of f . In particular, if f and g are Schwartz functions with the same
Fourier transform, then f(x) = g(x).
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This interplay between a function and its transform will be very useful for us when we study
probability distributions, as the moment generating function is an integral transform of the density!
Recall the moment generating function is defined by MX(t) = E[etX ], or

MX(t) =

∫ ∞

−∞
etxf(t)dt. (1.2.18)

If f(x) = 0 for x ≤ 0, this is just the Laplace transform of f . Alternatively, if we take t = −2πiy
then it is the Fourier transform of f . This is trivially related to (yet another!) generating function,
the characteristic function of X , which is defined by φ(t) = E[eitX ].

We now see why these results from complex analysis will save the day. The inversion formulas
above tell us that, if our initial distribution is nice, then knowing its integral transform is the same
as knowing it; in other words, knowing the integral transform uniquely determines the distribution.

1.2.4 Complex analysis and moment generating functions
We conclude our technical digression by stating a few more very useful facts. The proof of these
requires properties of the Laplace transform, which is defined by (Lf)(s) =

∫∞
0

e−sxf(x)dx. The
reason the Laplace transform plays such an important role in the theory is apparent when we recall
the definition of the moment generating function of a random variable X with density f :

MX(t) = E[etX ] =

∫ ∞

−∞
etxf(x)dx; (1.2.19)

in other words, the moment generating function is the Laplace transform of the density evaluated at
−s = t.

Before stating our results, we recall some notation.

Definition 1.2.16. Let FX and GY be the cumulative distribution functions of the random variables
X and Y with densities f and g. This means

FX(x) =

∫ x

−∞
f(t)dt

GY (y) =

∫ y

−∞
g(v)dv. (1.2.20)

Our results from complex analysis imply the following two very important and useful theo-
rems for determining when we have enough information from the moments to uniquely determine
a probability density.

Theorem 1.2.17. Assume the moment generating functions MX(t) and MY (t) exist in a neighbor-
hood of zero (i.e., there is some δ such that both functions exist for |t| < δ). If MX(t) = MY (t)
in this neighborhood, then FX(u) = FY (u) for all u. As the densities are the derivatives of the
cumulative distribution functions, we have f = g.
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Theorem 1.2.18. Let {Xi}i∈I be a sequence of random variables with moment generating functions
MXi

(t). Assume there is a δ > 0 such that when |t| < δ we have limi→∞ MXi
(t) = MX(t) for some

moment generating function MX(t), and all moment generating functions converge for |t| < δ.
Then there exists a unique cumulative distribution function F whose moments are determined from
MX(t) and for all x where FX(x) is continuous, limn→∞ FXi

(x) = FX(x).

The proof of these theorems follow from results in complex analysis, specifically the Laplace
and Fourier inversion formulas.

To give an example as to how the results from complex analysis allow us to prove results such
as these, we give most of the details in the proof of the next theorem. We deliberately do not try and
prove the following result in as great generality as possible!

Theorem 1.2.19. Let X and Y be two continuous random variables on [0,∞) with continuous
densities f and g, all of whose moments are finite and agree. Suppose further that:

1. There is some C > 0 such that for all c ≤ C, e(c+1)tf(et) and e(c+1)tg(et) are Schwartz
functions (see Definition 1.2.14). This is not a terribly restrictive assumption; f and g need
to have decay in order for all moments to exist and be finite. As we are evaluating f and g at
et and not t, there is enormous decay here. The meat of the assumption is that f and g are
infinitely differentiable and their derivatives decay.

2. The (not necessarily integral) moments

µ′rn
(f) =

∫ ∞

0

xrnf(x)dx and µ′rn
(g) =

∫ ∞

0

xrng(x)dx (1.2.21)

agree for some sequence of non-negative real numbers {rn}∞n=0 which has a finite accumula-
tion point (i.e., limn→∞ rn = r < ∞).

Then f = g (in other words, knowing all these moments uniquely determines the probability
density).

Proof. We sketch the proof. Let h(x) = f(x)− g(x), and define

A(z) =

∫ ∞

0

xzh(x)dx. (1.2.22)

Note that A(z) exists for all z with real part non-negative. To see this, let Re(z) denote the real part
of z, and let k be the unique non-negative integer with k ≤ Re(z) < k +1. Then xRez ≤ xk +xk+1,
and

|A(z)| ≤
∫ ∞

0

xRe(z) [|f(x)|+ |g(x)|] dx

≤
∫ ∞

0

(xk + xk+1)f(x)dx +

∫ ∞

0

(xk + xk+1)g(x)dx = 2µ′k + 2µ′k+1. (1.2.23)
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Results from analysis now imply that A(z) exists for all z. The key point is that A is also differen-
tiable. Interchanging the derivative and the integration (which can be justified), we find

A′(z) =

∫ ∞

0

xz(log x)h(x)dx. (1.2.24)

To show that A′(z) exists, we just need to show this integral is well-defined. There are only two
potential problems with the integral, namely when x →∞ and when x → 0. For x large, xz log x ≤
xdRe(z)e (where ewd is the smallest integer at least as large as w) and thus

∣∣∫∞
1

xz(log x)h(x)dx
∣∣ <

∞. For x near 0, h(x) looks like h(0) plus a small error (remember we are assuming f and g
continuous). There is a constant Cf,g such that

lim
ε→0

∫ 1

ε

∣∣∣∣
∫ ∞

0

xz(log x)h(x)dx

∣∣∣∣ ≤ lim
ε→0

∫ 1

ε

(log x)Cf,gdx; (1.2.25)

the reason it is less than or equal to the right hand side is that Re(z) > 0 so |xz| ≤ 1, and since
f and g are Schwartz functions they are bounded. The anti-derivative of log x is x log x − x, and
limε→0(ε log ε− ε)s = 0. This is enough to prove that this integral is bounded, and thus from results
in analysis we get A′(z) exists.

We (finally!) use our results from complex analysis. As A is differentiable once, it is infinitely
differentiable and it equals its Taylor series for z with Re(z) > 0. Therefore A is an analytic
function which is zero for a sequence of zn’s with an accumulation point, and thus it is identically
zero. This is amazing – initially we only knew A(z) was zero if z was a positive integer or if z was
in the sequence {rn}; we now know it is zero for all z with Re(z) > 0.

We change variables, and replace x with et and dx with etdt. The range of integration is now
−∞ to ∞, and we set h(t)dt = h(et)etdt. We now have

A(z) =

∫ ∞

−∞
etzh(t)dt = 0. (1.2.26)

Choosing z = c + 2πiy with c less than the C from our hypotheses gives

A(c + 2πiy) =

∫ ∞

−∞
e2πity

[
ecth(t)

]
dt = 0. (1.2.27)

Our assumptions imply that ecth(t) is a Schwartz function, and thus it has a unique inverse Fourier
transform. As we know this transform is zero, it implies that ecth(t) = 0, or h(x) = 0, or f(x) =
g(x).

Remark 1.2.20. What if we lessen our restrictions on f and g; perhaps one of them is not contin-
uous? Perhaps there is a unique continuous probability distribution attached to a given sequence
of moments such as in the above theorem, but if we allow non-continuous distributions there could
be additional possibilities. This topic is beyond the scope of this book, requiring more advanced
results from analysis; however, we wanted to point out where the dangers lie, where we need to be
careful.
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Exercise 1.2.21. If we are told that all the moments of f are finite and f is infinitely differentiable,
must there be some C such that for all c < C we have e(c+1)tf(et) is a Schwartz function?

After proving Theorem 1.2.19, it’s natural to go back to the two densities that are causing so
much trouble, namely (see (1.1.49))

f1(x) =
1√

2πx2
e−(log2 x)/2

f2(x) = f1(x) [1 + sin(2π log x)] . (1.2.28)

We know these two densities have the same integral moments (their kth moments are ek2/2 for k a
non-negative integer). These functions have the correct decay; note

e(c+1)tf1(e
t) = e(c+1)t · e−t2/2

√
2πet

, (1.2.29)

which decays fast enough for any c to satisfy the assumptions of Theorem 1.2.19. As these two
densities are not the same, some condition must be violated. The only condition left to check is
whether or not we have a sequence of numbers {rn}∞n=0 with an accumulation point r > 0 such that
the rn

th moments agree. Using complex analysis (specifically, contour integration), we can calculate
the (a + ib)thmoments. We find

(a + ib)th moment of f1 is e(a+ib)2/2 (1.2.30)

and

(a + ib) moment of f1 is e(a+ib)2/2 +
i

2

(
e(a+i(b−2π))2/2 − e(a+i(b+2π))2/2

)
. (1.2.31)

While these moments agree for b = 0 and a a positive integer, there is no sequence of real moments
having an accumulation point where they agree. To see this, note that when b = 0 the athmoment of
f2 is

ea2/2 + e(a−2iπ)2/2
(
1− e4iaπ

)
, (1.2.32)

and this is never zero unless a is a half-integer (i.e., a = k/2 for some integer k). In fact, the reason
we wrote (1.2.32) as we did was to highlight the fact that it is only zero when a is a half-integer.
Exponentials of real or complex numbers are never zero, and thus the only way this can vanish is
if 1 = e4iaπ. Recalling that eiθ = cos θ + i sin θ, we see that the vanishing of the athmoment is
equivalent to 1 − cos(4πa) − i sin(4πa) = 0; the only way this can happen is if a = k/2 for some
k. If this happens, the cosine term is 1 and the sine term is 0.

1.3 The Central Limit Theorem

1.3.1 Means, Variances and Standard Deviations
The Central Limit Theorem is one of the true gems of probability. The hypotheses are quite weak,
and are frequently met in practice. What is so amazing is the universality of the result. Before
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stating the Central Limit Theorem, we set some notation and motivate why we study the quantities
we do.

