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An improvement of the Berry�Esseen inequalitywith appli
ations to Poisson and mixed Poissonrandom sums∗Vi
tor Korolev†and Irina Shevtsova‡15 De
ember 2009Abstra
t.By a modi�
ation of the method that was applied in (Korolev and Shevtsova, 2009), herethe inequalities
ρ(Fn,Φ) 6

0.335789(β3 + 0.425)√
nand

ρ(Fn,Φ) 6
0.3051(β3 + 1)√

nare proved for the uniform distan
e ρ(Fn,Φ) between the standard normal distribution fun
tion
Φ and the distribution fun
tion Fn of the normalized sum of an arbitrary number n > 1 ofindependent identi
ally distributed random variables with zero mean, unit varian
e and �nitethird absolute moment β3. The �rst of these inequalities sharpens the best known version of the
lassi
al Berry�Esseen inequality sin
e 0.335789(β3 +0.425) 6 0.335789(1+0.425)β3 < 0.4785β3by virtue of the 
ondition β3 > 1, and 0.4785 is the best known upper estimate of the absolute
onstant in the 
lassi
al Berry�Esseen inequality. The se
ond inequality is applied to loweringthe upper estimate of the absolute 
onstant in the analog of the Berry�Esseen inequality forPoisson random sums to 0.3051 whi
h is stri
tly less than the least possible value of the absolute
onstant in the 
lassi
al Berry�Esseen inequality. As a 
orollary, the estimates of the rate of
onvergen
e in limit theorems for 
ompound mixed Poisson distributions are re�ned.Key words: Central limit theorem, Berry�Esseen inequality, smoothing inequality, Poissonrandom sum, mixed Poisson distribution
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1 Introdu
tionBy F3 we will denote the set of distribution fun
tions with zero �rst moment, unit se
ondmoment and �nite third absolute moment β3. Let X1, X2, . . . be independent randomvariables with 
ommon distribution fun
tion F ∈ F3 de�ned on a probability spa
e
(Ω,A,P). Denote

Fn(x) = F ∗n(x
√
n) = P

(
X1 + . . .+Xn√

n
< x

)
,

Φ(x) =

∫ x

−∞
φ(t)dt, φ(x) =

1√
2π
e−x2/2, x ∈ R.The 
lassi
al Berry�Esseen theorem states that there exists a �nite positive absolute
onstant C0 whi
h guarantees the validity of the inequality

ρ(Fn,Φ) ≡ sup
x

|Fn(x) − Φ(x)| 6 C0
β3

√
n

(1)for all n > 1 and any F ∈ F3 (Berry, 1941), (Esseen, 1942). The problem of establishingthe best value of the 
onstant C0 in inequality (1) is very important from the point of viewof pra
ti
al estimation of the a

ura
y of the normal approximation for the distributionfun
tions of random variables whi
h may be assumed to have the stru
ture of a sum ofindependent random summands.This problem has a long history and is very ri
h in deep and interesting results. Upperestimates for C0 were 
onsidered in very many papers. Here we will not repeat a detailedhistory of the e�orts to lower the upper estimates of C0 from the original works of A.Berry (Berry, 1941) and C.-G. Esseen (Esseen, 1942) to the papers of I. S. Shiganov(Shiganov, 1982), (Shiganov, 1986) presented in (Korolev and Shevtsova, 2009). We willrestri
t ourselves only to an outline of the re
ent history of the subje
t.After some lull that lasted more than twenty years, re
ently the interest to the problemof improving the Berry�Esseen inequality rose again and resulted in very interesting andin some sense path-
learing works. In 2006 I. G. Shevtsova improved Shiganov's upperestimate by approximately 0.06 and obtained the estimate C0 6 0.7056 (Shevtsova,2006). In 2008 she sharpened this estimate to C0 6 0.7005 (Shevtsova, 2008). In 2009the 
ompetition for improving the 
onstant be
ame espe
ially keen. On 8 June, 2009 I.S. Tyurin submitted his paper (Tyurin, 2009a) to the ¾Theory of Probability and ItsAppli
ations¿. That paper, along with other results, 
ontained the estimate C0 6 0.5894.Two days later the summary of those results was submitted to ¾Doklady Akademii Nauk¿(translated into English as ¾Doklady Mathemati
s¿) (Tyurin, 2009b). Independently, on14 September, 2009 V. Yu. Korolev and I. G. Shevtsova submitted their paper (Korolevand Shevtsova, 2009) to the ¾Theory of Probability and Its Appli
ations¿. In that paperthe inequality
ρ(Fn,Φ) 6

