Math/Stat 341: Probability: Fall ‘21 (Williams)

Professor Steven J Miller: siml1@williams.edu
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Lecture 17: 10/18/19: Linearity of expectation, variances and covariances, power of linearity of expectation,
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Plan for the day: Lecture 17: October 25, 2021.:

https://web.williams.edu/Mathematics/sjmiller/public html/341Fa21/handouts/34
1Notes Chapl.pdf

e Linearity of expectation

* variances and covariances

* power of linearity of expectation
* bernoulli and binomial

e convolution

General items.

* Path through the algebra....


https://web.williams.edu/Mathematics/sjmiller/public_html/341Fa21/handouts/341Notes_Chap1.pdf

Theorem 9.5.1 (Linearity of Expectation) Ler X;...., X, be random variables,

let g1. ..., gn be functions such that K[| g; (X;)|| exists and is finite, and let ay, . . . , a,

be any real numbers. Then

E[algl (X1)+---+ ﬂngn(Xn)] — ﬂ-lE[gl(Xl )] T T ﬂ'nE[Qﬂ(XﬂJ]'

Note the random variables are not assumed to be independent. Also, if g;(X;) = ¢

(where c is a fixed number) then E|[g;(X;)] = c.

Lemma 9.5.2 Let X be a random variable with mean jx and variance o%. If a
and b are any fixed constants, then for the random variable Y = a X + b we have

iy = apx +b and {T% — a’0%.

Lemma|9.5.3 Let X be a random variable. Then

Var(X) = E[X?] — E[X]?%




Theorem 9.6.1 If X and Y are independent random variables, then
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Theorem 9.6.2 (Means and Variances of Sums of Random Variables) Let
Xi...., X, be random variables with means [x,,...,[tx, and variances

0%, 0% X =Xy +---+ X, then
X = px; + T HX,-
If the random variables are independent, then we also have

0% = 0%, + - +0%, or Var(X) = Var(Xy)+---+ Var(X,).

In the special case when the random variables are independent and identically dis-

tributed (so all the means equal jv and all the variances equal 02), then

px = np and 0% = noZ.

Is this reasonable?
Rescale....
Look at general linear combination....
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Covariance. Let X and Y be random variables. The covariance of X and Y . denoted
by oxy or Cov(X,Y ), 1s

oxy = E[(X —pux)(Y —py)].

Note Cov (X, X)) equals the variance of X. Also. 1f X, ..., X,, are random vari-
ablesand X = X1 +---+ X,,. then

Var(X ZEM Z Cov(X;, X;).

1<i<j<n
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The Method of the Cumulative Distribution Function. Let X be a random
vartable with density fy whose density 1s non-zero on some interval [, and let
Y = ¢(X) where g : [ = R 15 a differentiable function with mverse h. Assume
the dertvative of ¢ 1s either always positive or always negative in [, except at finitely
many points where 1t may vanish. To find the density fy:

. Identufy the mnterval [ where the random variable X 15 defined.

2. Prove the function ¢ has a derivative that 1s always positive or always negative
(except, of course, at potentially finitely many pomis).

3. Determine the mverse function h(y), where ¢(h(y)) = y and h(g(z)) = 2.

4. Determme £'(y), either by directly differentiating h or using the relation

W' (y) =1/g'(hly)).
5. The density of Y is fy (y) = fx (hly))[W'(y)]
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Definition 10.1.1 7he convolution of independent continuous random variables X
and Y on IR with densities [x and [y is denoted [fx * [y, andis given by

(fx * fyv)(z) = / fx(t)fyv(z —t)dt.
If X and Y are discrete, we have

(fx * fy)(2) = D fx(@n)fy(z —an);

T

note of course that fy (z — x,, ) is zero unless z — x,, is one of the values where Y
has positive probability (i.e., one of the special points ).

The convolution of two random wvariables has many wonderful properties. includ-
ing the following theorem |

Theorem 10.1.2 Ler X and Y be continuous or discrefe independent random vari-
ables on IR with densities fx and fy. If Z = X + Y, then

fz(z) = (fx * [fyv)(=).

Further, convolution is commutative: [fx * fyv = fyv * [fx.




Central Limit Theorem

Normal N (s, 0%) 1 p(x) = e_(x_“)zfzgz/v‘?wcrz.

If X;,X5, ... independent, identically distributed random
‘\\fo\ variables (mean u, variance o2, finite moments) then
'
£ T X1+ ---+Xn — Npu
J SNy = converges to N(0,1).




Central Limit Theorem: Sums of Uniform Random Variables

X; ~ Unif(—1/2,1/2)

Y1 :)(1/(3")(1 VS N(O, 1)
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Central Limit Theorem: Sums of Uniform Random Variables

X; ~ Unif(—1/2,1/2)

Yo = (X1 +X2)/JX1+X2 VS N(O 1)




Central Limit Theorem: Sums of Uniform Random Variables

Xi ~ Unif(—1/2,1/2)

Y4 — (@(1 +X2§+&3 +X4»/O-X1+X2+X3+X4 VS N(O 1)
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Central Limit Theorem: Sums of Uniform Random Variables
Xj ~ Unif(—1/2,1/2)




Central Limit Theorem: Sums of Uniform Random Variables

X; ~ Unif(—1/2,1/2)

Density Of Ya— (X1 -+ o X4)/O’X1+._.+X4.

L (18 +9/3 y-+V3 y?) y =
Ll (12 -6y?-+/3 y3) -v/3 <y<0
L (72-36/3 y+18y? -3 y?) V3 <y<2+3
& (1843 y-18y? + /3 y3) = V3
L (12-6y?++/3 y?) O0<y<3
L (72+36V/3 y+18y? +/3 y?) -2+/3 <y=-V3
O True
/3

(Don’t even think of asking to see Yg's!)



The Bernoulli Distribution: X has a Bernoulli distribution with parameter p €
0,1] if Prob(X = 1) = p and Prob(X = 0) = 1 — p. We view the outcome 1
as a success, and 0 as a failure. We write X ~ Bern(p). We also call X a binary
indicator random variable.
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The Binomial Distribution: Let n be a positive integer and let p € [0, 1]. Then X
has the binomial distribution with parameters n and p 1f

(M)p*(1 = p)n=F ifk € {0.1,....n}
0 otherwise.

Prob(X =Fk) = {

We write X ~ Bin(n,p). The mean of X is np and the variance is np(1 — p).

X: X)‘é "”’;Xﬂ st Ié"’gem(ﬂ @A ey
(}F[Xj = g[XJ* - +(E[_Z‘n):; 1 p
Jar (T) = Ve (XD =+ U (Z0) = np
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The multinomial distribution and coefficients. Let 72, & be positive integers. and let
P1sp2s. .. pn € [0, 1] besuchthatpy+---+p, = 1. Letay,....2, € {0,1,....n}
be such that »1 + - - - + 7, = n. The corresponding multinomial coefficient 1s

n n!
T1.79,.... 0k rqlaegl ey

and all other choices of the z;’s evaluate to zero. The multinomial distribution

with parameters n. k and pq,....pr 1s non-zero only for such (x1,...,xx). where
the density 1s
n T T
| 101 IPQ‘TQ . e j}kk )
L1, L9y....
We write] X ~ Multinomial(n, &, p1. . . .. k).
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