Recall that the mean µ and variance σ2 of a random variable X with density f is given by

µ = E[X] =

∫ ∞

−∞
xf(x)dx

σ2 = E[(X − µ)2] =

∫ ∞

−∞
(x− µ)2dx (1.3.1)

if X is a continuous random variable, and

µ = E[X] =
∞∑

n=1

xnf(xn)

σ2 = E[(X − µ)2] =
∞∑

n=1

(xi − µ)2 (1.3.2)

if X is discrete. We often write Var(X) for the variance of X . The mean measures the average
value of X , and the variance how spread out it is (the larger the variance, the more spread out the
density).

Example 1.3.1. Consider the following two data sets:

S1 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100}
S2 = {50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50}. (1.3.3)

Both data sets have a mean of 50, but the first is clearly more spread out than the second. If we try to
compute the variances of these two sets, we run into a problem, namely: what are the probabilities
f(xi)? Unless there is information to the contrary, one typically assumes that all data points are
equally likely. There are two ways now to determine the probabilities. The first way is to treat each
observation as a different measurement. In that case, we have x1 = x2 = · · · = x10 = 0, all with
probabilities 1/20, and x11 = x12 = · · ·x20 = 100, all with probability 1/20. Alternatively, we
could consider x1 = 0 with probability 1/2 and x2 = 100 with probability 1/2. Note, however, that
while the number of data points is different in the two interpretations, all computed quantities will
be the same. For example, let’s calculate the variance using both methods. Using the first, we find
the variance is

10∑
n=1

(0− 50)2 · 1

20
+

20∑
n=11

(100− 50)2 · 1

20
= 10 · 502 · 1

20
+ 10 · 502 · 1

20
= 502, (1.3.4)

while the second method gives

(0− 50)2 · 1

2
+ (100− 50)2 · 1

2
= 502. (1.3.5)

The second set, S2, is significantly easier to compute. All values are the same, and thus the variance
is clearly zero.
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Not surprisingly, the second data set has significantly smaller variance than the first; however,
there is something a bit unsettling about using the variance to quantify how spread out a data set
is. The difficulty comes when our numbers have physical meaning. For example, imagine the two
data sets are recording how wait time (in seconds) for a bank teller. Thus we either have a wait of
0 seconds, of 50 seconds, or of 100 seconds. In both banks the average waiting time of customers
is the same; however, in the second bank all customers have the same experience, while in the
first some are presumably very happy with no wait, while others are almost surely upset at a very
long wait. This can be seen by noting the variance in the second set is zero while in the first it is
502 = 2500; however, it is not quite right to say this. In this situation, there are units attached to
the variance. As time is measured in seconds, the variance is measured in seconds-squared. To be
honest, I have no real clue what a second-squared is. I can imagine a meter-squared (area), but a
second-squared? Yet this is precisely the unit that arises here. To see this, note that the xi and µ are
measured in seconds, the probabilities are unitless numbers, so the variance is a sum of expressions
such as (0sec− 50sec)2, (50sec− 50sec)2 and (100sec− 50sec)2. Thus, the variance is measured in
second-squared.

If I want to find out how long I need to wait, I’m expecting an answer such as ‘say 10 minutes,
plus or minus a minute or two’. I’m not expecting anyone to respond with ‘say 10 minutes, with
a variance of 1 or four minutes-squared’. Fortunately, there is a simple solution to this problem;
instead of reporting the variance, it is frequently more appropriate to report the standard deviation,
which is the square-root of the variance.

Returning to our earlier example, we would say that for the first data set, the mean wait time was
50 seconds, with a standard deviation of 50 seconds, while in the second it was also a mean wait
time of 50 seconds, but with a standard deviation of 0 seconds.

The point of the above is that the standard deviation and the mean have the same units, while
the variance and the mean do not; we always want to compare apples and apples (i.e., objects with
the same dimensions). In fact, this is why the notation for the variance is σ2, highlighting the fact
that the quantity we will frequently care about is σ, its square-root. Similar to writing Var(X) for
the variance of X , we occasionally write StDev(X) for its standard deviation.

1.3.2 Normalizations

In the previous subsection we saw that the variance of a random variable is not the right scale to
look at fluctuations, as the units were wrong. In particular, if X is measured in seconds then the
variance is in the physically mysterious unit of seconds-squared; it is the standard deviation that has
the same units, and thus it is the standard deviation that we use to discuss how spread out a data set
is.

Finding the correct scale or units to discuss a problem is very important. For example, imag-
ine we have two sections of calculus with identical students in each but very different professors
(admittedly this is not an entirely realistic situation as no two classes are identical; however, if the
classes are large then this is approximately true). Let’s assume one professor writes really easy
exams, and another writes very challenging ones. If we’re told that Hari from the first section has
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a 92 average and Daneel from the second section has an 84, which is the better student? Without
more information, it is very hard to judge – how does a 92 in the ‘easier’ section compare to an ‘84’
in the harder?

Let’s assume we know more about the two classes. Let’s say that in section 1 (the one with
the easier exams) the average grade is a 97 and the standard deviation is 1, while in section 2 the
average grade is a 64 and the standard deviation is 10. Once we know this, it’s clear that Daneel is
the superior student (remember in this pretend example we’re assuming the two classes are identical
in terms of ability; the only difference is that one takes easier tests than the other). Hari is actually
below average (by 5 standard deviations, a sizeable number), while Daneel is significantly above
average (by 2 standard deviations).

We are warned about comparing apples and oranges, and that’s what happened here – we have
two different scales, and an 84 on one scale does not mean the same as an 84 on the other. To avoid
problems like this (i.e., to compare apples and apples), we frequently normalize our data to have
mean zero and variance 1. This puts different data sets on the same scale. This is done as follows:

Definition 1.3.2 (Normalization of a random variable). Let X be a random variable with mean µ
and standard deviation σ, both of which are finite. The normalization, Y , is defined by

Y :=
X − E[X]

StDev(X)
=

X − µ

σ
. (1.3.6)

Note that
E[Y ] = 0 and StDev(Y ) = 1. (1.3.7)

Remark 1.3.3. Instead of calling the above a normalization we could call it a standardization or
a renormalization; after some thought we decided to call it a normalization. One reason is that
this process is used all the time in problems involving the Central Limit Theorem, and thus this is
setting the stage for the result there (which involves the normal distribution). For a typical X the
normalization will not be normally distributed.

The normalization process we’ve discussed is quite natural; it rescales any ’nice’ random vari-
able to a new one having mean 0 and variance 1. The only assumption we need is that it have
finite mean and standard deviation. This a mild assumption, but not all distributions satisfy it. For
example, consider the Cauchy distribution

f(x) =
1

π

1

1 + x2
. (1.3.8)

It is debateable whether or not this distribution has a mean; it clearly doesn’t have a finite variance.
Why is the mean of this distribution problematic? It’s because we have an improper integral where
the integrand is sometimes positive and sometimes negative. This means how we go to infinity
matters. For example,

lim
A→∞

∫ A

−A

xdx

π(1 + x2)
= lim

A→∞
0 = 0, (1.3.9)
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while

lim
A→∞

∫ 2A

−A

xdx

π(1 + x2)
= lim

A→∞

∫ 2A

A

xdx

π(1 + x2)
, (1.3.10)

and the last integral is, for A enormous, essentially
∫ 2A

A
dx/x = log(2A)− log(A) = log(2). Thus,

how we tend to infinity matters!

Remark 1.3.4. We cannot stress enough how important and useful it is to normalize a random
variable. We will discuss this again below, but given any random variable X , sending X to
(X − E[X])/StDev(X) is an extremely natural and often useful thing to do.

1.3.3 Statement of the Central Limit Theorem
Of the many distributions encountered in probability, perhaps the most important is the normal
distribution. One way to measure how important a distribution is to a subject is to count how
many different names are used to refer to it; in this case, names include the normal distribution, the
Gaussian distribution and the bell curve.

Definition 1.3.5 (Normal distribution). A random variable X is normally distributed (or has the
normal distribution, or is a Gaussian random variable) with mean µ and variance σ2 if the density
of X is

f(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
. (1.3.11)

We often write X ∼ N(µ, σ2) to denote this. If µ = 0 and σ2 = 1, we say X has the standard
normal distribution.

There are many versions of the Central Limit Theorem. The differences range from the hy-
potheses assumed and the type of convergence obtained; not surprisingly, the more nice properties
one assumes, the stronger the convergence. We state a theorem which, while not the most general
one possible, is easy to state and has hypotheses satisfied by most of the common distributions we
encounter.

Theorem 1.3.6 (Central Limit Theorem). Let X1, . . . , XN be independent, identically distributed
random variables whose moment generating functions converge for |t| < δ for some δ > 0 (this
implies all the moments exist and are finite). Denote the mean by µ and the variance by σ2, let

XN =
X1 + · · ·+ XN

N
(1.3.12)

and set

ZN =
XN − µ

σ/
√

N
. (1.3.13)

Then as N →∞, the distribution of ZN converges to the standard normal (see Definition 1.3.5 for
a statement).
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One way to interpret the above is as follows: imagine X1, . . . , XN are N independent measure-
ments of some process or phenomenon. Then XN is the average of the observed values. As the Xi’s
are drawn from a common distribution with mean µ, and as expectation is linear, we have

E[XN ] = E
[
X1 + · · ·+ XN

N

]
=

1

N

N∑
n=1

E[Xn] =
1

N
·Nµ = µ. (1.3.14)

Since the Xn’s are independent, the variance of XN is

Var(XN) = Var

(
X1 + · · ·+ XN

N

)
=

1

N2

N∑
n=1

Var(Xn) =
1

N2
·Nσ2 =

σ2

N
, (1.3.15)

so the standard deviation of XN is just σ/
√

N . Note as N → ∞ the standard deviation of XN

tends to zero. This leads to the following interpretation: as we take more and more measurements,
the distribution of the average value is living in a tighter and tighter band about the true mean. We
chose to write XN for the average value of the Xn’s to emphasize that we have a sum of N random
variables.

