Math/Stat 341: Probability: Fall '21 (Williams)

Professor Steven J Miller: sjm1@williams.edu

Homepage:

https://web.williams.edu/Mathematics/sjmiller/public html/341Fa21

Lecture 1: 10-17-21: https://youtu.be/iltn30ks-9k

Lecture 17: 10/18/19: Linearity of expectation, variances and covariances, power of linearity of expectation, bernoulli and binomial, convolution: https://youtu.be/WdITkk5zac0

Plan for the day: Lecture 17: October 25, 2021:

https://web.williams.edu/Mathematics/sjmiller/public_html/341Fa21/handouts/34 1Notes_Chap1.pdf

- Linearity of expectation
- variances and covariances
- power of linearity of expectation
- bernoulli and binomial
- convolution

General items.

Path through the algebra....

Theorem 9.5.1 (Linearity of Expectation) Let X_1, \ldots, X_n be random variables, let g_1, \ldots, g_n be functions such that $\mathbb{E}[|g_i(X_i)|]$ exists and is finite, and let a_1, \ldots, a_n be any real numbers. Then

$$\mathbb{E}[a_1g_1(X_1) + \dots + a_ng_n(X_n)] = a_1\mathbb{E}[g_1(X_1)] + \dots + a_n\mathbb{E}[g_n(X_n)].$$

Note the random variables are not assumed to be independent. Also, if $g_i(X_i) = c$ (where c is a fixed number) then $\mathbb{E}[g_i(X_i)] = c$.

Lemma 9.5.2 Let X be a random variable with mean μ_X and variance σ_X^2 . If a and b are any fixed constants, then for the random variable Y = aX + b we have

$$\mu_Y = a\mu_X + b$$
 and $\sigma_Y^2 = a^2\sigma_X^2$.

Lemma 9.5.3 Let X be a random variable. Then

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

Theorem 9.6.1 If X and Y are independent random variables, then

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$$

A particularly important case is

$$\mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[X - \mu_X]\mathbb{E}[Y - \mu_Y] = 0.$$

Test when X and Y not independent....

$$X=X,Y=X$$
 not (note)
$$E[X]=E[X]E[X]$$
 face $X\sim U_{nif}(-1,1)$ Then $E[X]=0$, $E[X]>0$

$$Proof: key (den $f_{XY}(x,y)=f_{X}(x)$ $f_{Y}(y)$ as (node)$$

Prave: X, Y Indep 50 are

and
$$\widetilde{Y} = Y - M$$

(F(XY) = SS ×9 fxx (X,7) dxdy $= \int \times f_{X}(x) dx \int \mathcal{I} f_{Y}(y) dy$ ECXI ECYI Fl prod of order RU] = prod of the expected values

Theorem 9.6.2 (Means and Variances of Sums of Random Variables) Let

 X_1, \ldots, X_n be random variables with means $\mu_{X_1}, \ldots, \mu_{X_n}$ and variances $\sigma_{X_1}^2, \ldots, \sigma_{X_n}^2$. If $X = X_1 + \cdots + X_n$, then

$$\mu_X = \mu_{X_1} + \dots + \mu_{X_n}.$$

If the random variables are independent, then we also have

$$\sigma_X^2 = \sigma_{X_1}^2 + \dots + \sigma_{X_n}^2$$
 or $\operatorname{Var}(X) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n)$.

In the special case when the random variables are independent and identically distributed (so all the means equal μ and all the variances equal σ^2), then

$$\mu_X = n\mu$$
 and $\sigma_X^2 = n\sigma^2$.

Is this reasonable?

Rescale....

Look at general linear combination....

Var (a, X, + ... + an Xn)

$$= a_1^2 Var(X_1) + ... + a_n^2 Var(X_n)$$

$$= a_1^2 Var(X_1) + ... + a_n^2 Var(X_n)$$
(Just let $X_k = a_k X_k$)

