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@ Understand continuous models.

@ Solve continuous deterministic systems.
@ Introduce stochastic processes.
@ Discuss General Solutions.

@ Zeckendorf Decompositions.




Continuous Systems

Continuous Systems J




Continuous Systems
[ ]

Differential Equations: I: First Order

Lots of differential equations can study.

Consider f’(x) = af (x) with initial condition f(0) = C.
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Special case: a = 1 solution f(x) = Ce*....
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Differential Equations: I: First Order

Lots of differential equations can study.
Consider f’(x) = af (x) with initial condition f(0) = C.
Special case: a = 1 solution f(x) = Ce*....

Solution: f(x) = Ce® (f(0) = C yields unique soln).
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Continuous Systems
[ ]

Differential Equations: I: First Order

Lots of differential equations can study.

Consider f’(x) = af (x) with initial condition f(0) = C.
Special case: a = 1 solution f(x) = Ce*....

Solution: f(x) = Ce® (f(0) = C yields unique soln).

Check: f(x) = Ce* then f’(x) = aCe® = af(x).
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Differential Equations: II: Second Order

What about f”(x) = af’(x) + bf(x)?
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Differential Equations: II: Second Order

What about f”(x) = af’(x) + bf(x)?
Similar to our difference equations! Try exponential!

f(x) = e”™ (e”™ = (e”)* like r" from before) yields

p’e* = ape’ + be™.
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Differential Equations: II: Second Order

What about f”(x) = af’(x) + bf(x)?
Similar to our difference equations! Try exponential!

f(x) = e”™ (e”™ = (e”)* like r" from before) yields

p’e* = ape’ + be™.

Yields characteristic equation
p> —ap—b = 0 withroots p, ps,
general solution (if p; # p2)

f(x) = ae”™ + per?.
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Differential Equations: Ill: System

In general have several variables and/or related
guantities.

Consider a system involving f(x) and g(x):

x

f'(x) = af(x)+bg(x)
g'(x) = cf(x)+dg(x).

How do we solve?
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Differential Equations: Ill: System

In general have several variables and/or related
guantities.

Consider a system involving f(x) and g(x):

x

f'(x) = af(x)+bg(x)
g'(x) = cf(x)+dg(x).

How do we solve? Think back to similar examples.
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Differential Equations: Ill: System: Solution

In linear algebra solved for one variable in terms of others.
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Differential Equations: Ill: System: Solution
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Differential Equations: Ill: System: Solution

[%f’(x)_ %f(x)]/ = cf(x)+d {%f’(X)— %f(x)}
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Differential Equations: Ill: System: Solution

[%f’(x)—%f(x)} - cf(x)+d{%f’(x)—%f(x)]
(x) = (a+d)f(x)+(cb—ad)f(x),

reducing to previously solved problem!
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Differential Equations: Ill: Matrix Formulation for Syste
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Differential Equations: Ill: Matrix Formulation for Syste m

VI(X) = AV(X), V(x) = (f(x) ) A = (2 3)

Formally looks like f'(x) = af(x), guess solution is
V(x) = eV (0), where

1 1 =1
Ax 2,2 33, .. _ ky k
e _I+Ax+2!Ax +3!Ax+ —kEOk!Ax.
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Differential Equations: Ill: Matrix Formulation for Syste m

VI(X) = AV(X), V(x) = (;((f())) A = (2 3)

Formally looks like f'(x) = af(x), guess solution is
V(x) = eV (0), where

1 1 =1

Ax 2,2 33, .. _ ky k

e _I+Ax+2!Ax +3!Ax+ —kE k!AX'
=0

Can justify term-by-term differentiation of series for e”¥,
see importance of matrix exponential.
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Differential Equations: Ill: Matrix Formulation for Syste m

VI(X) = AV(X), V(x) = (;((f())) A = (2 3)

Formally looks like f'(x) = af(x), guess solution is
V(x) = eV (0), where

1 1 =1

Ax 2,2 33, ... ky k

e _I+Ax+2!Ax +3!Ax+ _kE k!AX'
=0

Can justify term-by-term differentiation of series for e”¥,
see importance of matrix exponential.