Most probability books have tables with the values of the standard normal. For example, imag-
ine we want to compute the probability that a random variable with the standard normal distribution
is within one standard deviation of 0. We can just turn to the back of the book and grab this infor-
mation; however, it is extremely unlikely you’ll ever find a book with the tabulation of probabilities
for a normally distributed random variable with mean

√
2 and variance π.

Why aren’t there such tables? There are two reasons today. The first, of course, is that computers
are very powerful and accessible, and thus the need for printed tables like the last one alluded to is
greatly lessened, as a few lines of code will give us the answer. While this might be a satisfactory
answer today, why were there no such tables before computers? Perhaps our example is a bit absurd,
but what about a normally distributed random variable with mean 0 and variance 4; surely that must
have occurred in someone’s research?

The reason we don’t need such tables is that, if we know the probabilities for the standard
normal, we can use those to compute the probabilities for any normally distributed random variable.
For definiteness, imaging W ∼ N(3, 4), which means W has a mean of 3 and a variance of 4 (or a
standard deviation of 2). Imagine we want to know the probability that W ∈ [2, 10]. We normalize
W (see Definition 1.3.2) by setting

Z =
W − E[W ]

StDev(W )
=

W − 3

2
. (1.3.16)

Thus asking that W ∈ [2, 10] is equivalent to asking Z to be in a certain interval. Which interval?
Well, W ∈ [2, 10] is the same as Z ∈ [−1/2, 7/2]. If we have a table of probabilities for the standard
normal, we can now compute this probability, and hence find the probability that W ∈ [2, 10].

We thus see that we need only have one table of probabilities for one normally distributed ran-
dom variables, as we can deduce the probabilities for any other with simple algebra. In the days
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before computers, this was a very important observation. It meant people needed only calculate one
table of probabilities in order to study any normally distribution.

This is very similar to logarithm tables. Most books only had logarithms base e (sometimes base
10 was given, or perhaps base 2). Through a similar normalization process, if we have a table of
logarithms in one base we can compute logarithms in any base. This is because of the following
log-law (commonly called the Change of Variable formula): For any b, c, x > 0 we have

logc x =
logb x

logb c
. (1.3.17)

Imagine we know logarithms base b. Then using the right hand side of the above formula, we can
compute the logarithm of any x base c. Thus it suffices to compile just one table of logarithms (as
base e and base 10 are often both used, it might be a kindness to assemble both tables, but just one
would suffice).

Before proving the Central Limit Theorem, we’ll analyze some special cases where the proof is
simpler. As our hypotheses include statements about moment generating functions, it should come
as no surprise that we’ll need to know the moment generating function of the standard normal.

Theorem 1.3.7 (Moment generating function of normal distributions). Let X be a normal random
variable with mean µ and variance σ2. Its moment generating function satisfies

MX(t) = eµt+σ2t2

2 . (1.3.18)

In particular, if Z has the standard normal distribution, its moment generating function is

MZ(t) = et2/2. (1.3.19)

Sketch of the proof. While we could try to directly compute MX(t) through MX(t) = E[etX ],
clearly we would much rather compute MZ(t) = E[etZ ]. The reason is clear: Z has zero mean
and variance 1, and thus the numbers are a little cleaner. We could set up the equation for MX(t)
and then do some change of variables, or we could note that we can deduce MX(t) from MZ(t)
through part (2) of Theorem 1.1.19. Specifically, we have

Z =
X − µ

σ
, (1.3.20)

or equivalently
X = σZ + µ. (1.3.21)

We then use MαZ+β(t) = eβtMZ(αt).
Thus we are reduced to computing MZ(t), or

MZ(t) = E[etZ ] =

∫ ∞

−∞
etz · e−z2/2dx√

2π
. (1.3.22)
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We solve this by completing the square. The argument of the exponential is

tz − z2

2
= −z2 − 2tz

2
= −z2 − 2tz + t2 − t2

2
= −(z − t)2

2
+

t2

2
. (1.3.23)

Note the second term is independent of z, the variable of integration. We find

MZ(t) =

∫ ∞

−∞

1√
2π

exp

(
−(z − t)2

2
+

t2

2

)
dz

= et2/2

∫ ∞

−∞

e−(z−t)2/2dz√
2π

= et2/2

∫ ∞

−∞

e−u2/2du√
2π

= et2/2, (1.3.24)

as the last integral is 1 as it is the integral of the standard normal’s density from −∞ to ∞.

1.3.4 Proof of the CLT for sums of Poisson random variables via MGF
As a warm-up for the general proof, we’ll show that the normalized sum of Poisson random variables
converges to the standard normal distribution. The proof will include the key ideas of the general
case, and will involve moment generating functions. We know from Theorem 1.3.7 that the moment
generating function of the standard normal is et2/2. We computed the moment generating function
of a Poisson random variable X with mean λ in Example 1.1.20. We showed that it is

MX(t) = eλ(et−1) = 1 + µt +
µ′2t

2

2!
+ · · · . (1.3.25)

Note the mean is λ and the variance is λ. To see this, we differentiate the moment generating
function and then set t = 0:

µ =
dMX

dt

∣∣∣
t=0

=
(
λet · eλ(et−1)

) ∣∣∣
t=0

= λ

µ′2 =
d2MX

dt2

∣∣∣
t=0

=
(
λet · eλ(et−1) + λ2e2t · eλ(et−1)

) ∣∣∣
t=0

= λ + λ2; (1.3.26)

as
σ2 = E[(X − µ)2] = E[X2]− E[X]2, (1.3.27)

we see that
σ2 = (λ + λ2)− λ2 = λ. (1.3.28)

Remark 1.3.8. Alternatively, we could have found the mean and variance by Taylor expanding the
moment generating function. We would have

eλ(et−1) = 1 + λ(et − 1) +
(λ(et − 1))2

2!
+

(λ(et − 1))3

3!
+ · · · . (1.3.29)
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While at first this looks very complicated, we note that a Taylor expansion of et−1 gives t+ t2/2!+
· · · = t(1 + t/2 + · · · ); in other words, (et − 1)k is divisible by tk. This means

eλ(et−1) = 1 + λt

(
1 +

t

2
+ · · ·

)
+ λ2t2

(1 + t/2 + · · · )2

2!
+ λ3t3

(1 + t/2 + · · · )3

3!
+ · · ·

= 1 + λt + λ
t2

2
+ λ

t2

2
+ terms in t3 or higher

= 1 + λt +
λ2t2

2
+ · · · . (1.3.30)

Thus, by knowing the Taylor series expansion of ex, we can find the first two moments through
algebra and avoid differentiation; we leave it to the reader to determine which approach they like
more (or hate less!).

Theorem 1.3.9. Let X,X1, . . . , XN be Poisson random variables with parameter λ. Let

XN =
X1 + · · ·+ XN

N
, ZN =

XN − E[XN ]

StDev(XN)
. (1.3.31)

Then as N →∞, ZN converges to having the standard normal distribution.

Proof. We expect XN to be approximately equal to the mean of the Poisson random variable, which
in this case is λ. This follows from the linearity of expected value:

E[XN ] = E
[
X1 + · · ·+ XN

N

]
=

1

N

N∑
n=1

E[Xi] =
1

N
·Nλ = λ. (1.3.32)

We will write µ for the mean (and not λ); this keeps the argument a bit more general, and the
resulting calculations will look like the general case for a bit longer if we do this.

Let σ2 denote the variance of the Xn’s (Poisson distributions with parameter λ). We know
σ =

√
λ; however, we again choose to write σ below so that these calculations will look a lot like

the general case. The variance of XN is computed similarly; since the Xn are independent we have

Var(XN) = Var

(
X1 + · · ·+ XN

N

)
=

1

N2

N∑
n=1

Var(Xn) =
1

N2
·Nσ2 =

σ

N
. (1.3.33)

As always, the natural quantity to study is

ZN =
XN − E[XN ]

StDev(XN)
=

X1+···+XN

N
− µ

σ/
√

N
=

(X1 + · · ·+ XN)−Nµ

σ
√

N
. (1.3.34)

We now use
MX+a

b
(t) = eat/bMX(t/b) (1.3.35)
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and the moment generating function of a sum of independent variables is the product of the moment
generating (Theorem 1.1.19) functions to find the moment generating function of ZN . We have

MZN
(t) = M (X1+···+XN )−Nµ

σ
√

N

(t)

= M∑N
n=1

Xn−µ

σ
√

N

(t)

=
N∏

n=1

MXn−µ

σ
√

N

(t)

=
N∏

n=1

e
−µt

σ
√

N MX

(
t

σ
√

N

)

=
N∏

n=1

e
−µt

σ
√

N e
µ

(
e

t
σ
√

N −1
)

, (1.3.36)

where in the final step we take advantage of knowing the moment generating function of MX(t).
We now Taylor expand the exponential, using

eu =
∞∑

k=0

uk

k!
= 1 + u +

u2

2!
+

u3

3!
+ · · · . (1.3.37)

This is one of the most important Taylor expansion we will encounter. Thus the exponential in
(1.3.36) is

e
t

σ
√

N = 1 +
t

σ
√

N
+

t2

2σ2N
+

t3

6σ3N
√

N
+ · · · . (1.3.38)

The important thing to note is that after subtracting 1, the first piece is t
σ
√

N
, the next piece is t2

2σ2N
,

and the remaining pieces are dominated by a geometric series (starting with the cubed term) with
r = t

σ
√

N
. Thus, the contribution from all the other terms is of size at most some constant times

t3

N
√

N
. For large N this will be negligible, and we write errors like this as O

(
t3

N
√

N

)
. (This is

called big-Oh notation. The technical definition of f(x) = O(g(x)) is that there are constants C, x0

such that whenever x > x0, |f(x)| ≤ Cg(x). In other words, from some point onward |f(x)| is
dominated by a constant times g(x).)