Standard Devision - $a_1 = a_1 x_1$

$$V_{\alpha}(X_{1}+\cdots+X_{n}) = E[(X_{1}+\cdots+X_{n}) - (M_{X_{1}}+\cdots+M_{X_{n}})^{2}]$$

$$= E[X_{1}+X_{2}+X_{2}+X_{3}+X_{4}+X_{5}+M_{1}X_{5}+M_{2},M_{5},M_{5}]$$

$$= E[(X_{1}-M_{X_{1}})^{2}+\cdots+(X_{n}-M_{X_{n}})^{2}+E[(X_{n}-M_{X_{1}})^{2}]$$

$$= E[(X_{1}-M_{X_{1}})^{2}] + \cdots + E[(X_{n}-M_{X_{n}})^{2}]$$

$$+ E[(X_{1}-M_{X_{1}})^{2}] + \cdots + E[(X_{n}-M_{X_{1}})^{2}]$$

$$= V_{\alpha}(X_{1}) + \cdots + V_{\alpha}(X_{n}) + E[(X_{1}-M_{X_{1}})(X_{1}-M_{X_{1}})]$$

$$= V_{\alpha}(X_{1}) + \cdots + V_{\alpha}(X_{n}) + E[(X_{1}-M_{X_{1}})(X_{1}-M_{X_{1}})]$$

$$= V_{\alpha}(X_{1}) + \cdots + V_{\alpha}(X_{n}) + E[(X_{1}-M_{X_{1}})(X_{1}-M_{X_{1}})]$$

$$= V_{\alpha}(X_{1}) + \cdots + V_{\alpha}(X_{n}) + E[(X_{1}-M_{X_{1}})(X_{1}-M_{X_{1}})(X_{1}-M_{X_{1}})]$$

$$= V_{\alpha}(X_{1}) + \cdots + V_{\alpha}(X_{n}) + E[(X_{1}-M_{X_{1}})(X_{1}-M_{X_{1}})(X_{1}-M_{X_{1}})(X_{1}-M_{X_{1}})]$$

Covariance. Let X and Y be random variables. The covariance of X and Y, denoted by σ_{XY} or Cov(X,Y), is

$$\sigma_{XY} = \mathbb{E}\left[(X - \mu_X)(Y - \mu_Y) \right].$$

Note Cov(X, X) equals the variance of X. Also, if X_1, \ldots, X_n are random variables and $X = X_1 + \cdots + X_n$, then

$$\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i) + 2 \sum_{1 \le i \le j \le n} \operatorname{Cov}(X_i, X_j).$$

The Method of the Cumulative Distribution Function. Let X be a random variable with density f_X whose density is non-zero on some interval I, and let Y = g(X) where $g: I \to \mathbb{R}$ is a differentiable function with inverse h. Assume the derivative of g is either always positive or always negative in I, except at finitely many points where it may vanish. To find the density f_Y :

- 1. Identify the interval I where the random variable X is defined.
- 2. Prove the function g has a derivative that is always positive or always negative (except, of course, at potentially finitely many points).
- 3. Determine the inverse function h(y), where g(h(y)) = y and h(g(x)) = x.
- 4. Determine h'(y), either by directly differentiating h or using the relation h'(y) = 1/g'(h(y)).
- 5. The density of Y is $f_Y(y) = f_X(h(y))|h'(y)|$.

Definition 10.1.1 The convolution of independent continuous random variables Xand Y on \mathbb{R} with densities f_X and f_Y is denoted $f_X * f_Y$, and is given by

$$(f_X * f_Y)(z) = \int_{-\infty}^{\infty} f_X(t) f_Y(z - t) dt.$$

If X and Y are discrete, we have

$$(f_X*f_Y)(z) = \sum_n f_X(x_n) f_Y(z-x_n);$$
 note of course that $f_Y(z-x_n)$ is zero unless $z-x_n$ is one of the values where Y

The convolution of two random variables has many wonderful properties, includ-

ing the following theorem.

Theorem 10.1.2 Let
$$X$$
 and Y be continuous or discrete independent random variables on \mathbb{R} with densities f_X and f_Y . If $Z = X + Y$, then
$$f_Z(z) = (f_X * f_Y)(z).$$

Further, convolution is commutative: $f_X * f_Y = f_Y * f_X$.

has positive probability (i.e., one of the special points y_m).

Central Limit Theorem

Normal
$$N(\mu, \sigma^2)$$
: $p(x) = e^{-(x-\mu)^2/2\sigma^2}/\sqrt{2\pi\sigma^2}$.

Theorem

If X_1, X_2, \ldots independent, identically distributed random variables (mean μ , variance σ^2 , finite moments) then

$$S_N := \frac{X_1 + \cdots + X_N - N\mu}{\sigma \sqrt{N}}$$
 converges to $N(0, 1)$.

har or

$$Y_1 = X_1/\sigma_{X_1} \text{ vs } N(0,1).$$

$$Y_2 = (X_1 + X_2)/\sigma_{X_1+X_2} \text{ vs } N(0,1).$$

$$Y_4 = (X_1 + X_2) + (X_3 + X_4) / \sigma_{X_1 + X_2 + X_3 + X_4} \text{ vs } N(0, 1).$$

$$Y_8 = (X_1 + \cdots + X_8)/\sigma_{X_1 + \cdots + X_8} \text{ vs } N(0, 1).$$

Density of
$$Y_4 = (X_1 + \cdots + X_4)/\sigma_{X_1 + \cdots + X_4}$$
.