Mentioned Baker-Campbell-Hausdorf formula; in general
product of matrices is hard but (e”)" = Ae®™ = e™A.
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Application: Battle of Trafalgar J

Modified from Mathematics in Warfare by F. W. Lancaseter.
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Battle of Trafalgar

Wikipedia: “The battle was the most decisive naval victory of the war.
Twenty-seven British ships of the line led by Admiral Lord Nelson aboard
HMS Victory defeated thirty-three French and Spanish ships of the line under
French Admiral Pierre-Charles Villeneuve off the southwest coast of Spain,
just west of Cape Trafalgar, in Cafios de Meca.
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The Square Law: |

Forces r(t) and b(t), effective fighting values N and M:
b'(t) = —Nr(t)
r'(t) = —Mb(t).
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expect solution to look like?
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Forces r(t) and b(t), effective fighting values N and M:
b'(t) = —Nr(t)
r'(t) = —Mb(t).

Can solve using techniques from before: what do you
expect solution to look like?

If take derivatives again find
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The Square Law: |

Forces r(t) and b(t), effective fighting values N and M:
b'(t) = —Nr(t)
r'(t) = —Mb(t).

Can solve using techniques from before: what do you
expect solution to look like?

If take derivatives again find
b”(t) = —Nr'(t) = NMb(t), vyieds

b(t) = ﬁle\/Wt_i_ﬁzef\/Wt’ r(t) = Oéle\/Wt—i-aze*\/W‘,

b’(t)/b(t) = r’(t)/r(t) yields Nr(t)?> = Mb(t)? (square law).
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Trafalgar

Nelson outnumbered — how could he win?
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Trafalgar

Nelson outnumbered — how could he win?
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©00

Analysis of Nelson’s Plan: |

Nelson assumed for the purpose of framing his plan of attack that his own
force would consist of forty sail of the line, against forty-six of the com-
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Analysis of Nelson’s Plan: I

If for the purpose of comparison we suppose the total forces had en-
gaged under the conditions described by Villeneuve as “the usage of

former days,” we have:—
Strength of combined fleet, 462 .... = 2116
o British 402 ... =1600
Balance in favour of enemy s 516
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Analysis of Nelson'’s Plan: Il

Dealing with the position arithmetically, we have:—

Strength of British (in arbitrary »n? units),
322 4 82 = 1088

And combined fleet,
2324 232 = 1058

British advantage . ... 30
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Battle of Trafalgar

Wikipedia: “The battle was the most decisive naval victory of the war.
Twenty-seven British ships of the line led by Admiral Lord Nelson aboard
HMS Victory defeated thirty-three French and Spanish ships of the line under
French Admiral Pierre-Charles Villeneuve off the southwest coast of Spain,
just west of Cape Trafalgar, in Cafios de Meca.”
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Battle of Trafalgar

Wikipedia: “The battle was the most decisive naval victory of the war.
Twenty-seven British ships of the line led by Admiral Lord Nelson aboard
HMS Victory defeated thirty-three French and Spanish ships of the line under
French Admiral Pierre-Charles Villeneuve off the southwest coast of Spain,
just west of Cape Trafalgar, in Cafios de Meca.The Franco-Spanish fleet lost

twentz—two shies, without a single British vessel being lost.”
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AfterMATH of Battle of Trafalgar
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AfterMATH of Battle of Trafalgar: English expectation

oo_o-.
=== |
XA XE

253 863 261 471 958 220 370 4 21 19 24

N | = Xt
=_11 41
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England expects that every man will do his D u T Y

British: 0 of 27 ships, 1,666 dead or wounded.
Franco-Spanish: 22 of 33 ships, 13,781 captured, dead or
wounded.
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AfterMATH of Battle of Trafalgar: Issues & Remedies with Mod

Biggest issue is deterministic.
Make fighting effectiveness random variables!
Leads to stochastic differential equations.

http://en.w ki pedi a. org/wi ki/
Stochastic_differential equation.

el
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Zeckendorf Decompositions

Introduction to
Zeckendorf Decompositions

A
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Previous Results

Fibonacci Numbers: F,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, . ...
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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, . ...