Thus (1.3.36) becomes

MZN
(t) =

N∏
n=1

e
−µt

σ
√

N e
λ·

(
t

σ
√

N
+ t2

2σ2N
+O

(
t3

N
√

N

))

=
N∏

n=1

e
µt2

σ2N
+O

(
t3

N
√

N

)

= e
t2

2
+O

(
t3√
N

)
(1.3.39)
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where the last line follows from the fact that we have a product over N identical terms, and as the
mean µ = λ and the variance σ2 = λ (for X Poisson with parameter λ), we see µ

σ2 = 1. Thus,

for all t, as N → ∞ the moment generating function of ZN tends to e
t2

2 , which is the moment
generating function of the standard normal. The proof is completed by invoking Theorem 1.2.18,
one of our black-box results from complex analysis, which states that if a sequence of moment
generating functions which exist for |t| < δ converges to a moment generating function of a density,
then the corresponding density converges to that density. In our case, this implies convergence to
the standard normal.

Remark 1.3.10. We only need to Taylor expand far enough to get the main term (which has a finite
limit as N →∞) and then estimate the size of the error term (which tends to zero as N →∞).

Even though this was a special case, some features are visible here that will reappear when we
consider the general case. Note that the higher moments of the distribution don’t seem to matter; all
we used was the first and second moments of X . The higher moments do matter; their affect is to
control the rate of convergence to the standard normal. They are felt in the eO(t3/

√
N) term.

1.3.5 Proof of the CLT for general sums via MGF
We deliberately kept the proof of Theorem 1.3.9 (normalized sums of independent identically dis-
tributed Poisson random variables converges to the standard normal) as general as possible as long
as possible for use in proving the full version of the Central Limit Theorem.

Proof of Theorem 1.3.6 (the Central Limit Theorem). Looking at the proof of Theorem 1.3.9, our
arguments held for any distribution up until the last line of (1.3.36), where we finally used the fact
that we had independent Poisson random variables by substituting for MX(t/σ

√
N). This time, we

can’t substitute a specific expansion for MX(t/σ
√

N) as we don’t know MX . We thus have

MZN
(t) =

N∏
n=1

e
−µt

σ
√

N MX

(
t

σ
√

N

)
= e

−µt
√

N
σ MX

(
t

σ
√

N

)N

(1.3.40)

(as the random variables are identically distributed).
There are several ways to do the algebra to finish the proof; we chose the following approach as it

emphasizes one of the most important tricks in mathematics. Namely, whenever you see a product
you should seriously consider replacing it with a sum. The reason is we have lots of experience
evaluating sums. We have formulas for special sums, and using Taylor series we can expand nice
functions as sums. We don’t really know that many products, or expansions of functions in terms of
products.

How do we convert a product to a sum? We know the logarithm of a product is the sum of the
logarithms. Thus, let’s take logarithms of (1.3.40), and then when we’re done analyzing it we just
exponentiate. We find

log MZN
(t) = −µt

√
N

σ
+ N log MX

(
t

σ
√

N

)
. (1.3.41)
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Note the first term in the expansion above is of size
√

N for fixed t; if it isn’t cancelled by something
from the other term, the limit won’t exist. Forunately it is cancelled, and all we will care about is
terms up to size 1/N . We need to be concerned with terms this small because we multiply by N ;
however, terms of size 1/N3/2 or smaller won’t contribute in the limit as they are only multiplied
by N , and thus are still small.

We know

MX(t) = 1 + µt +
µ′2t

2

2!
+ · · · = 1 + t

(
µ +

µ′2t
2

+ · · ·
)

. (1.3.42)

We now use the Taylor series expansion for log(1 + u), which is

log(1 + u) = u− u2

2
+

u3

3!
− · · · . (1.3.43)

Combining the two gives

log MX(t) = t

(
µ +

µ′2t
2

+ · · ·
)
−

t2
(
µ +

µ′2t

2
+ · · ·

)2

2
+ · · ·

= µt +
µ′2 − µ2

2
t2 + terms in t3 or higher. (1.3.44)

Thus

log MX

(
t

σ
√

N

)
= µt +

µ′2 − µ2

2
t2 + terms in t3 or higher. (1.3.45)

But we do not want to evaluate MX at t, but rather at t/σ
√

N . We find

log MX

(
t

σ
√

N

)
=

µt

σ
√

N
+

µ′2 − µ2

2

t2

σ2N
+ terms in t3/N3/2 or lower in N. (1.3.46)

Henceforth we’ll denote these lower order terms by O(N−3/2), and when we multiply these by N
we’ll denote the new error by O(N−1/2). The entire point of all of this is to simplify (1.3.41), the
expansion for log MZN

(t). Collecting our pieces, we find

log MZN
(t) = −µt

√
N

σ
+ N

(
µt

σ
√

N
+

µ′2 − µ2

2

t2

σ2N
+ O(N−3/2)

)

= −µt
√

N

σ
+

µt
√

N

σ
+

µ′2 − µ2

2

t2

σ2
+ O(N−1/2)

=
t2

2
+ O(N−1/2). (1.3.47)

Why is the last step true? We have µ′2 − µ2; this equals E[X2] − E[X]2, which is an alternate way
of defining the variance. Thus µ′2 − µ2 = σ2, and the claim follows.
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So, if log MZN
(t) is like t/2 + O(N−1/2), then

MZN
(t) = e

t2

2
+O(N−1/2). (1.3.48)

Though we took a different route, we end in the same place as in the proof of Theorem 1.3.9. We
again appeal to Theorem 1.2.18, one of our black-box results from complex analysis, which states
that if a sequence of moment generating functions which exist for |t| < δ converges to a moment
generating function of a density, then the corresponding density converges to that density. In our
case, this implies convergence to the standard normal.

1.4 Fourier Analysis and the Central Limit Theorem
Any theorem as important as the Central Limit Theorem deserves more than one proof. Different
proofs emphasize different aspects of the problem. Our first proof was based on properties of the
inverse Laplace transform, specifically an appeal to Theorem 1.2.18. The proof below uses the
Fourier transform. It is thus very similar to the previous proof, as the Fourier transform and the
Laplace transform are equal for certain functions after a change of variable. We choose to present
this proof as well for several reasons. ADD REASONS!

1.4.1 Needed results from Fourier analysis
Recall the Fourier transform of f is (see Definition 1.2.12)

f̂(y) =

∫ ∞

−∞
f(x)e−2πixydx; (1.4.1)

(sometimes the Fourier transform is defined with e−ixy or eixy/
√

2π instead of e−2πixy, so al-
ways check the convention when you reference a book or use a program such as Mathematica).
While f̂(y) is well defined whenever

∫∞
−∞ |f(x)|dx < ∞, much more is true for functions with∫∞

−∞ |f(x)|2dx < ∞. Unfortunately, for many applications even this assumption isn’t enough, and
we need to take f in the Schwartz Space S(R) (see Definition 1.2.14), the space of all infinitely
differentiable functions whose derivatives are rapidly decreasing. One can show the Fourier trans-
form of a Schwartz function is a Schwartz function, and we have the following wonderful theorem
on inverting the Fourier transform (Theorem 1.2.15), which for convenience we restate below.

Theorem 1.2.15 (Fourier Inversion Formula). For f ∈ S(R),

f(x) =

∫ ∞

−∞
f̂(y)e2πixydy. (1.4.2)

In fact, for any f ∈ S(R), ∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|f̂(y)|2dy. (1.4.3)
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Definition 1.4.1 (Compact Support). A function f : R→ C has compact support if there is a finite
closed interval [a, b] such that for all x 6∈ [a, b], f(x) = 0.

Remark 1.4.2 (Advanced). Schwartz functions with compact support are extremely useful in many
arguments. It can be shown that given any continuous function g on a finite closed interval [a, b],
there is a Schwartz function f with compact support arbitrarily close to g; i.e., for all x ∈ [a, b],
|f(x) − g(x)| < ε. Similarly, given any such continuous function g, one can find a sum of step
functions of intervals arbitrarily close to g (in the same sense as above). Often, to prove a result for
step functions it suffices to prove the result for continuous functions, which is the same as proving
the result for Schwartz functions. Schwartz functions are infinitely differentiable and as the Fourier
Inversion formula holds, we can pass to the Fourier transform space, which is sometimes easier to
study.

Example 1.4.3. Whenever we define a space or a set, it’s worthwhile to show that it isn’t empty!
Let’s show there are infinitely many Schwartz functions. We claim the Gaussians f(x) = 1√

2πσ2
e−(x−µ)2/2σ2

are in S(R) for any µ, σ ∈ R. By a change of variables, it suffices to study the special case of µ = 0
and σ = 1. Clearly the standard normal, f(x) = 1√

2π
e−x2/2 is infinitely differentiable. Its first few

derivatives are

f ′(x) = −x · 1√
2π

e−x2/2

f ′′(x) = (x2 − 1) · 1√
2π

e−x2/2

f ′′′(x) = −(x3 − 3x) · 1√
2π

e−x2/2. (1.4.4)

By induction, we can show that the nthderivative is a polynomial pn(x) of degree n times 1√
2π

e−x2/2.
To show f is Schwartz, by Definition 1.2.14 we must show

∣∣∣∣(1 + x2)m · pn(x)
1√
2π

e−x2/2

∣∣∣∣ (1.4.5)

is bounded. This follows from the fact that the standard normal decays faster than any polynomial.
Say we want to show |xme−x2/2| is bounded. The claim is clear for |x| ≤ 1. What about larger |x|?
We know ex2/2 ≥ (x2/2)k/k! for any k, so e−x2/2 ≤ k!2k/x2k. Thus |xme−x2/2| ≤ k!2k/x2k−m, and
if we choose 2k > m then this is bounded by k!2k.

