Math/Stat 341: Probability: Fall ‘21 (Williams)

Professor Steven J Miller: siml1@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/
public html/341Fa21

Le CtU re 09 . 9_29_2 1 . https://youtu.be/jbXlsYsqH34

Lecture 09: 9/25/19: Trump Splits, Conditional Probability, Bayes' Theorem: https://youtu.be/IdOh1Nawh9Q
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Plan for the day: Lecture 09: September 29, 2021:

https://web.williams.edu/Mathematics/sjmiller/public html/341Fa21/handouts/34
1Notes Chapl.pdf

* Trump Splits

e Conditional Probability (sniffing out formula)
* Inclusion/Exclusion

* Bayes' Theorem

General items.

* Run simulations!
 Importance of phrasing.
 Explore extreme cases.


https://web.williams.edu/Mathematics/sjmiller/public_html/341Fa21/handouts/341Notes_Chap1.pdf
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Probabilty of a 5-0 split: 9/230, or about 3.91% or is it 2/32 or about 6.25%7?
badtrumpsplit [numbad , numiter ] := Module[{},
deck = {};
For[c = 1, ¢ < numbad, c++, deck = AppendTo[deck, 1]];
For[c = numbad +1, ¢ < 26, c++, deck = AppendTo[deck, ©]];
badsplits = ©;
For[n = 1, n < numiter, n++,

{
hand = RandomSample [deck, 13];

If[Mod[Sum[hand[[1]], {i, 1, 13}], numbad] == @, badsplits = badsplits + 1];
315
Print ["Observed badsplits is ", SetAccuracy[100.@ badsplits /numiter, 4], "%."];

15
Timing [badtrumpsplit[5, 1e00000] ]

Observed badsplits is 3.942%.
{15.5625, Null}

Timing [badtrumpsplit[5, 1@ 000000] ]

Observed badsplits is 3.913%.
(188.891, Null}



Are these two items equivalent:

|
A&BA Each person is equally likely to be chosen,

The Definitive Collection form a group of two people from four.

Chose any group of two people, all groups
equally likely to be chosen.
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20. Han's Dice

Rolling two fair independent die....

What is the probability that
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( When Luke boards the Millennium Falcon in The Last Jedi, he grabs a pair of gold

. . . . . — dice which belonged to Han Solo, and though you may not have ever noticed them

4- G Iven fl rSt d e Is a 3; the sum s a 7 . before, they were hanging up in the Falcon in A New Hope and also reappeared in
The Force Awakens.
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[s it possible that there’s some nice function F' such that s phes >
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Pr(A|B) = G(Pr(A),Pr(B),Pr(AnB))



Pr(A|B) = G(Pr(A),Pr(B).Pr(AnB))
Q_/—/\—/})v .

e Pr(B|B) = 1. Hat B ¢F

e Pr(B°B)=0,and

e 0 <Pr(AlB)<1.

There’s a simple expression using our three building blocks that has these three properties:
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Expected Counts Approach

Suppose that you go out fishing one day, and you have the following set of rules: you stop fishing once you catch a fish, or
after you’ve been on the water for four hours (whichever comes first). Let’s also imagine that there’s a 40% chance that
you catch a trout, a 25% chance you catch a bass, and a 35% chance you don’t catch anything. Notice that the percentages
sum to 100%, and that you never catch more than one fish in a day. Now, if we know that you caught a fish one day, what
are the odds that fish was a trout? Suppose that you went fishing 1000. Then....
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Conditional Probability, Independence and Bayes” Theorem

B ANKB A°NB
BC J‘l ﬁ Brf: J‘ilc m Br:.

Table 4.1: These are the possible outcomes for events A and . If we know that
event /5 has happened, we need only worry about the events in /5°s row.

Conditional Probability: Let B be an event such that Pr (B) > 0. Then the condi-
tional probability of A given I3 1s

Pr(A|B) = Pr(AnB) /Pr(B).

Cowride: ANB) = PriAl D)« £-(8)

If you were really reading carefully, you might’ve noticed a new condition snuck
into the box above: Pr(B) > 0. If Pr(B) = 0, then B cannot happen. If B can-
not happen, 1t doesn’t make sense to talk about the probability A happens given B
happens! Fortunately if Pr (B) = 0 then Pr(A N B) is also 0, and we have the
indeterminate ratio 0/0, which warns us that we are in dangerous waters.




[Mlustration of inclusion-exclusion with three sets.
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Inclusion-Exclusion Principle: Consider sets A¢. Ao, ..., A,,. Denote the number

of elements of a set S by |S| and the probability of a set S by Pr (S). Then
Al = S-S ang+ > AN A -
i=1 i=1 1<i<j<n 1<i<j<k<n

o (=1)2 > [Agy NMAg NN Ag,, |

1<y <lo<--<lp_1<n

+H(=1)" A NA NN Ay;

this also holds 1f we replace the size of all the sets above with their probabilities.
We may write this more concisely. Let Ay p,. ¢, = Ag, N A, N--- N Ap, (s0
A9 = A1 N Ag and Asgg = A4 N Ag N Ag). Then
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If the A;’s live 1n a finite set and we use the counting measure where each element
of our outcome space 1s equally likely, we may replace all | S| above with Pr(.5).
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