Math/Stat 341: Probability: Fall ‘21 (Williams)
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Lecture 31: 11/20/19: Proof of the CLT: https://youtu.be/4m77G15elNk



mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/341Fa21/
https://youtu.be/0t_I5j598vQ
https://youtu.be/4m77G15eINk

Plan for the day: Lecture 2: November 29, 2021

https://web.williams.edu/Mathematics/sjmiller/public html/341Fa21/handouts/34
1Notes Chapl.pdf

* Proof of the Central Limit Theorem (assuming results from Complex Analysis)
* |f time permits estimating probabilities / erf....

General items.

 Power of doing simpler cases first
 Power of Taylor Series

* Power of logarithms


https://web.williams.edu/Mathematics/sjmiller/public_html/341Fa21/handouts/341Notes_Chap1.pdf

Definition 19.6.2 (Moment generating function) Ler X be a random variable with
density f. The moment generating function of X, denoted Mx (t), is given by
My (t) = Ele'*]. Explicith, if X is discrete then

O

Mx(t) = Y e f(zy),

while if X is continuoiis then

My (t) = / ot f(2)da.

O

Note Mx (t) = Gx (e*), or equivalently G x (s) = M x (log s).




Theorem 19.6.3 Let X be a random variable with moments [i},.

1.

|

We have . -
Mx(t) = 1+ phe + 2+ B2
in particular, 1), = d*Mx (t) /dt* .
Let a and [3 be constants. Then
Max1s(t) = eP'Mx (at).

Useful special cases are My . 5(t) = eP*Mx(t) and M,x(t) = Mx (at),
when proving the central limit theorem, it’s also usefitl to have M x 4 g) /o (t) =
Pt/ Mx (t/a).

Let Xy and X5 be independent random variables with moment generating

functions }JIYI( ) and M x, (t) which converge for |t| < d. Then

1'j¥1-|—\f ( ) ur\fl[t)UrYQ(

More generally, if Xq1,.... , XN are independent random variables with mo-
ment generating functions Uxﬁ( ) which converge for |t| < 9, then
() = Mx, (t)Mx,(t)---

Mx, +..+xy Mx (t).

If the random variables all have the same moment generating fumction M x (t),
then the right hand side becomes M x (t)N




Definition 20.4.1 (Standardization of a random variable) Ler X be a random
variable with mean p and standard deviation o, both of which are finite. The stan-

dardization, Z, is defined Dy

X-EX] X -u

Z StDev(X) o

Note that

E[Z] = 0 and StDev(Z) = 1.

Theorem 20.5.1 (Moment generating function of normal distributions) Ler X

be a normal random variable with mean . and variance o%. Its moment generating
function is

2.2

Mx(t) = !5

In particular, if Z has the standard normal distribution, its moment generating func-
fion is

My(t) = et /2,




Theorem 20.5.3 Assume the moment generating functions Mx (t) and My (t) exist
in a neighborhood of zero (i.e., there’s some O such that both functions exist for
it| < é). If Mx(t) = My (t) in this neighborhood, then Fx (u) = Fy (u) for all .

As the densities are the derivatives of the cumulative distribution functions, we have

f=g

Theorem 20.5.4 Let { X, }ic1 be a sequence of random variables with moment gen-
erating functions Mx_(t). Assume there’s a 6 > 0 such that when |t| < § we have
lim; ... Mx,(t) = Mx/(t) for some moment generating function Mx (t), and all
moment generating functions converge for |t| < 8. Then there exists a unique cumu-
lative distribution function F' whose moments are determined from M x (t), and for
all x where Fx (x) is continuous, limy,_. .. Fx,(z) = Fx (x).
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Definition 20.2.1 (Normal distribution) 4 random variable X is normally dis-
tributed (or has the normal distribution, or is a Gaussian random variable) with

mean [ and variance o* if the density of X is
1 (x — )?

10 = Zomz o (U5

We often write X ~ N (u,0?) to denote this. If t = 0 and 0 = 1, we say X has
the standard normal distribution.

Theorem 20.2.2 (Central Limit Theorem (CLT)) Ler Xq.....
dent, identically distributed random variables whose moment generating functions

converge for |t| < o for some & > 0 (this implies all the moments exist and are
finite). Denote the mean by ju and the variance by o2, let

X1+ +Xpn
XN = A7

Xy be indepen-

and set o
XN — K

N = :
o/VvVN
Then as N — oo, the distribution of Zn converges to the standard normal (see

Definition|20.2.1|for a statement).
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https://en.wikipedia.org/wiki/Error_function
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