Exercise 1.4.4. Let f(x) be a Schwartz function with compact support contained in [−σ, σ] and
denote its Fourier transform by f̂(y). Prove for any integer A > 0 that |f̂(y)| ≤ cfy

−A, where the
constant cf depends only on f , its derivatives and σ. As such a bound is useless at y = 0, one often
derives bounds of the form |f̂(y)| ≤ c̃f

(1+|y|)A .
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1.4.2 Convolutions and Probability Theory

An important property of the Fourier transform is that it behave nicely under convolution. Remem-
ber we denote the convolution of two functions f and g by h = f ∗ g, where

h(y) =

∫ ∞

−∞
f(x)g(y − x)dx =

∫

I

f(x− y)g(x)dx. (1.4.6)

A natural question to ask is: what must we assume about f and g to ensure that the convolution
exists? For our purposes, f and g will be probability densities. Thus they are non-negative and
integrate to 1. While this is enough to ensure that h = f ∗ g integrates to 1, it is not quite enough
to guarantee that f ∗ g is finite. If we assume f and g are square-integrable, namely

∫∞
−∞ f(x)2dx

and
∫∞
−∞ g(x)2dx are finite, then f ∗ g is well-behaved everywhere. This follows from the Cauchy-

Schwarz inequality.

Lemma 1.4.5 (Cauchy-Schwarz Inequality). For complex-valued functions f and g,

∫ ∞

−∞
|f(x)g(x)|dx ≤

(∫ ∞

−∞
|f(x)|2dx

)1/2

·
(∫ ∞

−∞
|g(x)|2dx

)1/2

. (1.4.7)

Lemma 1.4.6 (Convolutions and the Fourier Transform). Let f, g be continuous functions on R. If∫∞
−∞ |f(x)|2dx and

∫∞
−∞ |g(x)|2dx are finite then h = f ∗ g exists, and ĥ(y) = f̂(y)ĝ(y). Thus the

Fourier transform converts convolution to multiplication.

Proof. We first show h = f ∗ g exists. We have

h(x) = (f ∗ g)(x)

=

∫ ∞

−∞
f(t)g(x− t)dt

|h(x)| ¿
∫ ∞

−∞
|f(t)| · |g(x− t)|dt

≤
(∫ ∞

−∞
|f(t)|2dt

)1/2 (∫ ∞

−∞
|g(x− t)|2dt

)1/2

(1.4.8)

by the Cauchy-Schwarz inequality. As we are assuming f and g are square-integrable, both integrals
are finite (for x fixed, as t runs from −∞ to ∞ so too does x− t).
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Now that we know h exists, we can explore its properties. We have

ĥ(y) =

∫ ∞

−∞
h(x)e−2πixydx

=

∫ ∞

−∞

∫ ∞

−∞
f(t)g(x− t)e−2πixydtdx

=

∫ ∞

−∞

∫ ∞

−∞
f(t)g(x− t)e−2πi(x−t+t)ydtdx

=

∫ ∞

t=−∞
f(t)e−2πity

[∫ ∞

x=−∞
g(x− t)e−2πi(x−t)ydx

]
dt

=

∫ ∞

t=−∞
f(t)e−2πity

[∫ ∞

u=−∞
g(u)e−2πiuydx

]
dt

=

∫ ∞

t=−∞
f(t)e−2πityĝ(y)dt = f̂(y)ĝ(y), (1.4.9)

where the last line is from the definition of the Fourier transform.
Note that in the argument above we interchanged the order of integration. This is an incredibly

common technique, but we must justify it as it is not always possible to switch orders. ADD STUFF
ON JUSTIFYING, GIVE REF, GIVE EXAMPLE WHERE CANNOT.

Exercise 1.4.7 (Important). If for all i = 1, 2, . . . we have fi is square-integrable, prove for all i and
j that

∫∞
−∞ |fi(x)fj(x)| < ∞. What about f1∗(f2∗f3) (and so on)? Prove f1∗(f2∗f3) = (f1∗f2)∗f3.

Therefore convolution is associative, and we may write f1 ∗ · · · ∗ fN for the convolution of N
functions.

The following lemma is the starting point to the proof of the Central Limit Theorem.

Lemma 1.4.8. Let X1 and X2 be two independent random variables with densities f and g. Assume
f and g are square-integrable probability densities, so

∫∞
−∞ f(x)2dx and

∫∞
−∞ g(x)2dx are finite.

Then f ∗ g is the probability density for X1 + X2. More generally, if X1, . . . , XN are independent
random variables with square-integrable densities pn, then p1 ∗ p2 ∗ · · · ∗ pN is the density for
X1 + · · ·+ XN . (As convolution is commutative and associative, we don’t have to be careful when
writing p1 ∗ p2 ∗ · · · ∗ pN .)

Proof. The probability of Xi ∈ [x, x + ∆x] is
∫ x+∆x

x
f(t)dt, which is approximately f(x)∆x. The

probability that X1 + X2 ∈ [x, x + ∆x] is just
∫ ∞

x1=−∞

∫ x+∆x−x1

x2=x−x1

f(x1)g(x2)dx2dx1. (1.4.10)

As ∆x → 0 we obtain the convolution f ∗ g, and find

Prob(X1 + X2 ∈ [a, b]) =

∫ b

a

(f ∗ g)(z)dz. (1.4.11)
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We must justify our use of the word “probability” in (1.4.11); namely, we must show f ∗ g is a
probability density. Clearly (f ∗ g)(z) ≥ 0 as f(x), g(x) ≥ 0. As we are assuming f and g are
square-integrable,

∫ ∞

−∞
(f ∗ g)(x)dx =

∫ ∞

−∞

∫ ∞

−∞
f(x− y)g(y)dydx

=

∫ ∞

−∞

∫ ∞

−∞
f(x− y)g(y)dxdy

=

∫ ∞

−∞
g(y)

(∫ ∞

−∞
f(x− y)dx

)
dy

=

∫ ∞

−∞
g(y)

(∫ ∞

−∞
f(t)dt

)
dy. (1.4.12)

As f and g are probability densities, these integrals are 1, which completes the proof.

Remark 1.4.9. This section introduced a lot of material and results, but we can now begin to see
the big picture. If we take N independent random variables with densities p1, . . . , pN , then the sum
has density p = p1 ∗ · · · ∗ pN . While at first this equation looks frightening (what is the convolution
of N exponential densities?), there is a remarkable simplification that happens. Using the Fourier
transform of a convolution is the product of the Fourier transforms, we find p̂(y) = p̂1(y) · · · p̂N(y);
in the special case when the random variables are identically distributed, this simplifies further
to just p̂1(y)N . Now ‘all’ (and, sadly, it is a big ‘all’) we need to do to prove the Central Limit
Theorem in the case when all the densities are equal is show that, as N → ∞, p̂1(y)N converges
to the Fourier transform of something normally distributed (remember we haven’t normalized our
sum), and the inverse Fourier transform is uniquely determined and is normally distributed.

Remark 1.4.10. It is unusual to have two operations that essentially commute. We have the Fourier
transform of a convolution is the product of the Fourier transforms; as convolution is like multipli-
cation, this is saying that using this special type of multiplication, we can switch the orders of the
operations. It is rare to have two operations satisfying such a rule. For example,

√
a + b typically

is not
√

a +
√

b.

We end with the promised proof of the Cauchy-Schwarz inequality.

Proof of the Cauchy-Schwarz inequality. For notational simplicity, assume f and g are non-negative
functions. Working with |f | and |g| we see there is no harm in the above assumption. As the proof
is immediate if either of the integrals on the right hand side of (1.4.7) is zero or infinity, we assume
both integrals are non-zero and finite. Let

h(x) = f(x)− λg(x), λ =

∫∞
−∞ f(x)g(x)dx∫∞
−∞ g(x)2dx

. (1.4.13)
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As
∫∞
−∞ h(x)2dx ≥ 0 we have

0 ≤
∫ ∞

−∞
(f(x)− λg(x))2 dx

=

∫ ∞

−∞
f(x)2dx − 2λ

∫ ∞

−∞
f(x)g(x)dx + λ2

∫ ∞

−∞
g(x)2dx

=

∫ ∞

−∞
f(x)2dx − 2

(∫∞
−∞ f(x)g(x)dx

)2

∫∞
−∞ g(x)2dx

+

(∫∞
−∞ f(x)g(x)dx

)2

∫∞
−∞ g(x)2dx

=

∫ ∞

−∞
f(x)2dx −

(∫∞
−∞ f(x)g(x)dx

)2

∫∞
−∞ g(x)2dx

. (1.4.14)

This implies

(∫∞
−∞ f(x)g(x)dx

)2

∫∞
−∞ g(x)2dx

≤
∫ ∞

−∞
f(x)2dx, (1.4.15)

or equivalently

(∫ ∞

−∞
f(x)g(x)dx

)2

≤
∫ ∞

−∞
f(x)2dx ·

∫ ∞

−∞
g(x)2dx. (1.4.16)

Taking square roots completes the proof.

1.4.3 Proof of the Central Limit Theorem
We can now sketch the proof of the Central Limit Theorem, which for convenience we restate.

Theorem 1.3.6 (Central Limit Theorem). Let X1, . . . , XN be independent, identically distributed
random variables whose moment generating functions converge for |t| < δ for some δ > 0 (this
implies all the moments exist and are finite). Denote the mean by µ and the variance by σ2, let

XN =
X1 + · · ·+ XN

N
(1.4.17)

and set

ZN =
XN − µ

σ/
√

N
. (1.4.18)

Then as N →∞, the distribution of ZN converges to the standard normal (see Definition 1.3.5 for
a statement).
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We highlight the key steps, but we do not provide detailed justifications (which would require
several standard lemmas about the Fourier transform; see for example [?]). For simplicity, we
consider the case where we have a probability density p on R that has mean zero and variance one,
and is of sufficiently rapid decay so that all convolution integrals that arise converge; see Exercise
??. As we assume the moment generating function converges for |t| < δ, the third moment is finite
(we’ll use this later in the error analysis). Specifically, let p be an infinitely differentiable function
satisfying

∫ ∞

−∞
xp(x)dx = 0,

∫ ∞

−∞
x2p(x)dx = 1,

∫ ∞

−∞
|x|3p(x)dx < ∞. (1.4.19)

Assume X1, X2, . . . are independent identically distributed random variables (i.i.d.r.v.) drawn from
p; thus, Prob(Xi ∈ [a, b]) =

∫ b

a
p(x)dx. Define SN =

∑N
i=1 Xi. Recall the standard Gaussian

(mean zero, variance one) is 1√
2π

e−x2/2.