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =7
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Zeckendorf Decompositions
°

Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, . ...

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 + 17 = Fg + 17.
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Zeckendorf Decompositions
°

Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, . ...

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 + 13+ 4 =Fg + Fe¢ + 4.
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Zeckendorf Decompositions
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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+3+1=Fg+ Fg + F3 + 1.
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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, . ...

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34+ 13 +3+1=Fg+ Fg + F3 + Fy.
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Zeckendorf Decompositions
°

Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89.....

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34+ 13+3+1=Fg+ Fg + F3 + F;.
Example: 83 =55+21+5+2=Fg+F; +F4+ F>.
Observe: 51 miles ~ 82.1 kilometers.
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Zeckendorf Decompositions
°

Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34+13+3+1=Fg+ Feg+ F3+ F;y.
Example: 83=55+21+5+2=Fg+F;+ F4+F,.
Observe: 51 miles ~ 82.1 kilometers.

Reason: ¢ = Y5 ~ 1.618 and 1 mile ~ 1.609 km.

A
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°

Old Results

Central Limit Type Theorem

As n — oo, the distribution of number of summands in
Zeckendorf decomposition for m € [F,, Fny1) is Gaussian.

0.030 [ o~
0.025
0.020 [
0.015 |
0.010 [

0.005

500 520 540 560 580 600

Figure: Number of summands in [F2o10, F2011); F2010 ~ 10%%°.
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Zeckendorf Decompositions
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2,
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Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5,
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Fibonaccis are the only sequence such that each integer
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8, 13,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8, 13,

@ Key to entire analysis: Fny 1 = Fn + Fn_1.

@ View as bins of size 1, cannot use two adjacent bins:
[1] [2] [3] [5] [8] [13] ---.

@ SMALL '15, 16, ...: How does the notion of legal
decomposition affect the sequence and results?
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hhta =CiHp+CoHpa + -+ CHpoy1, N> L

with H, =1, Hn+1 =ciHy+coHZ1 + - +CyH1 + l, n<yi,
coefficients ¢; > 0; ¢y, >0ifL>2;¢c, > 1ifL=1.

@ Zeckendorf: Every positive integer can be written
uniquely as ) a;H; with natural constraints on the a;’s
(e.g. cannot use the recurrence relation to remove
any summand).

@ Central Limit Type Theorem




Zeckendorf Decompositions
°

Example: the Special Caseof L =1,c; =10

Hn+l - 10Hn, Hl - 1, Hn - 10”71.
@ Legal decomposition is decimal expansion: Y ajH;:
ae{0,1,...,9} (1 <i<m)ane{l,...,9}.
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Example: the Special Caseof L =1,c; =10

Hny1 = 10H,, Hy = 1, H, = 10"1,
@ Legal decomposition is decimal expansion: Y ajH;:
ae{0,1,...,9} (1 <i<m)ane{l,...,9}.
@ For N € [Hy, Hp1), first term is a,H, = a,10"1.

GO
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Example: the Special Caseof L =1,c; =10

Hny1 = 10H,, Hy = 1, H, = 10"1,
@ Legal decomposition is decimal expansion: Y ajH;:
ae{0,1,...,9} (1 <i<m)ane{l,...,9}.
@ For N € [Hy, Hp1), first term is a,H, = a,10"1.
@ A;: the corresponding random variable of a. The A;’s
are independent.
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Example: the Special Caseof L =1,c; =10

Hny1 = 10H,, Hy = 1, H, = 10"1,
@ Legal decomposition is decimal expansion: Y ajH;:
ae{0,1,...,9} (1 <i<m)ane{l,...,9}.
@ For N € [Hy, Hp1), first term is a,H, = a,10"1.
@ A;: the corresponding random variable of a. The A;’s
are independent.

@ For large n, the contribution of A, is immaterial.
A (1 <i < n) are identically distributed random
variables with mean 4.5 and variance 8.25.

