Math/Stat 341: Probability: Fall '21 (Williams)

Professor Steven J Miller: sjm1@williams.edu

Homepage:

https://web.williams.edu/Mathematics/sjmiller/public html/341Fa21

Lecture 29: 11-29-21: https://youtu.be/0t 15j598vQ (slides)

Lecture 31: 11/20/19: Proof of the CLT: https://youtu.be/4m77G15elNk

Plan for the day: Lecture 2: November 29, 2021:

https://web.williams.edu/Mathematics/sjmiller/public_html/341Fa21/handouts/34 1Notes_Chap1.pdf

- Proof of the Central Limit Theorem (assuming results from Complex Analysis)
- If time permits estimating probabilities / erf....

General items.

- Power of doing simpler cases first
- Power of Taylor Series
- Power of logarithms

Definition 19.6.2 (Moment generating function) Let X be a random variable with density f. The moment generating function of X, denoted $M_X(t)$, is given by $M_X(t) = \mathbb{E}[e^{tX}]$. Explicitly, if X is discrete then

$$M_X(t) = \sum_{m=-\infty}^{\infty} e^{tx_m} f(x_m),$$

while if X is continuous then

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx.$$

Note $M_X(t) = G_X(e^t)$, or equivalently $G_X(s) = M_X(\log s)$.

Theorem 19.6.3 Let X be a random variable with moments μ'_k .

1. We have

$$M_X(t) = 1 + \mu_1' t + \frac{\mu_2' t^2}{2!} + \frac{\mu_3' t^3}{3!} + \cdots;$$

in particular, $\mu'_k = d^k M_X(t)/dt^k \Big|_{t=0}$.

2. Let α and β be constants. Then

$$M_{\alpha X+\beta}(t) = e^{\beta t} M_X(\alpha t).$$

Useful special cases are $M_{X+\beta}(t)=e^{\beta t}M_X(t)$ and $M_{\alpha X}(t)=M_X(\alpha t)$; when proving the central limit theorem, it's also useful to have $M_{(X+\beta)/\alpha}(t)=e^{\beta t/\alpha}M_X(t/\alpha)$.

3. Let X_1 and X_2 be independent random variables with moment generating functions $|M_{X_1}(t)|$ and $M_{X_2}(t)$ which converge for $|t| < \delta$. Then

$$M_{X_1+X_2}(t) = M_{X_1}(t)M_{X_2}(t).$$

More generally, if X_1, \ldots, X_N are independent random variables with moment generating functions $M_{X_i}(t)$ which converge for $|t| < \delta$, then

$$M_{X_1+\cdots+X_N}(t) = M_{X_1}(t)M_{X_2}(t)\cdots M_{X_N}(t).$$

If the random variables all have the same moment generating function $M_X(t)$, then the right hand side becomes $M_X(t)^N$.

Definition 20.4.1 (Standardization of a random variable) Let X be a random variable with mean μ and standard deviation σ , both of which are finite. The standardization, Z, is defined by

$$Z := \frac{X - \mathbb{E}[X]}{\operatorname{StDev}(X)} = \frac{X - \mu}{\sigma}.$$

Note that

$$\mathbb{E}[Z] = 0$$
 and $StDev(Z) = 1$.

Theorem 20.5.1 (Moment generating function of normal distributions) Let X be a normal random variable with mean μ and variance σ^2 . Its moment generating function is

$$M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}.$$

In particular, if Z has the standard normal distribution, its moment generating function is

$$M_Z(t) = e^{t^2/2}.$$

Theorem 20.5.3 Assume the moment generating functions $M_X(t)$ and $M_Y(t)$ exist in a neighborhood of zero (i.e., there's some δ such that both functions exist for $|t| < \delta$). If $M_X(t) = M_Y(t)$ in this neighborhood, then $F_X(u) = F_Y(u)$ for all u. As the densities are the derivatives of the cumulative distribution functions, we have f = g.