0.34445(β3 + 0.489)√
n

, n > 1, (2)was proved whi
h holds for any distribution F ∈ F3 yielding the estimate C0 6 0.5129 byvirtue of the 
ondition β3 > 1. Finally, on 17 November, 2009 the paper (Tyurin, 2009
)2



was submitted to the ¾Russian Mathemati
al Surveys¿ (its English version (Tyurin,2009d) appeared on 3 De
ember, 2009 on arXiv:0912.0726v1). In this paper the estimate
C0 6 0.4785 is proved. So, the best known upper estimate of the absolute 
onstant C0 inthe 
lassi
al Berry�Esseen inequality (1) is C0 6 0.4785 (Tyurin, 2009
).On the other hand, in 1956 C.-G. Esseen showed that C0 > CE where

CE =

√
10 + 3

6
√

2π
= 0.409732...(Esseen, 1956). In 1967 V. M. Zolotarev put forward the hypothesis that in (1) C0 = CE(Zolotarev, 1967a), (Zolotarev, 1967b). However, up till now this hypothesis has beenneither proved nor reje
ted.To prove (2) we used an observation that from inequality (1) it obviously follows thatfor any k > 0 there exists a �nite positive absolute 
onstant Ck whi
h guarantees thevalidity of the inequality

ρ(Fn,Φ) 6 Ck
β3 + k√

n
(3)for all n > 1 and F ∈ F3 (for example, inequality (3) trivially holds with Ck = C0).Following the lines of the reasoning we used in (Korolev and Shevtsova, 2009) toprove (2), with the only 
hange in the way of estimation of the di�eren
e between
hara
teristi
 fun
tions in the neighborhood of zero (see lemma 2 below), in this paperwe will demonstrate a spe
ial method of numeri
al estimation of Ck in (3). This methodyields two spe
ial values of k: k = k0 and k = 1. The �rst value, k0, minimizes the upperestimate of Ck(1 + k) yielding the best (within the method under 
onsideration) upperestimate of C0 in (1) sin
e

C0 6 min
k>0

Ck(1 + k)by virue of the 
ondition β3 > 1. At the same time the se
ond value, k = 1, minimizes
Ck in (3). As we will see, k = 1 plays the main role in improving the absolute 
onstant inthe analog of the Berry�Esseen inequality for Poisson and mixed Poisson random sums.Inequality (3) with k = k0 and k = 1 is an improvement of the inequality

ρ(Fn,Φ) 6 0.3450
β3 + 1√

nwe proved in (Korolev and Shevtsova, 2010a). In (Korolev and Shevtsova, 2010b) thisinequality was applied to sharpening the analog of the Berry�Esseen inequality for Poissonrandom sums and it was for the �rst time demonstrated that the absolute 
onstant inthis analog 
an be made stri
tly less than that in the 
lassi
al Berry�Esseen inequality.In the papers (Shevtsova, 2010a) and (Korolev and Shevtsova, 2010a) it was shownthat the 
onstant Ck in (3) 
annot be made less than the so-
alled lower asymptoti
allyexa
t 
onstant in the 
entral limit theorem, that is,
Ck >

2

3
√

2π
= 0.2659...,so that the gaps between the least possible value of the 
onstant Ck and its upperestimates given in theorems 1 and 2 below are rather small and do not ex
eed 0.07 and3



0.035, respe
tively, whi
h is important from the point of view of pra
ti
al appli
ations ofinequalities (6) and (7).Our investigations were to a great extent motivated by a series of results of H◦akanPrawitz and Vladimir Zolotarev outlined below.First, sin
e estimates of the a

ura
y of the normal approximation for distributions ofsums of independent random variables are traditionally 
onstru
ted with the use of theso-
alled smoothing inequalities whi
h estimate the (uniform) distan
e between the pre-limit distribution fun
tion of the standardized sum of independent random variables andthe limit standard normal distribution fun
tion through some integral of the (weighted)absolute value of the di�eren
e between the 
orresponding 
hara
teristi
 fun
tions, theshape of the dependen
e of the �nal estimate on the moments of summands is fullydetermined by the shape of dependen
e of the majorant of 
hara
teristi
 fun
tions onthese moments. In (Prawitz, 1973) the following result was presented. Let f(t) be the
hara
teristi
 fun
tion 
orresponding to the distribution fun
tion F ∈ F3. Denote
κ = sup

x>0

|cosx− 1 + x2/2|
x3

= 0.09916191...and let θ0 = 3.99589567... be the unique root of the equation
3(1 − cos θ) − θ sin θ − θ2/2 = 0,lying in the interval (π, 2π). Then

|f(t)| 6





1 − t2

2
+ κ (β3 + 1) |t|3, |t| 6

θ0
(β3 + 1)

,

1 − 1 − cos
(
(β3 + 1)t

)