As we are assuming µ = 0 and σ = 1, we have ZN = (X1+···+XN )/N

1/
√

N
= X1+···+XN√

N
. Let’s define

SN =
∑N

n=1 Xn, so ZN = SN/
√

N . We must show SN√
N

converges in probability to the standard
Gaussian:

lim
N→∞

Prob

(
SN√
N

∈ [a, b]

)
=

1√
2π

∫ b

a

e−
x2

2 dx. (1.4.20)

We sketch the proof. The Fourier transform of p is

p̂(y) =

∫ ∞

−∞
p(x)e−2πixydx. (1.4.21)

Clearly, |p̂(y)| ≤ ∫∞
−∞ p(x)dx = 1, and p̂(0) =

∫∞
−∞ p(x)dx = 1.

Exercise 1.4.11. One useful property of the Fourier transform is that the derivative of ĝ is the
Fourier transform of 2πixg(x); thus, differentiation (hard) is converted to multiplication (easy).
Explicitly, show

ĝ′(y) =

∫ ∞

−∞
2πix · g(x)e−2πixydx. (1.4.22)

If g is a probability density, note ĝ′(0) = 2πiE[x] and ĝ′′(0) = −4π2E[x2].

The above exercise shows why it is, at least potentially, natural to use the Fourier transform
to analyze probability distributions. The mean and variance (and the higher moments) are simple
multiples of the derivatives of p̂ at zero. By Exercise 1.4.11, as p has mean zero and variance one,
p̂′(0) = 0, p̂′′(0) = −4π2. We Taylor expand p̂ (we do not justify that such an expansion exists and
converges; however, in most problems of interest this can be checked directly, and this is the reason
we need technical conditions about the higher moments of p), and find near the origin that

p̂(y) = 1 +
p′′(0)

2
y2 + · · · = 1− 2π2y2 + O(y3). (1.4.23)

Near the origin, the above shows p̂ looks like a concave down parabola.
From §1.4.2, we know
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• The probability that X1 + · · ·+ XN ∈ [a, b] is
∫ b

a
(p ∗ · · · ∗ p)(z)dz.

• The Fourier transform converts convolution to multiplication. If FT[f ](y) denotes the Fourier
transform of f evaluated at y, then we have

FT[p ∗ · · · ∗ p](y) = p̂(y) · · · p̂(y). (1.4.24)

However, we do not want to study the distribution of X1 + · · ·+XN = x, but rather the distribution
of SN = X1+···+XN√

N
= x.

Exercise 1.4.12. If B(x) = A(cx) for some fixed c 6= 0, show B̂(y) = 1
c
Â

(
y
c

)
.

Exercise 1.4.13. Show that if the probability density of X1 + · · ·+ XN = x is (p ∗ · · · ∗ p)(x) (i.e.,
the distribution of the sum is given by p ∗ · · · ∗ p), then the probability density of X1+···+XN√

N
= x is

(
√

Np ∗ · · · ∗ √Np)(x
√

N). By Exercise 1.4.12, show

FT
[
(
√

Np ∗ · · · ∗
√

Np)(x
√

N)
]
(y) =

[
p̂

(
y√
N

)]N

. (1.4.25)

The previous exercises allow us to determine the Fourier transform of the distribution of SN . It is

just
[
p̂
(

y√
N

)]N

. We take the limit as N →∞ for fixed y. From (1.4.23), p̂(y) = 1−2π2y2+O(y3).
Thus we have to study [

1− 2π2y2

N
+ O

(
y3

N3/2

)]N

. (1.4.26)

For any fixed y, we have

lim
N→∞

[
1− 2π2y2

N
+ O

(
y3

N3/2

)]N

= e−2πy2

. (1.4.27)

There are two definitions of ex; while we normally work with the infinite sum expansion, in this
case the product formulation is far more useful:

ex = lim
N→∞

(
1 +

x

N

)N

(1.4.28)

(you might recall this formula from compound interest).

Exercise 1.4.14. Show that the Fourier transform of e−2πy2
at x is 1√

2π
e−x2/2. Hint: This problem

requires contour integration from complex analysis.

We would like to conclude that as the Fourier transform of the distribution of SN converges to
e−2πy2 and the Fourier transform of e−2πy2 is 1√

2π
e−x2/2, then the distribution of SN equalling x

converges to 1√
2π

e−x2/2. Justifying these statements requires some results from complex analysis.
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We refer the reader to [?] for the details, which completes the proof. 2

The key point in the proof is that we used Fourier Analysis to study the sum of independent
identically distributed random variables, as Fourier transforms convert convolution to multiplica-
tion. The universality is due to the fact that only terms up to the second order contribute in the
Taylor expansions. Explicitly, for “nice” p the distribution of SN converges to the standard Gaus-
sian, independent of the fine structure of p. The fact that p has mean zero and variance one is really
just a normalization to study all probability distributions on a similar scale; see Exercise ??.

The higher order terms are important in determining the rate of convergence in the Central Limit
Theorem (see [?] for details and [?] for an application to Benford’s Law).

Exercise 1.4.15. Modify the proof to deal with the case of p having mean µ and variance σ2.

Exercise 1.4.16. For reasonable assumptions on p, estimate the rate of convergence to the Gaussian.

Exercise 1.4.17. Let p1, p2 be two probability densities satisfying (1.4.19). Consider SN = X1 +
· · · + XN , where for each i, X1 is equally likely to be drawn randomly from p1 or p2. Show the
Central Limit Theorem is still true in this case. What if we instead had a fixed, finite number of
such distributions p1, . . . , pk, and for each i we draw Xi from pj with probability qj (of course,
q1 + · · ·+ qk = 1)?

1.5 Generating functions, combinatorics and number theory
The purpose of this section is to give a flavor as to the power of generating functions, as well as their
drawbacks. Some of these problems, such as the cookie problem, can be solved byu a clever use of
combinatorics; generating functions provide another approach. One of the reasons this approach is
worth mastering is that it can be readily generalized to situations where we don’t know how to do
the combinatorics.

1.5.1 The cookie problem through combinatorics
Earlier we considered the following problem: How many ways are there to divide N identical
cookies among P different people? In other words, we don’t care which cookies a given person
gets, only how many. The reader may object to seeing this problem in a probability book, arguing
that this problem belongs to combinatorics. The reason we include it, however, is that probability is
frequently just one step away from combinatorics. To illustrate this point, here are some problems
we can ask in probability, once we know the combinatorics of cookie division.

Exercise 1.5.1. Consider all the ways to divide N cookies among P people. Let there be W (N,P )
ways (not surprisingly, the number of ways is a function of N and P ). Choose one of these ways
uniformly at random; we may represent the choice as a vector of P non-negative integers. For
example, if N = 10 and P = 5 then W (10, 5) = 1001, and thus we choose the division (2, 0, 2, 5, 1)
with probability 1/1001.
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Assume N = 10 and P = 5 below.

1. What is the probability that someone receives at least 8 cookies?

2. In a fair world, everyone would receive two cookies. What is the probability everyone receives
at least one cookie?

3. Instead of making sure everyone gets at least one cookie, what about making sure that no one
gets more than 3 cookies? Or everyone gets at least one but no more than 3 cookies?

More generally, imagine we now have N cookies and P people. What are the answers? Remem-
ber to generalize the other numbers accordingly. Thus instead of making sure everyone gets at least
1 cookie, to be fair we should have each person receive at least N/P − 1 cookies. If everyone gets
at least N/P cookies and the average number of cookies each person gets is N , we see that this
really confines the number of assignments, and thus this is not the most natural generalization. Let
σ(N, P ) be the standard deviation in the number of cookies each person can expect to receive. The
natural generalization is what is the probability everyone gets at leastN/p− kσ(N,P ) for some k.

Remark 1.5.2. There are many reasons why we care about problems like the above. For one ex-
ample, imagine we have a network and we are randomly assigning incoming signals to different
routers or processors. It can be quite important to make sure the work is distributed fairly, as we
don’t want bottlenecks arising from one part being overworked. Do we have to be careful about
how we assign? Do we need to keep track of how busy each machine is or is it extremely likely that
no part will be overburdened?

We calculate the probability of an event by looking at how many ways it can happen, and divide
by the total number of ways. We see combinatorics is often an indispensable tool for probability,
allowing us to determine these numbers. After reviewing the solution to the cookie problem, we’ll
return to these questions and see which are hard, which are easy.