Theorem 20.5.4 Let $\{X_i\}_{i\in I}$ be a sequence of random variables with moment generating functions $M_{X_i}(t)$. Assume there's a $\delta > 0$ such that when $|t| < \delta$ we have $\lim_{i\to\infty} M_{X_i}(t) = M_X(t)$ for some moment generating function $M_X(t)$, and all moment generating functions converge for $|t| < \delta$. Then there exists a unique cumulative distribution function F whose moments are determined from $M_X(t)$, and for all x where $F_X(x)$ is continuous, $\lim_{n\to\infty} F_{X_i}(x) = F_X(x)$.

MX(t) = Elet) doesn't always exist Characteriste Fine hon: DX(4) = E(e) t X where i= 57 = Se itx f(x) dx where e itx = cos(tx) tign(tx)
le itx/=1 1 Dx H) = S /eitx / Fx (x)dx = /

Definition 20.2.1 (Normal distribution) A random variable X is normally distributed (or has the normal distribution, or is a Gaussian random variable) with mean μ and variance σ^2 if the density of X is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

We often write $X \sim N(\mu, \sigma^2)$ to denote this. If $\mu = 0$ and $\sigma^2 = 1$, we say X has the standard normal distribution.

Theorem 20.2.2 (Central Limit Theorem (CLT)) Let X_1, \ldots, X_N be independent, identically distributed random variables whose moment generating functions converge for $|t| < \delta$ for some $\delta > 0$ (this implies all the moments exist and are finite). Denote the mean by μ and the variance by σ^2 , let

$$\overline{X}_N = \frac{X_1 + \dots + X_N}{N}$$

and set

$$Z_N = \frac{\overline{X}_N - \mu}{\sigma/\sqrt{N}}.$$

Then as $N \to \infty$, the distribution of Z_N converges to the standard normal (see Definition 20.2.1 for a statement).

$$\begin{array}{lll}
X = X_1 + \cdots + X_n & M_X = nM & \sigma_X^2 = n\sigma^2 \\
Z = & \overline{X - nM} & = & -\frac{1}{\sigma_{Sn}} X - \frac{1}{\sigma_{Sn}} & = & \times X + \beta & \alpha = \frac{1}{\sigma_{Sn}} \\
M_Z(t) = & M_{4X + \beta}(t) = & e^{\alpha t} & M_{4X + \beta}(\alpha t) \\
& = & e^{\beta t} & M_{X_1 + \cdots + X_n}(\alpha t) \\
& = & e^{\beta t} & M_{X_1}(\alpha t) \\
& = & e^{-t} & M_{X_1}(\alpha t) \\
& = & e^{-t} & M_{X_1}(\alpha t) \\
\end{array}$$

$$\begin{array}{ll}
C = & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha \\
\end{array}$$

$$\begin{array}{ll}
C = & \alpha & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha \\
\end{array}$$

$$\begin{array}{ll}
C = & \alpha & \alpha & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha \\
\end{array}$$

$$\begin{array}{ll}
C = & \alpha & \alpha & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha \\
\end{array}$$

$$\begin{array}{ll}
C = & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha \\
\end{array}$$

$$\begin{array}{ll}
C = & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha \\
\end{array}$$

$$\begin{array}{ll}
C = & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha \\
\end{array}$$

$$\begin{array}{ll}
C = & \alpha & \alpha & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha \\
\end{array}$$

$$\begin{array}{ll}
C = & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha & \alpha \\
\end{array}$$

