Math/Stat 341: Probability: Fall ‘21 (Williams)

Professor Steven J Miller: siml1@williams.edu

Homepage:
https://web.williams.edu/Mathematics/similler/
public html/341Fa21

Le Ct ure 2 5 . 1 1‘ 1 5‘2 1 . https://youtu.be/HgupUwwgQ7M (slides)

Lecture 26: 11/08/19: Generating Functions and Moment Generating Functions:
https://youtu.be/GxohirsuMfM (didn't do standardization / change of basis) 1
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Plan for the day: Lecture 25: November 15, 2021.:

https://web.williams.edu/Mathematics/sjmiller/public html/341Fa21/handouts/34
1Notes Chapl.pdf

* Generating Functions

* Moment Generating Functions

e Characteristic Functions

* Change of Base Formula Sum

o
General items. w
* Find the path through the algebra.... L>7\)\7
e


https://web.williams.edu/Mathematics/sjmiller/public_html/341Fa21/handouts/341Notes_Chap1.pdf

Definition 19.2.1 (Generating Function) Given a sequence {a };-_,, we define its
generating function by

Ga(s) = ians”

n=>0

for all s where the sum converges.
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Theorem 19.3.1 (Uniquebess of generating functions of sequences) Lef

lan}o, and {bp}:>2, Dbe two sequences of numbers with generating func-
tions Go(s) and Gy(s) which converge for |s| < 6. Then the two sequences
are equal (i.e., a; = b; for all 1) if and only if Go(s) = Gy(s) for all |s| < 9.

We may recover the sequence from the generating function by differentiating:
1 d"Ga(s)
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Definition 19.4.1 (Convolution of sequences) [/ we have two sequences {a, }5_,
and {by, }>2_,, we define their convolution to be the new sequence {cy. } 1=, given by

k
cr = aopbp +a1bp_1 +---+ap_1b1 +apby = E apby_p.
=0

We frequently write this as ¢ = a * b.
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Lemma 19.4.2 Let G,(s) be the generating function for {am }>-_, and Gy(s) the

generating function for {b,}>"_,. Then the generating function of ¢ = a * b is
G.(s) = G,(3)Gp(s).
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Definition 19.4.3 (Probability generating function) Ler X be a discrete random
variable taking on values in the integers. Let G'x(s) be the generating fiunction to
{am}o__ . with am = Prob(X = m). Then Gx(s) is called the probability
generating function. If X is only non-zero at the integers, a very useful way of
computing G x (s) is to note that

Gx(s) = E[s] = Z s""Prob(X =m).

mM=—oo

More generally, if the probabilities are non-zero on an at most countable set {x,, },
then
Gx(s) = E[s*] = Z s*mProb(X = x,,).
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Theorem 19.4.4 Ler X,....,X,, Dbe ndependent discrete random variables taking

on non-negative integer values, with corresponding probability generating functions
Gx,(s),....Gx,(s). Then

-Gx, (s).

Lemma 19.4.2 Let G,(s) be the generating function for {am +°°_. and Gy(s) the
S S m=0
generating fimction for {bn}>_,. Then the generating function of ¢ = a b is

G.(5) = Ga(5)Gi(s).




The density of the sum of independent discrete random variables is the convo-
Iution of their probabilities!
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Definition 19.5.1 (Probability generating function) Ler X Dbe a continuous ran-
dom variable with density f. Then

Gx(s) = /_@E s f(x)dz

is the probability generating function of X .

qu(ace s wh j Q@@W;w

é,iéj7 e //7];[ ,S'Kj 7@”"(”7 QV““ZOWO

11




Definition 19.5.2 (Convolution of functions) 77e convolution of two functions [,
and fa, denoted f1 * fo, is