¢
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Example: the Special Caseof L =1,c; =10

Hny1 = 10H,, Hy = 1, H, = 10"1,
@ Legal decomposition is decimal expansion: Y ajH;:
ae{0,1,...,9} (1 <i<m)ane{l,...,9}.
@ For N € [Hy, Hp1), first term is a,H, = a,10"1.
@ A;: the corresponding random variable of a. The A;’s
are independent.

@ For large n, the contribution of A, is immaterial.
A (1 <i < n) are identically distributed random
variables with mean 4.5 and variance 8.25.

@ Central Limit Theorem: A, + Az + - - -+ A, — Gaussian
with mean 4.5n 4+ O(1) and variance 8.25n + O(1).

¢
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Distribution of Gaps

For Fi, + Fi, + - - - + Fi,, the gaps are the differences
In — in,]_, in,]_ — in727 R i2 — i]_.

Example: For F; 4+ Fg + F1g, the gaps are 7 and 10.

RA
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Distribution of Gaps

For Fi, + Fi, + - - - + Fi,, the gaps are the differences
in - in717 infl - in727 ey i2 - il.

Example: For F; 4+ Fg + F1g, the gaps are 7 and 10.

Let P,(g) be the probability that a gap for a
decomposition in [F,, Fq11) is of length g.
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Distribution of Gaps

For Fi, + Fi, + - - - + Fi,, the gaps are the differences
in - in717 infl - in727 ey i2 - il.

Example: For F; 4+ Fg + F1g, the gaps are 7 and 10.

Let P,(g) be the probability that a gap for a
decomposition in [F,, Fq11) is of length g.

Bulk: What is P(g) = lim_,o Pn(9)?
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Zeckendorf Decompositions
°

Distribution of Gaps

For Fi, + Fi, + - - - + Fi,, the gaps are the differences
in - in717 infl - in727 ey i2 - il.

Example: For F; 4+ Fg + F1g, the gaps are 7 and 10.

Let P,(g) be the probability that a gap for a
decomposition in [F,, Fq11) is of length g.

Bulk: What is P(g) = lim_,o Pn(9)?

Individual: Similar questions about gaps for a fixed
m € [F,, Fny1): distribution of gaps, longest gap.

¢
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Theorem (Zeckendorf Gap Distribution)

Gap measures vn., converge to average gap measure
where P (k) = 1/¢* for k > 2.

15 B 3 E] ' 5 10 i El >

Figure: Distribution of gaps in [F2010, F2011); F2010 ~ 10420,
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Zeckendorf Decompositions

New Results: Longest Gap

Fair coin: largest gap tightly concentrated around
logn/log 2.

Theorem (Longest Gap)

As n — oo, the probability that m € [F,, Fn.1) has longest
gap less than or equal to f(n) converges to

__@logn—f(n)-log ¢
e e

Prob (L,(m) < f(n)) ~

Iog(z—n)
¢<+1)
® lin = W —+ @ — % +Sma” Error.

e If f(n) grows slower (resp. faster) than logn/ log ¢,
then Prob(L,(m) < f(n)) goes to O (resp. 1).

¢
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies

among P distinct people is (17 1).

P—1

Z0)
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies

among P distinct people is (17 1).

Proof: Consider C + P — 1 cookies in a line.
Cookie Monster eats P — 1 cookies: (°1P7*) ways to do.
Divides the cookies into P sets.
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies

among P distinct people is (17 1).

Proof: Consider C + P — 1 cookies in a line.

Cookie Monster eats P — 1 cookies: (°1P7*) ways to do.
Divides the cookies into P sets.

Example: 8 cookies and 5 people (

S,

C=8P

a. P>

= 5):
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies

among P distinct people is (17 1).

Proof: Consider C + P — 1 cookies in a line.

Cookie Monster eats P — 1 cookies: (°1P7*) ways to do.
Divides the cookies into P sets.

Example: 8 cookies and 5 people (

Y ¢ Do >N D

C=8,P=5)

S,




Zeckendorf Decompositions

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies

among P distinct people is (17 1).