(β3 + 1)2
, θ0 6 (β3 + 1)|t| 6 2π,

1, |t| >
2π

(β3 + 1)
.As is easily seen, the majorant for |f(t)| established by this inequality depends on β3through the fun
tion ψ(β3) = β3 + 1. This is the �rst hint at that the �nal estimate for

ρ(Fn,Φ) should also depend on β3 through the fun
tion ψ(β3) = β3 + 1.Se
ond, in (Prawitz, 1975b) H. Prawitz announ
ed an inequality with unusualstru
ture
ρ(Fn,Φ) 6

2

3
√

2π
· β3√

n− 1
+

1

2
√

2π(n− 1)
+
c1(β3)

2 + c2β3 + c3
n− 1

, n > 2, F ∈ F3, (4)where c1, c2 and c3 are some �nite positive 
onstants. In the same paper he suggestedthat the 
oe�
ient
2

3
√

2π
= 0.2659...at β3/

√
n− 1 
annot be made smaller. Probably, H. Prawitz intended to publish the stri
tproof of (4) in the se
ond part of his work whi
h, unfortunately, for some reasons remainedunpublished (the title of (Prawitz, 1975b) 
ontains the Roman number I indi
ating theassumed 
ontinuation). 4



This Prawitz' inequality (4) seemed to have bepuzzled some spe
ialists in limittheorems of probability theory. In parti
ular, it was bypassed in the well-known books(Petrov, 1987), (Zolotarev, 1997) (in both of these books there is even no referen
e toany of Prawitz' works). Only in the book (Petrov, 1995) there appears a referen
e tothe paper (Prawitz, 1975a) dealing with some estimates for 
hara
teristi
 fun
tions, butthe paper (Prawitz, 1975b) 
ontaining inequality (4) is again ignored. In Mathemati
alReviews (Dunnage, 1977) there is only a fuzzy remark 
on
erning ¾some improvementsfor identi
ally distributed summands¿. Probably, this attitude of some spe
ialists toinequality (4) is 
aused by that at �rst sight this inequality 
ontradi
ts the Esseen'sresult that C0 > CE 
ited above, sin
e
2

3
√

2π
<

√
10 + 3

6
√

2π
.However, a thorough analysis of the published part of Prawitz' work 
onvin
es thatinequality (4) is valid. A stri
t proof of a similar inequality for not ne
essarily identi
allydistributed summands with the third term being O((β3/

√
n)5/3

) was given by V. Bentkus(Bentkus, 1991), (Bentkus, 1994) (for identi
ally distributed summands, the result ofBenkus is slightly worse than (4) where the third term is O((β3/
√
n)2
)).Inequality (4) has a very interesting stru
ture: from the main term of order O(n−1/2)of the estimate of the a

ura
y of the normal approximation a summand of the form

1/
√
n is separated. This summand may be 
onsiderably less than the Lyapunov fra
tion

β3/
√
n. Moreover, in the double array s
heme it may happen so that even if the Lyapunov
ondition β3/

√
n → 0 holds, the quantity β3 = β3(n) may in�nitely in
rease as n → ∞so that the summand of the form n−1/2 is in�nitesimal with a higher order of smallnessthan the Lyapunov fra
tion β3(n)/

√
n. Thus, inequality (4) is the se
ond hint at that ina reasonable estimate of ρ(Fn,Φ) depending on β3 the term of order O(n−1/2) should besplit into two summands of the form β3/

√
n and 1/

√
n respe
tively.By the way, speaking of the history of inequality (4), it has to be noted that a
tuallyit is a further development of the inequality

ρ(Fn,Φ) 6
0.32β3 + 0.25√

n− 2
, n > 3, (5)whi
h holds under the 
ondition √

n− 1 > 3.9(β3 + 1). The proof of (5) was given byH.Prawitz in his le
ture on 16 June, 1972 at the Summer S
hool of the Swedish Statisti
alSo
iety in L�ottorp (Prawitz, 1972a).So, the �nal shape of inequality (3) was prompted by the works of H. Prawitzmentioned above. As this is so, the main role goes to the problem of a proper estimationof the 
onstant Ck. To solve this problem we use a method whi
h is a further developmentof the ideas of V. Zolotarev presented in (Zolotarev, 1965), (Zolotarev, 1966), (Zolotarev,1967a) and (Zolotarev, 1967b). This method will be des
ribed in detail below.The paper is organized as follows. In Se
tion 2 the basi
 results are proved. Namely,here we prove inequality (3) with k = k0 = 0.425 (theorem 1) and with k = 1 (theorem 2).In Se
tion 3 theorem 2 is applied to sharpening the analog of the Berry�Esseen inequalityfor Poisson random sums. We show that despite a prevalent opinion that the absolute5