(1 * fo)(z) = /_ T O (e — byt

If the f;’s are densities then the integral converges.
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Theorem 19.5.3 (Sums of continuous random variables) 77ie probability density
Jfunction of the sum of independent continuous random variables is the convolution
of their probability density functions. In particular, if X1,...,X,, have densities

fis..., fn, thenthe densitvof X1 + -+ Xpnis f1 % fax- % [

Prved Wha =2, Fowl e by gps

Theorem 19.5.4 (Commutativity of convolution) 7/e convolution of two se-
quences or functions is commutative; in other words, axb = bxa or f1* fo = fox f1.
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Definition 19.6.1 (Moments) Ler X be a random variable with density f. Its k™
moment, denoted [, is defined by

= 3 o flan)
m=>0

if X is discrete, taking non-zero values only at the x,,,’s, and for continuous X by

In both cases we denote this as ), = E[X*]|. We define the k™ centered moment,
ik, by g = E[(X — p})*). We fiequently write pu_for pi'y and o for ps.
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Definition 19.6.2 (Moment generating function) Let X be a random variable with
density f. The moment generating function of X, denoted Mx (t), is given by
Mx (t) = Ele'*|. Explicitly, if X is discrete then

oo

Mx(t) = Z e f(2,),

m=—oco

while if X is continuous then

J
Mx(t) = '/_m & f(2)de. = E[ét

[ a]

Note M x (t) = G'x (e*), or equivalently G'x (s) = Mx (log s).
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Theorem 19.6.3 Let X be a random variable with moments [i},.

1. We have s .
v fol” | Hal
Mx(t) = 1+ pit+ ;! + :3!

in particular; p), = d*Mx (t)/dt*| .
t=0

2. Let o and 3 be constants. Then
ﬂﬂf,_—._,x_I__ﬁ (t) — Emﬁ.ﬂfx (Q:f.).

Useful special cases are My . 5(t) = eP*Mx(t) and M,x(t) = Mx (at),
when proving the central limit theorem, it’s also usefitl to have M x 4 g) /o (t) =
Eﬁwaﬁ,ﬂfx (t/a*).

3. Let X1 and Xy De independent random variables with moment generating
functions m‘f& (t) and M x, (t) which converge for |t| < 6. Then

ﬂffxl +X, (f) = ﬂffxl (t)ﬁ,ﬂfxz (t)

More generally, if Xq1,.... Xn are independent random variables with mo-

ment generating functions M x, (t) which converge for |t| < 4, then

My, +..oxy(t) = Mx, (t)Mx,(t) - Mxy(t).

If the random variables all have the same moment generating fumction M x (t),
then the right hand side becomes M x (t).
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Theorem 19.6.5 (Unigqueness of moment generating functions for discrete ran-
dom variables.) Let X and Y Dbe discrete random variables taking on non-negative
integer values (i.e., they re non-zero only in {0,1,2,...}) with moment generating
functions M x (t) and My (t), each of which converges for |t| < 6. Then X andY
have the same distribution if and only if there is an r > 0 such that M x (t) = My (t)
for |t| <.
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There exist distinct probability distributions which have the same moments. In other

words, knowing all the moments doesn’t always uniquely determine the probability
distribution.

Example 19.6.6 The standard examples given are the following two densities, de-
fined for x = 0 by

. 1 2
12 | . — —(log= =) /2
al hz) = ——e
b || V 2mx?
1N | fo(z) = fi(z)[1+sin(2rlogx)]. (19.2)
08f || || ||
RIZEN It’s a nice calculation to show that these two densities have the same moments,
[ \ theyre clearly different (see Figure|19.1).
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Figure 19.1: Plot of f;(x) and f2(x) from (19.2).
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o(z) = {exp(—l/;rg) if 2 # 0 (19.3)

0 otherwise.
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Figure 19.2: Plot of g(z) from (19.3).




2
Poisson Generating Functions Mx(t) = Alef=1) d Mx () , d

H dt t=0 2 dt? Mx (1) t=0
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Change of Base Formula for Logarithms
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