$$\begin{bmatrix} \frac{1}{27} \left(18 + 9\sqrt{3} \ y - \sqrt{3} \ y^3 \right) & y = 0 \\ \frac{1}{18} \left(12 - 6y^2 - \sqrt{3} \ y^3 \right) & -\sqrt{3} < y < 0 \\ \frac{1}{54} \left(72 - 36\sqrt{3} \ y + 18y^2 - \sqrt{3} \ y^3 \right) & \sqrt{3} < y < 2\sqrt{3} \\ \frac{1}{54} \left(18\sqrt{3} \ y - 18y^2 + \sqrt{3} \ y^3 \right) & y = \sqrt{3} \\ \frac{1}{18} \left(12 - 6y^2 + \sqrt{3} \ y^3 \right) & 0 < y < \sqrt{3} \\ \frac{1}{54} \left(72 + 36\sqrt{3} \ y + 18y^2 + \sqrt{3} \ y^3 \right) & -2\sqrt{3} < y \le -\sqrt{3} \\ 0 & \text{True}$$

(Don't even think of asking to see Y_8 's!)

The Bernoulli Distribution: X has a Bernoulli distribution with parameter $p \in [0,1]$ if $\operatorname{Prob}(X=1)=p$ and $\operatorname{Prob}(X=0)=1-p$. We view the outcome 1 as a success, and 0 as a failure. We write $X \sim \operatorname{Bern}(p)$. We also call X a binary indicator random variable.

$$E[X] = \sum_{n} P_{nb}(X=n)$$

$$= 0 \cdot (I-P) + I \cdot P = P$$

$$E[X^{2}] = \sum_{n} n^{2} P_{nb}(X=n)$$

$$= 0^{2} \cdot (I-P) + I^{2} \cdot P = P$$

$$= 0^{2} \cdot (I-P) + I^{2} \cdot P = P$$

$$Var(X) = E[X^{2}] - E[X]^{2} = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - E[X]^{2} = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] = P - P^{2} = P(I-P) \in (0,1)$$

$$Var(X) = F[X^{2}] - F[X^{2}] = P - P^{2} = P^{2}$$

The Binomial Distribution: Let n be a positive integer and let $p \in [0, 1]$. Then X has the **binomial distribution** with parameters n and p if

$$\operatorname{Prob}(X = k) = \begin{cases} \binom{n}{k} p^k (1 - p)^{n - k} & \text{if } k \in \{0, 1, \dots, n\} \\ 0 & \text{otherwise.} \end{cases}$$

We write $X \sim \text{Bin}(n, p)$. The mean of X is np and the variance is np(1-p).

$$X = X_1 + \dots + X_n \quad \text{each} \quad X_i \sim \text{Be-n}(p) \quad \text{and indep}$$

$$E[X] = E[X_1] + \dots + E[X_n] = np$$

$$[Var(X) = Var(X_1) + \dots + Var(X_n) = np(i-p)$$

In(n, 9) $ECX = \sum_{L-1}^{n} k \cdot \binom{n}{k} p^{k} (HP)^{n-k}$ $E\left(X^{2}\right)=\sum_{L=1}^{A}k^{2}\cdot\left(A\right)p^{k}\left(I-p\right)^{n-k}$ know $(x+y)^2 = (x) \times ky^{n-k}$ Does This help?

Differhating I destrites

The multinomial distribution and coefficients. Let n, k be positive integers, and let $p_1, p_2, \ldots, p_n \in [0, 1]$ be such that $p_1 + \cdots + p_n = 1$. Let $x_1, \ldots, x_n \in \{0, 1, \ldots, n\}$ be such that $x_1 + \cdots + x_n = n$. The corresponding multinomial coefficient is

$$\binom{n}{x_1, x_2, \dots, x_k} = \frac{n!}{x_1! x_2! \cdots x_k!},$$

and all other choices of the x_i 's evaluate to zero. The **multinomial distribution** with parameters n, k and p_1, \ldots, p_k is non-zero only for such (x_1, \ldots, x_k) , where the density is

$$\binom{n}{x_1, x_2, \dots, x_k} p_1^{x_1} p_2 x_2 \cdots p_k^{x_k}.$$

We write $X \sim \text{Multinomial}(n, k, p_1, \dots, p_k)$.