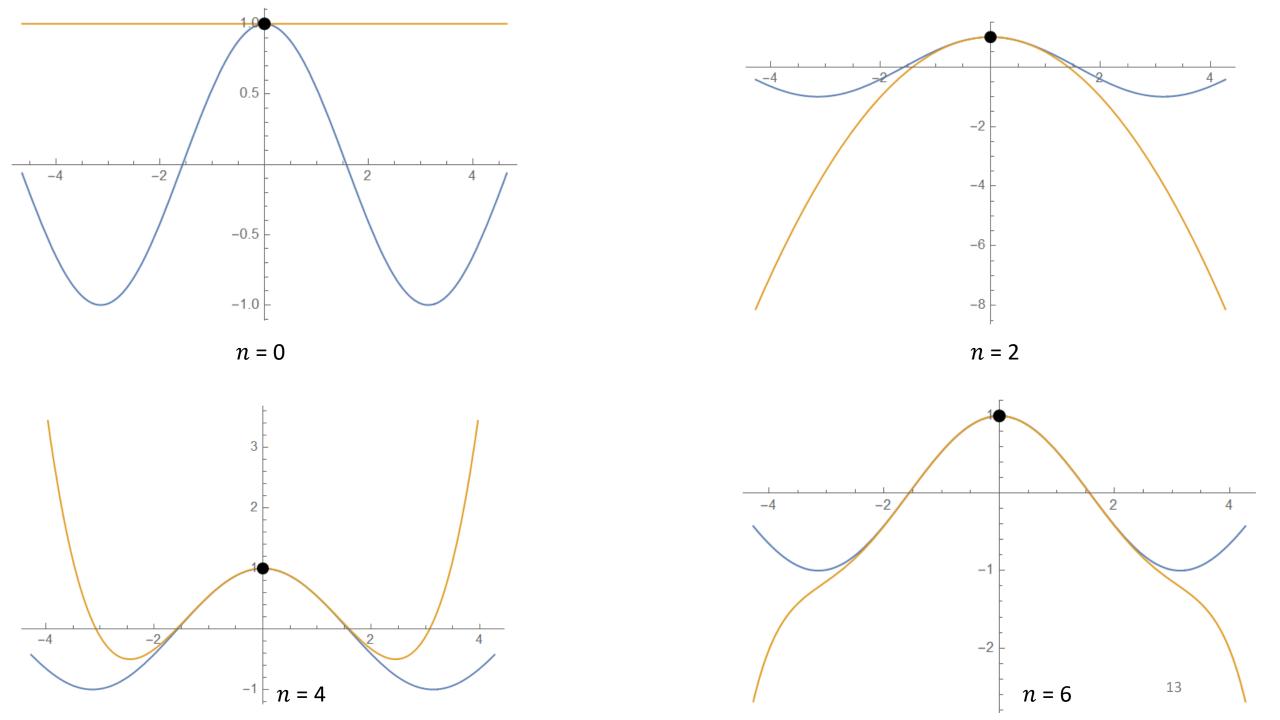
$$\begin{array}{ll}
C = & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha & \alpha \\
C = & \alpha \\
C = & \alpha & \alpha & \alpha & \alpha & \alpha & \alpha \\
\end{array}$$