Proof: Consider C + P — 1 cookies in a line.

Cookie Monster eats P — 1 cookies: (°1P7*) ways to do.
Divides the cookies into P sets.

Example 8 cookles and 5 people (C = 8 P = 5)




Zeckendorf Decompositions
°

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Number of sols to X1 + -+ -+ xp = C with x; > 0is (“;F %)
IfxiZCisameasy1+- +yp=C—(Cy+---+Cp).
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Number of sols to x; + -+ - +xp = C with x; > 0is (“;F1).
IfxiZCisameasy1+- +yp=C—(Cy+---+Cp).

Let pnx = # {N € [Fn, Fni1): the Zeckendorf
decomposition of N has exactly k summands}.

TR
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Number of sols to x; + -+ - +xp = C with x; > 0is (“;F1).
IfxiZCisameasy1+- +yp=C—(Cy+---+Cp).

Let pnx = # {N € [Fn, Fni1): the Zeckendorf
decomposition of N has exactly k summands}.

For N € [Fq, Fny1), the largest summand is F,.
N=F,+F,+ - +F_, +Fn,
1§i1<i2<~-~<ik,1<ik:n,ij—ij,122.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Number of sols to X1 + -+ -+ xp = C with x; > 0is (“;F %)
IfxiZCisameasy1+- +yp=C—(Cy+---+Cp).

Let pnx = # {N € [Fn, Fni1): the Zeckendorf
decomposition of N has exactly k summands}.

For N € [Fq, Fny1), the largest summand is F,.
N=F,+F,+ - +F_, +Fn,
1§i1<i2<~-~<ik,1<ik:n,ij—ij,122.
dlizil—l,dj Z:ij—ijfl—Z(j>1).
d1+d2+-~-+dk:n—2k—|—1,dj20.

y
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Number of sols to x; + -+ - +xp = C with x; > 0is (“;F1).
IfxiZCisameasy1+- +yp=C—(Cy+---+Cp).

Let pnx = # {N € [Fn, Fni1): the Zeckendorf
decomposition of N has exactly k summands}.
For N € [Fq, Fny1), the largest summand is F,.
N=F,+F,+ - +F_, +Fn,
1§i1<i2<~-~<ik,1<ik:n,ij—ij,122.
d]_ Z:il—l, dj Z:ij —ij,]_—Z(j >1)
di+do+---+di=n-2k+1,d >0.

n—2k+1 + kfl) _ (nfk)

Cookie counting = p,x = (", hh)-

y




Zeckendorf Decompositions
°

Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As n — oo, the distribution of the number of summands in
Zeckendorf’'s Theorem is a Gaussian.

Sketch of proof: Use Stirling’s formula,
n! ~ n"e "v2rn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.

Continuous to assist discrete:  n! =T (n+ 1), where

M(s) — / e~x5~ldx, Re(s) > 0.
0




Zeckendorf Decompositions
°

(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in [Fn, Fp 1) is
fa(k) = (”’1 k)/Fn,l Consider the density for the n + 1 case. Then we have, by Stirling

(n—k)l
k JFn

1
(n—k)y 1 1 (n—Kk)"TKF2 1

(n—2K)KIFy,  V2x k(k+%)(n B Zk)n—2k+% Fn

fn+1(k)

plus a lower order correction term.
Also we can write Fp = % ¢>”+1 = —\% ¢" for large n, where ¢ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F; occurs once to help dealing with uniqueness and F, = 2). We can now split the
terms that exponentially depend on n.

3 1 (n—k) V5 _, (n—k)"k
fasa(k) = (\/— Kn—20) & ) <4> m)
Define
3 1 (n—k) V5 T o
T Ve e T W E

Thus, write the density function as
fap1(k) = NnSn

where Ny, is the first term that is of order n—1/2 and Sy, is the second term with exponential dependence on n.




Zeckendorf Decompositions
°

(Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable k = i + xo where . and o are the
mean and the standard deviation, and depend on n. The discrete weights of f, (k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fa(k)dk = fa(p + ox)odx.

