Math/Stat 341: Probability: Fall ‘21 (Williams)
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Lecture 10: 10/01/21: Independence, Derangements, Inclusion-Exclusion, Induction:
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Plan for the day: Lecture 10: October 4, 2021

https://web.williams.edu/Mathematics/sjmiller/public html/341Fa21/handouts/34
1Notes Chapl.pdf

* Independence
* Inclusion / Exclusion: Pentium Bug
* Derangements (permute and nothing returns to where started)

General items.

* Proof techniques: Induction

 Need to be careful: what did we actually prove (derivative of a sum... infinite vs
finite)

* Definitions versus theorems: What is e* e”, and why? Generalizations.....

e Study the right object!


https://web.williams.edu/Mathematics/sjmiller/public_html/341Fa21/handouts/341Notes_Chap1.pdf

A big caveat for independence of three or more events 1s that any combination
of two of those events may be independent of each other. but three or more might be
dependent. For example, roll a die twice. Let

e A denote the event that the first time the die shows an even number.
e B3 the second time the die shows an even number. and
e (' the sum of the first two numbers 1s even.

We can see that

Pr(AnB) = Pr(A)-Pr(B)
Pr(Anic) = Pr(A)-Pr(C)
Pr(BNC) = Pr(B)-Pr(C).

However, 1n this case
Pr(ANBNC) # Pr(A)-Pr(B)-Pr(C),

as Pr(A N B N ') 1s the probability of getting an even number the first time and an
even number again the second time (if the first two rolls are even, then the sum must
be even — this 1s what causes the problems). We thus have Pr(AN BN () = % but
if the three events were independent then, according to the formula,

P(ANBNC) = Pr(A)-Pr(B)-Pr(C) = — -



Bayes’ Theorem: The General Multiplication Rule implies
Pr(B|A) - Pr(A) = Pr(A|B) - Pr(B)
for events A and B. Therefore, so long as Pr (5) = 0, we have

Pr(A)
Pr(B)’

Pr(A|B) = Pr(B|A) -
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Example: Nationwide, Tuberculosis (TB) affects about 1 1n every 15.000 people.
Suppose that there’s a TB scare in your town, and for simplicity assume that the rate
of incidence of TB 1n your town 1s the same as the national average. Just to be safe.
you go to the doctor to get tested for the disease. The doctor tells you that the test
has a 1% false positive rate — which 1s to say that for every 100 healthy people. one
will test positive. The doctor also reveals that the test has a 0.1% false negative rate
— similarly, for every 1000 sick people, only one will test negative. Suppose that you
test positive. What'’s the probability that you have TB?
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Bayes’ Theorem tell us that

Pr(:e;ic-l{( o ,
- Pr(positivel|sick).

Pr(positive) ~
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Pr(sick|positive) =



Bayes’ Theorem tell us that

Pr(sick
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We use the partition “sick™ and “not sick.” So B 1s the event sick, B the event
healthy (1.e.. “not sick™). and A 1s the event of testing positive. We find

Pr(positive) = Pr(positive|sick)Pr(sick) 4+ Pr(positive|healthy)Pr(healthy)
14999
= 0.999 - - - +0.01 - —— =~ 0.01.
15000 15000
This gives
| . 1/15000 .
Pr(sick|positive) = 501 -0.999 =~ 0.0066.

Were you expecting the probability to be that low?



The expected counts approach can be seen graphically 1n the tree below.
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Law of Total Probability: If { By, Bs,...} form a partition for the sample space
S (into at most countably many pieces). then for any A C S we have

Pr(A) = ) Pr(A|B,)-Pr(B,).

We should have 0 < Pr(B,,) < 1 for all n as the conditional probabilities aren’t
defined otherwise (note if a I3,, has probability zero then 1t 1sn’t needed. as that
piece 1s hit by the factor Pr (5,,) = 0. while 1f 1t 1s 1 then all the other factors are
unnecessary).

Bayes’ Theorem: Let {A;}!" ; denote a partition of the sample space. Then

Pr(A[B) Pr(B|A) - Pr(A)

> Pr(BlA;) - Pr(A;)
Frequently one takes A to be one of the sets A;. \
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The At Least to Exactly Method: Let N (k) be the number of ways for at /least k
things to happen. and let /(%) be the number of ways for exactly k things to happen.
Then E(k) = N (k) — N(k + 1). Equivalently,

Prob(exactly k happen)

— Prob(at least k happen) — Prob(at least k& + 1 happen).

5.3.1 Counting Derangements

So. how many of the n! orderings have no element returned to where 1t starts? This
means the Ist element cannot be 1n the first spot, nor the 2nd element 1n the second
spot, and so on. For example, {2, 3,4, 1} is a derangement as each number is moved.
while {3,2,4, 1} 1s not a derangement as 2 is in the second position.

It turns out to be much easier to look at the related problem, where we count
how many ways there are for at least one element to return to its starting point. Why
1s this easger? Remember the statement of the inclusion-exclusion principle (see
§5.2.2). We show how to write an af least event 1 terms of intersections of events,

and intersections are often easy to compute. To get the number of derangements. we
just subtract the number of non-derangements from n/!.
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