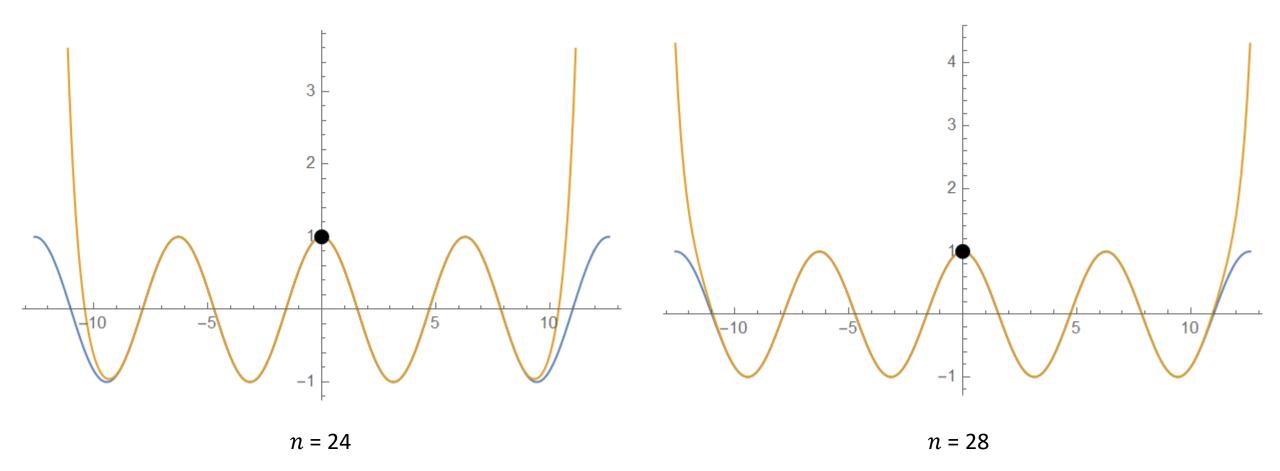
Mg. (= ? $M_{X_{1}}(\omega) = 1 + \mu \omega + \frac{\mu_{2} \omega^{2}}{z!} + \frac{\mu_{3} \omega^{3}}{3!} + \frac{\mu_{4} \omega^{4}}{4!} + \dots$ $= 1 + \mu \omega + \left[0^{2} + \mu^{2}\right] \frac{\omega^{2}}{2!} + \frac{\mu_{3} \omega^{3}}{3!} + \dots$ $= 1 + \mu \omega + \left[0^{2} + \mu^{2}\right] \frac{\omega^{2}}{2!} + \frac{\mu_{3} \omega^{3}}{3!} + \dots$ $M_{X_{1}}\left(\frac{t}{\sigma \sigma n}\right) = 1 + \frac{\mu t}{\sigma \sigma n} + \left(\sigma^{2} + \mu^{2}\right) \frac{t^{2}}{z\sigma^{2}n} + Order\left(1/n^{3/2}\right)$ $\left(M_{X_{1}}\left(\frac{t}{\sigma \sigma n}\right)\right)^{2} = \left(\frac{t}{\sigma \sigma n}\right)^{2}$ $\left(M_{X_{1}}\left(\frac{t}{\sigma \sigma n}\right)\right)^{2} = \left(\frac{t}{\sigma \sigma n}\right)^{2}$ log (Mx, (= n)) = n log [] + set + (+ 12) + 2 + 0 (n-3/2)]

$$|g(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \cdots$$

$$|f(x)(x)| = \frac{x^{2}}{n^{2}} + \frac{x^{3}}{n!} + \frac{x^{4}}{n!} + \frac{x^{2}}{n!} + \frac{x^{4}}{n!} + \frac{x^{2}}{n!} + \frac{x^{4}}{n!} + \frac{x^{2}}{n!} + \frac{x^$$

 $M_{\chi}(t) = e^{-t n s n/\sigma} \left(M_{\chi_{i}} \left(\frac{t}{\sigma s_{i}} \right) \right)^{n}$ (g MZ (t) = - ton + n / og MX, (t/osn) = - +50/4 5/1t/ + t2 + O(1-1/2) = t(z + O(n-1/2) M2(t) = e t2/2 MGFothe 05 170 Standard Normal! goes to 1





Comments: Whates Post (15/>1) 15 In Nov1)? Is Z S = e x2/2 dx $X = U + n \qquad X : n \rightarrow \infty \qquad U : 0 \rightarrow \infty \qquad dx = du$ IS $2\frac{1}{5\pi}$ $\int_{0}^{\infty} e^{-(u+n)^{2}/2} du$ = J= 50 e u2/2 e un e n2/2 du $= \sqrt{\pi} \int_{0}^{\pi} \int_{0}^{$ Get & C - 12/2

East to $2e^{-n^2/2} \int_{0}^{\infty} e^{-u^2/2} e^{-un} du * \frac{1}{5\pi}$ $= -n^2/2 \int_{0}^{\infty} \frac{1}{5\pi n} e^{-un} n du * \frac{1}{n}$ $= 2e^{-n^2/2} \int_{0}^{\infty} \frac{1}{5\pi n} e^{-un} n du * \frac{1}{n}$ $\frac{Ze^{-N^2/2}}{N\sqrt{2\pi}} = e^{-N^2/2} \times \frac{\sqrt{2}}{N\sqrt{\pi}}$

Pob(X=x) = Pobl-od <X =x) Comple $Pab(o \in X \in X)$ https://en.wikipedia.org/wiki/Error function