Using the change of variable, we can write N as

N _ 1 n—k o}
"7 Vaa\ k(n—2k) VB
1 1—k/n 5

Vamn \ (k/n) (@ = 2k/n) &

1— (p+ox)/n V5

- V_\/ (b + o) /ML — 2+ ox)/n) &
1-C—y V5
ﬁ (C+y)1—-2C—-2y) ¢

where C = p/n = 1/(¢ + 2) (note that #? =¢+1)andy = ox/n. But for large n, the y term vanishes since
o ~ vnandthusy ~ n~1/2 Thus

Ne o~ L [ 1=C V5 / Vs _ 1 s+ 1
" - V2 C(1—-2C) ¢ V2 [ - V27w [ 7\/277(72




Zeckendorf Decompositions
°

(Sketch of the) Proof of Gaussianity

For the second term Sp, take the logarithm and once again change variablesby k = o + xo,

log(Sn) =

— (N — 2(n +x0)) ('09(5 —2> +log (1_ nioz ))
"\ . 2/

o (40
kk(n — 2k)(n—2k)
—nlog() + (n — k) log(n — k) — (k) log(k)
— (n — 2k) log(n — 2k)
—nlog(¢) 4 (n — (1 +xo))log(n — (1 + x0))
— (1 + xo) log(p + Xo)
— (0 = 2(u + xo)) log(n — 2(p + X))
—nlog(¢)

0= (-t x) (loa(n — ) + g (1~ nxfu))

— (u +x0) (|09(H) + log (1 + XTU))

—(n = 2(u + x0)) (log(” — 2u) + log (1 Th ioz;))

—nlog(¢)

+ 0= ot xo) (g (2 —) g (1= 27

— (1 +xo)log (1+ Xf)




Zeckendorf Decompositions
°

(Sketch of the) Proof of Gaussianity

Note that, since n/p = ¢ + 2 for large n, the constant terms vanish. We have log(Sp)

n

= —nlog(¢) + (n —k)log (; *1) — (n—2k)log (E 72> +(n — (u +x0))log (17 %)

— (4 x0)log <1+ Xf) — (n — 2(p +x0))log (17 niazu)

= —nlog(¢) + (n — k)log (¢ + 1) — (n — 2k) log (¢) + (n — (i + x0o)) log (1 — nxou>

Xo )
n—2up

~ n(=10g(6) + Iog (9) ~ log (¢)) + K(loa(?) + 2Iog()) + (n — (u + xe)og (1 - )

Xo >
n—2up

= (n— (u+x0))log (1— n):—oJ — (4 +x0)log (1+ %’)

— (1 + xo)log (1+ Xf) — (n —2(p + xo))log (l -

— (u +xo)log (1+ Xf) — (n —2(pn + x0))log (1—2

~(n — 2(i + xo)) log (1—2ni"2#> A




Zeckendorf Decompositions
°

(Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of xo /n.

0a(S _ Xo 1 Xo 2
oa(sn) = 0= (uxe)) (-2 - 2 ()
Xo 1 /xo\2
7(u+xa)<775<7) +>
Xo 1 Xo 2
—(n—2(H+xJ))(—2n72#—£( n72u> +)

Xo 1 Xo 2
= (n—(p+x0)) “ o 7\ Tem +...
(¢+2) (¢+2)

Xo 1 Xo 2
7(u+xo)< = ——( a ) +>

5z 2\
0 20+ ))( 20 1<2xa)2+ )
—(n—2(pn + xo - — = —

n& 2 nﬁ
= X, 7(17i>(‘i’+2)71+2(17i>¢7+2

n o+2/) (¢+1) ¢+2 @

X0\ 2 ¢+2 oP+2 ¢+2
o T N | 2) — 2) 44 1%
(n> n( »+1 »+1 (®+2) @+2+ o >




Zeckendorf Decompositions
°

(Sketch of the) Proof of Gaussianity

log(Sn) = Tn

%(i) (¢+2)(7%+1+;)
+o<n<“>3>

ea (G ) o ()
_ <)¢+4+2¢>+l>+o<n<xno')3>

) o (n(xe/n)) .