For the original cookie problem, if N and P are small then we can solve the problem (painfully)
through brute force. For example, imagine N = 10 and P = 5. Let’s try to break the analysis down
in terms of the maximum number of cookies someone receives. There are 5 =

(
5
1

)
ways one person

can get all 10 cookies, and then there are 10 =
(
5
2

)
ways for one person to get 9 and one person

to get one. While we could continue arguing along these lines, it gets complicated very quickly.
The next case is when one person gets 8 (there are

(
5
1

)
ways to choose the person who gets 8), and

then we must distribute the remaining 2 cookies among the other four people. We can either give
one person 2 cookies (there are 4 =

(
4
1

)
ways to do this), or give a cookie each to two different

people (and there are 6 =
(
4
2

)
ways this can be done). Thus the number of ways when the maximum

number of cookies someone receives is 8 is
(
5
1

) · ((4
1

)
+

(
4
2

)
) = 5 · (4 + 6) = 50. To truly appreciate

how painful and unwieldly this method becomes, consider the case where the maximum number of
cookies anyone receives is 4. We then have to distribute 6 more cookies, with no one getting more
than 4. But it’s possible someone else gets 4, or maybe two people each get 3, or three people each
get 2, et cetera.
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We saw there was a really elegant way of solving this problem (ADD REF), and the answer
turns out to be

(
N+P−1

P−1

)
. We quickly recap the solution. We’ll do the case of N = 10 and P = 5

again to limit the notation, though the argument readily generalizes. The way to count how many
ways there are of dividing 10 cookies among 5 people is to imagine that we have 14 cookies in a line
and some kind person, say Cookie Monster, who will help us out by eating four of them. (At least
the old, non-politically correct Cookie Monster would do this; the newer, politically correct version
may claim that cookies are a sometimes food and pass on eating any.) How does Cookie Monster
eating four of them help us? We are now left with 10 uneaten cookies and 4 devoured cookies
(okay, if they’re eaten we’re not left with them – we either have the space where they were, or some
crumbs). CAN WE ADD A PICTURE OF COOKIE MONSTER? The four spaces divide the 10
remaining cookies into five groups; we give all the cookies (if any) up to the first devoured cookie to
the first person, then all cookies (if any) between the first and second devoured cookie to the second
person, and so on. For example, if Cookie Monster gobbles up cookies 3, 4, 7 and 13 of the 14
cookies, ⊙ ⊙ ⊗ ⊗ ⊙ ⊙ ⊗ ⊙ ⊙ ⊙ ⊙ ⊙ ⊗ ⊙

then person 1 receives two cookies, person 2 receives zero, person 3 receives two, person 4 receives
five and person 5 receives one cookie. The number of ways of dividing the 10 cookies among 5
people is equivalent to the number of ways of choosing 4 cookies from 14, as each such choice cor-
responds to a partitioning of the cookies among the people, and of course every choice corresponds
to a partitioning. In general, we add P − 1 cookies and have to choose P − 1 of them to eat, so the
answer is

(
N+P−1

P−1

)
.

We isolate the solution above, as we’ll use it frequently in studying the other problems.

Lemma 1.5.3. Imagine we have N identical cookies and P people. The number of ways of dis-
tributing the N cookies among the P people is

(
N+P−1

P−1

)
; we may also interpret this as the number

of solutions to x1 + · · ·+ xP = N with each xi ∈ {0, 1, 2, . . . }.

The following interpretation of how we solved the cookie problem will be of great use in study-
ing the other questions in Exercise 1.5.1, as well as in generalizing the cookie problem to picky
eaters. We are really counting solutions to the equation

x1 + · · ·+ xP = N, xi ∈ {0, 1, 2, 3, . . . }. (1.5.1)

We have shown the number of solutions is
(

N+P−1
P−1

)
.

Let’s discuss Exercise 1.5.1. The first part asks what is the probability someone receives at least
8 of the 10 cookies. We know there are W (10, 5) =

(
10+5−1

5−1

)
= 1001 ways of distributing the

cookies. We could try to solve this by brute force, as there aren’t too many possibilities; however,
there is a far more concise way that allows us to avoid these tedious computations. What’s nice
about these numbers is that we don’t have to worry about two people receiving at least 8 cookies;
the problem would be harder if we asked what is the probability someone receives at least 3 cookies,
as there is a real danger of double (or even triple!) counting. There are

(
5
1

)
= 5 ways to choose one

person to receive 8, 9 or 10 cookies. We then have either 2, 1 or 0 remaining cookies to distribute
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among the other four people. By our solution to the cookie problem (Lemma 1.5.3), the number of
ways to do this is

(
2+4−1
4−1

)
= 10 if there are 2 cookies left,

(
1+4−1
4−1

)
= 4 if there is one cookie left,

and
(
0+4−1
4−1

)
= 1 if there are no cookies left. Thus the number of ways of distributing the 10 cookies

so that someone has at least 8 is 5 · (10 + 4 + 1) = 75. As there are 1001 ways of distributing the
cookies, we see the probability that there is a lucky person getting at least 8 cookies is about 7.49%.
It’s up to you as to whether or not you view this as a likely event; this means that roughly one out
of every 13 times we do this, someone gets a lot of cookies (and at least three people get none!).

For the second part of Exercise 1.5.1, we want to make sure each of the 5 people gets at least
one cookie. This is equivalent to counting how many solutions there are to

x1 + · · ·+ x5 = 10, xi ∈ {1, 2, 3, . . . }; (1.5.2)

unfortunately, we only know how to solve the above equation when each xi ∈ {0, 1, 2, . . . }. Amaz-
ingly, we get the solution to this new problem from our old for free. We introduce new variables yi

with yi = xi− 1. Note that as each xi ∈ {1, 2, 3, . . . }, each yi ∈ {0, 1, 2, . . . }. Our equation (1.5.2)
becomes

(y1 − 1) + · · ·+ (y5 − 1) = 10, yi ∈ {0, 1, 2, . . . }. (1.5.3)

Rearranging gives
y1 + · · ·+ y5 = 5, yi ∈ {0, 1, 2, . . . }. (1.5.4)

This is just another cookie problem, but now we have 5 cookies and 5 people instead of 10 cookies
and 5 people. The solution is just

(
5+5−1
5−1

)
= 126, which means the probability that everyone gets

at least one cookie is 126/1001, or about 12.6%. Thus there is almost a 90% chance that at least
one person will be deprived of cookies. What’s particularly nice about this solution is how easily
it generalizes to other problems. If we had a pecking order, and wanted to know how many ways
there are such that the first person gets at least 3 cookies, the second, fourth and fifth at least 1 and
the third at least 2, then we would have y1 = x1 − 3, y2 = x1 − 1, y3 = x3 − 2, y4 = x4 − 1 and
y5 = x5 − 1. This leads to

y1 + · · ·+ y5 = 2, yi ∈ {0, 1, 2, . . . }, (1.5.5)

and the answer is just
(
2+5−1
5−1

)
= 15.

After our success with the first two parts, it might come as a surprise that the last part is an
extremely difficult challenge. We unfortunately don’t have a good way of imposing upper bounds
on the number of cookies someone receives, only lower bounds. This is most unfortunate, as this
important problem arises in statistical mechanics. ADD MORE ON THIS Using the Central Limit
Theorem, however, we will be able to approximate the solution to this problem when N and P are
large.

The last part asks us to generalize to arbitrary N and P . What is the probability someone
receives at least N − 2 cookies? Let’s assume N ≥ 5 so we don’t have to worry about two or more
people getting at least N−2 cookies (i.e., there is no danger of double counting). We’ll also assume
that P ≥ 3 (as otherwise the problem is straightforward). There are

(
P
1

)
ways to choose the lucky
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Figure 1.2: Generalizing the cookie problem to calculating the probability one person gets at least
c% of the cookies. In both plots we fix P at 5. The first plot graphs the probabilities as a function
of c when N = 10000. The second plot graphs the probabilities as N varies, with the upper curve
corresponding to c = 60%, the next to c = 70%, then c = 80% and finally c = 90% (which is
almost indistinguishable from 0).

person. This leaves us with 2 cookies to distribute; there are
(

P−1
1

)
ways to give these two cookies

to one person, and
(

P−1
2

)
ways to give them to two people. Thus the probability is

(
P
1

) · ((P−1
1

)
+

(
P−1

2

))
(

N+P−1
P−1

) =
P

(
P − 1 + (P−1)(P−2)

2

)

(
N+P−1

P−1

) =
P 2(P − 1)

2
(

N+P−1
P−1

) . (1.5.6)

Instead of enumerating the two cases, giving us
(

P−1
+

)(
P−1

2

)
= P (P −1)/2 (after some algebra), we

could of course say the number of ways is just the solution to the cookie problem with 2 cookies and
P − 1 people, which is

(
2+(P−1)−1
(P−1)−1

)
= P (P − 1)/2, which is the same. If P is fixed and N → ∞,

we can get a simple upper bound by noting
(

N+P−1
P−1

)
= (N+P−1)!

(P−1)!N !
> NP−1/(P − 1)!. Thus the

probability is at most P (P − 1)P !/2NP−1. For P fixed and N large, this tends to zero rapidly. This
approximation isn’t too bad, and is easy to use. If we take N = 100 and P = 5, our approximation
says the probability is about .0012%, while the actual answer is approximately .0011%.

An interesting question is to ask about the probability one luck person gets at least c% of the
cookies, with say c > 1/2 to simplify life, as N → ∞. Let bxc denote the smallest integer greater
than or equal to x. The answer would be

∑N
k=bcNc

(
P
1

) · (N−k+(P−1)−1
(P−1)−1

)
(

N+P−1
P−1

) . (1.5.7)

We plot some of these probabilities in Figure 1.2. Looking at the plots in Figure 1.2, it seems that for
fixed P and c, as N →∞ the probability of someone receiving at least c% converges to a non-zero
constant. Can you prove this?
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How should we generalize the notion of a fair world? Let’s say there are N cookies and P
people, and for convenience let’s assume P divides N . Thus everyone should get exactly N/P
cookies. We would be surprised if everyone got exactly the fair amount; what isn’t immediately
clear is how far below N/P someone must be before they cry foul. One natural way to solve this is to
compute not just the expected number of cookies someone receives, but also the standard deviation.
We can do this with binary indicator variables. Let Xn be the random variable which is 1 if the first
person receives cookie i and 0 otherwise. As there are P people, we see Xn = 1 with probability
1/P and 0 with probability 1 − 1/P . Thus each Xi is a binomial random variable with parameter
p = 1/P , and thus their expect values are p = 1/P and their variances are p(1− p) = (P − 1)/P 2.
Letting X = X1 + · · ·+ XN , we have

E[X] =
N∑

n=1

E[Xn] = N · 1

P
=

N

P
(1.5.8)

and

Var(X) =
N∑

n=1

Var(Xn) = N · P − 1

P 2
=

(P − 1)

P 2
N. (1.5.9)

Thus the standard deviation is
√

Var(X) =
√

(P − 1)/P 2
√

N .
Perhaps a reasonable interpretation of making the world fair is that each person should be no

worse than one standard deviation below their expected number. What is the probability of this
happening if N is large and P is fixed? We now want each person to receive at least

m(N, P ) = bN/P −
√

(P − 1)/P 2
√

Nc (1.5.10)

cookies. Thus instead of solving

x1 + · · ·+ xP = N, xi ∈
{

N

P
+ m(N, P ),

N

P
+ m(N,P ) + 1,

N

P
+ m(N, P ) + 2, . . .