xo ( b+1¢+2 1+2¢¢ ¢>+2>




Zeckendorf Decompositions
°

(Sketch of the) Proof of Gaussianity

But recall that
2 ¢n
5(¢ +2)

. 3 3
Also, since ¢ ~ n~1/2 (XTU) ~ n~1/2_ 350 for large n, the O (n (XT") ) term vanishes. Thus we are left
with

log Sn

I

|

|
x

Il
)
NS

Sh
Hence, as n gets large, the density converges to the normal distribution:

fa(k)dk =  NnSpdk
1 1,2
2




Zeckendorf Decompositions
°

Code: Problem and Basic Functions

Problem: Compute Zeckendorf decompositions and look
at leading (i.e., first) digits to compare to Benford’s law.

Here are some basic functions that we will need.

fd[x ] := Floor[l10*Mod[Log[10, =], 1]]
fik[n ] := Fibonacci[n+1]:
lenfib[n ] := Floor[Log[l.0 fik[n]] / Log[E1.0]]




Zeckendorf Decompositions
°

Code: Main Program

zeckdecomp[m_,

listn = {};
For[d = 1, d £ 9, ds+, digit=[d] = 0]:
carrent = m;
goldenmean = (1 + Sgrt[5])/2;
While[current = 1,

{

If[current = 232,

{

If[current

:= Modnle[{},

1A

232, newterm = 11];
143, newterm = 10]:

88, newterm = 9]

1A

If[current

1A

If[current

If[current

1A

54, 'mewterm = B]:

If[current = 33, newterm = 7];
If[current = 20, newterm = 6]
If[current = 12, newterm = 5]
If[current = 7, newterm = 4];
If[current < 4, newterm = 3]
If[current = 2, newterm = 2]
If[current < 1, newterm = 1];

I
QQ




Zeckendorf Decompositions
°

Code: Main Program

{
x = Fleoor[(Log[current %= Sgrt[5]] / Log[goldemnmean]) - 1]
If[fib[x+1] = current, newterm = x+1,
If[fib[x] < cuorrent, newterm = x,
If[fib[x-1] < corrent, newterm = x-1]
11:
1
listn = AppendTo[listn, newterm] :
d = fd[fib[newterm]] :
digits[d] = digits[d] +1;
current = corrent - fib[newterm] ;

¥




Zeckendorf Decompositions
°

Code: Main Program

If[printcheck = 1,
{
Print[listn] :
listfib = fib[listn]:
Print[listfib] ;

Print["™m = ", m, " and sum of terms is ", Sum[listfib[[i]], {i, 1, Length[listfib]}]]:
Print["Difference iz ", m - Smm[listfib[[i]], {i, 1, Length[listfib]}]]:
Print["Digits are "]:
For[d = 1, d=9, d++, Print[d, " ", digits[d]]]:
-
Return[listn] ;




Zeckendorf Decompositions
°

Code: Main Program

zeckdecomp [14 5319597, 1] ;

{34, 32, 30, 27, 24, 22, 20, 15, 12, 7, 4}

(9227465, 3524578, 1346269, 317811, 75025, 28 657, 10944, 987, 233, 21, 5]
m = 14531597 and sum of terms is 14531537

Difference is 0

Digits are

12

3

[ o8]

=1 [=3] o = (&)
=] [ =] [l (=] %]

L=l
[
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Summary
.

Summary of Two Lectures

o Difference/Differential Equations model world.
@ Deterministic vs Stochastic.

@ Prevalence of Central Limit Theorem.

@ Approximate Continuous with Discrete.

@ Convert Discrete to Continuous!




Homework Problems

Homework Problems J




Homework Problems
°

Problems to Think About: I: Trafalgar

@ In the naval battle model with r(t) and b(t), assume M =N =1
(though it doesn’t matter). If the inial force concentrations are
Bo > Ro, how long will the battle rage before Blue defeats Red?

@ If Red divides its forces into two components Ro 1 + Ro2 = Ro 1,
which splits Blue into two components Bg 1 + Bg 2 = Bg, how
should this be done to maximize Red’s fighting strength, using
the square law? If you want, assume By = 46 and Ry = 40 (or
use 33 and 27, the actual battle numbers).

@ Redo the last problem, but allow Red to split its forces into k
parts, which split Blue into k parts as well. What is the optimal k
and the optimal splitting for red? Again, if you want choose
specific numbers.




Homework Problems
°

Problems to Think About: Il: Zeckendorf

@ Construct a sequence of positive integers such that every
number can be written uniquely as a sum of these integers
without ever using three consecutive numbers. Is there a nice
recurrence relation describing this sequence?

@ Consider the Gamma function I'(s) = [;° e *x*~dx. Where is
the integrand largest when s = n + 1 (so we are looking at
I'(n + 1) = n!)? Can you use this to approximate n!?

@ How many ways are there to divide C cookies among P people,
but now we do not require each cookie to be given to a person?
Hint: there is a simple, clean answer.
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Bonus
°

Battle of Midway: |

Battle of Midway ,;r

Acc. to "Epic Sea Battles”
by William Koenig

/K_\QS) 4.17:00
5..9:00 di ok

4.4:30 W

4l 5:34 .
4.16:10 4

4.,1925 4 j~
4710 L QNS 5:00 g ) 74,1025 —
1 -5(5],'\ \)

120 A I — 0-06 Commanders and Carriers
- ,\ ~ 4., 9:30 == Admiral Nagumo : Akagi, Kaga, Hiryu, Soryvu
A, 9:18 4., 925 w Admiral Fletcher : Yorkrown
4 4., 837 == Admiral Spruance: Enterprise, Horner
-\ ~——USA Forces from Midway Islands
To/From Midway Islands 2




Battle of Midway: Il

_—

United States

@ Empire of Japan

Commanders and leaders

B Chester W. Nimitz
M Frank Jack Fletcher
§ Raymond Spruance
Marc A Mitscher

= Thomas C. Kinkaid

3 Isoroku Yamamoto
SME Nobutake Konds
S Chiichi Nagumo
ZWE Tamon Yamaguchi t
e Ryusaku

Yanagimoto +

Strength
3 camiers 4 camiers
7 heavy cruisers 2 battleships
1 light cruiser 2 heavy cruisers

15 destroyers

233 camer-based aircraft
127 land-based aircraft
16 submarines!'!

1 light cruiser

12 destroyers
248 camer-based
aircraftl

16 floatplanes

1 destroyer sunk
~150 aircraft destroyed

Bonus
°

Did not participate in

battle:

2 light carriers

5 battleships

4 heavy cruisers

2 light cruisers

~35 support ships
Casualties and losses
4 carriers sunk
1 heavy cruiser sunk
1 heawy cruiser damaged
248 aircraft destroyed!®!
3.057 killed™




Bonus
°

Codebreakers (Passage from Wikipedia entry ‘Battle of Midw  ay’)

Cryptanalysts had broken the Japanese Navy’s JN-25b code. Since the early
spring of 1942, the US had been decoding messages stating that there would
soon be an operation at objective “AF”. It was not known where “AF” was, but
Commander Joseph J. Rochefort and his team at Station HYPO were able to
confirm that it was Midway by telling the base there by secure undersea cable
to radio an uncoded false message stating that the water purification system
it depended upon had broken down and that the base needed fresh water.
The code breakers then picked up a Japanese message that “AF was short
on water.” HYPO was also able to determine the date of the attack [deleted],
and to provide Nimitz with a complete IIN order of battle, [deleted] with a very
good picture of where, when, and in what strength the Japanese would
appear. Nimitz knew that the Japanese had negated their numerical
advantage by dividing their ships into four separate task groups, all too widely
separated to be able to support each other. Nimitz calculated that the aircraft
on his three carriers, plus those on Midway Island, gave the U.S. rough parity
with Yamamoto's four carriers, mainly because American carrier air groups
were larger than Japanese ones. The Japanese, by contrast, remained
almost totally unaware of their opponent’s true strength and dispositions even
after the battle began.

1O
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