}
,

(1.5.11)
as we did previously we make a change of variables by setting yi = xi −

(
N
P
−m(N, P )

)
. This

leads us to solving
y1 + · · ·+ yP = Pm(N, P ), yi ∈ {0, 1, 2, . . . }. (1.5.12)

This is just the cookie problem with N − Pm(N,P ) cookies and P people. Thus the probability
everyone gets no worse than one standard deviation below their expected number of cookies is

(
Pm(N,P )+P−1

P−1

)
(

N+P−1
P−1

) =

(P b
√

(P−1)/P 2
√

Nc+P−1

P−1

)
(

N+P−1
P−1

) . (1.5.13)

If we’re willing to accept a little more inequity, we can ask for the probability that each person gets
no worse than N

P
− km(N,P ) cookies (in other words, no one is more than k standard deviations

below their expected number). In Figure 1.3 we plot these probabilities for N varying from 1 to
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Figure 1.3: Generalizing the cookie problem to calculating the probability everyone receives no
worse than k standard deviations below their expected number. The lowest plot is when k = 2, the
middle is k = 3 and the upper is k = 4. The zig-zagging nature of our plot is do to the appearance
of the floor function, and the fact that we are using N − P bN/P c = 0.

10000 for 2, 3 and 4 standard deviations. The data suggests that for any fixed P and k, as N →∞
the probability of everyone being no worse than k standard deviations away tends to zero – in other
words, someone is going to be pretty unlucky. Can you prove this?

In conclusion, we see the cookie problem does belong in a probability course. Once we can
compute the number of ways of dividing N cookies among P people, we can ask and answer lots
of related questions related to the probability of certain assignments. If we distributed the cookies
randomly, we can figure out how probable it is that someone will be significantly slighted in getting
cookies. As mentioned, there are many examples where we care about such information, such as
distributed jobs among computers or routing transmissions through a network.

1.5.2 The cookie problem through generating functions

Let’s revisit the cookie problem, this time using the theory of generating functions to find the answer.
One of the most difficult steps in using generating functions is figuring out what sequence to use.
For many problems in probability, the choice is obvious: let am equal the probability our random
variable takes on the value m.

Sadly, in the cookie problem it isn’t clear what would be a good generating function. Let’s
assume inspiration strikes us and we decide to consider

G(x) =
∞∑

m=0

xm =
1

1− x
if |x| < 1. (1.5.14)
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This is just the generating function of the sequence {am}∞m=0 with each am = 1. The generating
function can be simplified to G(x) = (1− x)−1 for |x| < 1 due to the geometric series formula.

We now show how this generating function solves the cookie problem, and then discuss how we
can generalize this to solve a variety of more difficult problems. Let r1,s(N) denote the number of
solutions to m1 + · · · + ms = N where each mi is a non-negative integer. Note that r1,s(N) is just
the number of ways of dividing N cookies among s people (we switch to denoting the number of
people by s and not P as we’ll be differentiating with respect to this parameter in a moment); we’ll
discuss later why we choose to denote this as r1,s(N) and note rs(N). We claim

G(x)s =

( ∞∑
m1=0

xm1

)
· · ·

( ∞∑
ms=0

xms

)
=

∞∑
N=0

r1,s(N)xN . (1.5.15)

For example, by direct multiplication we see that the first four terms of G(x)5 are 1 + 5x +
15x2 + 35x3, and for N ∈ {0, 1, 2, 3} that the coefficient of xN in G(x)5 is

(
N+5−1

5−1

)
. To prove

(1.5.15) for general s and N , we expand the product. We have terms such as xm1 · · · xms , which is
xm1+···+ms = xN for some N . Assuming everything converges, when we expand the product we
obtain xN many times, once for each choice of m1, . . . , ms that adds to N . Thus the coefficient of
xN in the expansion is r1,s(N). On the other hand, straightforward differentiation shows that

G(x)s =

(
1

1− x

)s

=
1

(s− 1)!

ds−1

dxs−1

1

1− x
. (1.5.16)

Why do we want to write G(x)s like this? The reason is that we have a nice formula for G(x) as
an infinite sum, and differentiating that s − 1 times is no problem. Note that we are using both
expressions for G(x) (i.e., we’re using the infinite sum formulation as well as the geometric series’
answer for what that sum is).

Substituting the geometric series expansion for 1
1−x

gives

G(x)s =
1

(s− 1)!

ds−1

dxs−1

∞∑
N=0

xN =
∞∑

N=0

(
N + s− 1

s− 1

)
xN , (1.5.17)

which yields r1,s(N) =
(

N+s−1
s−1

)
. It is this second method of proof that we generalize. Below we

describe a variety of problems and show how to find their generating functions. In most cases, exact
formulas such as (1.5.16) are unavailable; we develop sufficient machinery to analyze the generating
functions in a more general setting.

Exercise 1.5.4. With G(x) as in (1.5.14), show by direct multiplication that the first four terms of
G(x)5 are 1 + 5x + 15x2 + 35x3, and for N ≤ 3 that the coefficient of xN in G(x)5 is

(
N+5−1

5−1

)
.

Exercise 1.5.5. Justify the arguments above. Show all series converge, and prove (1.5.16) and
(1.5.17).
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1.5.3 The generalized cookie problem
For the original cookie problem, we have a very nice combinatorial perspective that allows us
to quickly and cleanly solve it. Let’s consider the following twist. We still have N cookies
and P people, but now each person wants to have a square number of cookies (the squares are
{0, 1, 4, 9, 16, 25, . . . }). This is significantly harder, as we no longer have a combinatorial interpre-
tation. How do we divide a number N into P squares? Let us know if you find a nice geometric
way! Fortunately, there is a solution by using generating functions.

Let rk,s(N) denote the number of ways of writing N as a sum of exactly s integers, where each
integer is a kthpower. In other words, it is the number of solutions to

x1 + · · ·+ xs = N, xi{0, 1, 2k, 3k, 4k, . . . } (1.5.18)

or equivalently it is the number of solutions to

zk
1 + · · ·+ zk

s = N, zi ∈ {0, 1, 2, 3, 4, . . . }. (1.5.19)

We now see why we denoted the solution to the cookie problem r1,s(P ). The solution to the cookie
problem in §1.5.2, where we used generating function, immediately generalizes. We have our new
generating function is

Gk(x) =
∞∑

m=0

xmk

, (1.5.20)

and then

Gk(x)s =
∞∑

N=0

rk,s(N)xn; (1.5.21)

unfortunately, if k 6= 1 we don’t have a simple formula for Gk(x). We don’t have an analogue of
the geometric series formula to simplify this.

Sadly, this is a very common feature in mathematics. We can reduce the solution to a difficult
problem to a difficult sum or integral, which in general we cannot evaluate! All hope is not lost,
however, as there are ways to approximate these sums and integrals. To describe these methods in
detail is beyond the scope of this book, so we will content ourselves with a brief explanation and
some references to the literature. ADD REFS.

For technical reasons, it is often convenient to replace x with e2πit. This converts the problem to
one of Fourier analysis. A major pain is the fact that we have infinitely many terms to sum, and this
means there are convergence issues. We can fortunately bypass these difficulties with a very simple
but quite powerful observation. Let’s say we care about how many ways there are to write N as a
sum of exactly s numbers that are kthpowers; this is known as Waring’s problem. Clearly none of
the numbers can exceed N1/k, so it suffices to look at the truncated generating series

Gk,N(x) =
N1/k∑
m=0

xmk

or Gk,N(t) =
N1/k∑
m=0

e2πimkt. (1.5.22)
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We can pull off the solutions by integration. Using
∫ 1

0

e2πiktdt =

{
1 if k = 0

0 for k a non-zero integer
(1.5.23)

(one can prove this using either complex analysis, or by writing eiθ as cos θ + i sin θ), we find

rk,s(N) =

∫ 1

0

Gk,N(t)e−2πiNtdt. (1.5.24)

While this is the solution to the problem, this is not an easy integral to evaluate! Fortunately there
are methods to approximate the function Gk,N(t), which allows us to approximate the integral.

This is just one of many problems that can be solved using this method. One of the most famous
problems in number theory is whether or not every ‘sufficiently large’ even number may be written
as the sum of two primes (it is believed that ‘sufficiently large’ means ‘at least 4’). We show that
the solution to this problem can be obtained by studying the generating function

GN(x) =
∑
p≤N

xp (1.5.25)

where p ranges over primes at most p, or equivalently using the generating function

GN(t) =
∑
p≤N

e2πipt. (1.5.26)

To see this, we compute GN(t)2, which is

GN(t)2 =
∑
p1≤N

e2πip1t
∑
p2≤N

e2πip2t =
∑

p1,p2≤N

e2πi(p1+p2)t =
2N∑
n=4

a2,N(n)e2πint, (1.5.27)

where a2,N(n) is the number of ways of writing n as the sum of two primes each of which is at most
N . Thus we just need to pull off a2,N(N) to solve the problem. We can do this by integrating:

∫ 1

0

GN(t)2e−2πiNtdt =

∫ 1

0

N∑
n=4

a2,N(n)e2πinte−2πiNt

=
N∑

n=4

a2,N(n)

∫ 1

0

e2πi(n−N)tdt. (1.5.28)

The last integral is 1 if n = N and 0 otherwise, and thus the right hand side becomes a2,N(N).
We have our answer:

a2,N(N) =

∫ 1

0

GN(t)2e−2πiNtdt; (1.5.29)

unfortunately we can’t analyze this integral well enough to solve the problem. We can compute
what we believe is the main term, but we cannot show that what is expected to be the error term is
smaller. The situation is very different if we try to write N as the sum of three primes; there we can
show the error term is smaller, and prove that there are many ways of writing a large odd number as
the sum of three primes.