onstant in this inequality should not be less than the absolute 
onstant in the 
lassi
alBerry�Esseen inequality, as a matter of fa
t this is not so and the 
onstant in the Berry�Esseen inequality for Poisson random sums does not ex
eed 0.3051, whi
h is, as it has beenalready mentioned, stri
tly less than the least possible value CE ≈ 0.4097 of the 
onstant
C0 in (1). Finally, in Se
tions 4 and 5 the result of Se
tion 3 is used for improving theestimates of the rate of 
onvergen
e of 
ompound mixed Poisson distributions with zeroand non-zero means to s
ale and lo
ation mixtures of normal laws, respe
tively.2 The basi
 results2.1 Formulations and dis
ussionPra
ti
al 
al
ulations show that under the algorithm we use for the estimation of Ck (seeSe
tion 3) the resulting majorant of the 
onstant Ck de
reases as k in
reases from 0 to 1.At the same time for 0 6 k 6 k0 ≈ 0.425 the obtained estimates of Ck(1 + k) remain
onstant, and for k > k0 they begin to in
rease although in the interval k0 < k < 1 theobtained estimate of Ck de
reases. Thus, we 
an present two 
omputationally optimalvalues of k in (3): k0 = 0.425 and k1 = 1. The �rst of them delivers the minimum valueto the upper estimate of Ck(1 + k), thus solving the problem of estimation of C0 in (1),whereas the se
ond, maximin, minimizes the estimate of Ck in (3).The use of k = k0 in (3) gives the following result.Theorem 1. For all n > 1 and all distributions with zero mean, unit varian
e and�nite third absolute moment β3 we have the inequality

ρ(Fn,Φ) 6
0.335789(β3 + 0.425)√

n
. (6)Remark 1. Under the 
onditions imposed on the moments of the random variable X1we always have β3 > 1. Therefore,

0.335789(β3 + 0.425) 6 0.335789(1 + 0.425)β3 < 0.4785β3.Hen
e, inequality (6) is always sharper than the 
lassi
al Berry�Esseen inequality (1) withthe best known 
onstant C0 = 0.4785 for all possible values of β3, although the same priorinformation 
on
erning the distribution F is required for its validity (namely, only thevalue of the third absolute moment β3).Remark 2. Inequality (6) is an ¾un
onditional¿ variant of the ¾
onditional¿ Prawitzinequality (5) and is a pra
ti
ally 
omputable analog of inequality (4) with a slightly(approximately by 0.07) worse �rst 
oe�
ient and a slightly better (approximately by0.05) se
ond 
oe�
ient, but without the third summand that 
ontains unknown 
onstants.Remark 3. Even if the hypothesis of V. M. Zolotarev that C0 = CE = 0.4097... in(1) (see (Zolotarev, 1967a), (Zolotarev, 1967b)) turns out to be true, then, due to that
β3 > 1, inequality (6) will be sharper than the 
lassi
al Berry�Esseen inequality (1) for
β3 > 1.93.The use of k = 1 in (3) yields the following result.6



Theorem 2. For all n > 1 and all distributions with zero mean, unit varian
e and�nite third absolute moment β3 we have the inequality
ρ(Fn,Φ) 6

0.3051(β3 + 1)√
n

. (7)Remark 4. Inequality (7) is another ¾un
onditional¿ variant of the ¾
onditional¿Prawitz inequality (5). Moreover, the �rst 
oe�
ient in (7) is less than that in (5) byapproximately 0.02 whereas the se
ond 
oe�
ient in (7) is greater than that in (5) byapproximately 0.05.2.2 Proofs of basi
 results2.2.1 Auxiliary statementsAs we have already mentioned above, to prove theorem 1 we will follow the lines of theapproa
h proposed and developed by V. M. Zolotarev in his works (Zolotarev, 1965),(Zolotarev, 1966) and (Zolotarev, 1967). This approa
h is based on the appli
ationof smoothing inequalities whi
h make it possible to estimate the distan
e betweendistribution fun
tions via the distan
es between the 
orresponding 
hara
teristi
fun
tions. Within this approa
h the key points are: (i) the 
hoi
e of a proper smoothinginequality; (ii) the 
hoi
e of a proper smoothing kernel in a smoothing inequality; (iii)the 
hoi
e of proper estimates for the distan
e between 
hara
teristi
 fun
tions; (iv) the
hoi
e of a proper 
omputational optimization pro
edure.We will des
ribe these points one after another as they are used in the proof oftheorems 1 and 2. The 
orresponding statements will have the form of lemmas.We begin with the smoothing inequality. In most papers dealing with the estimationof the 
onstant in the Berry�Esseen inequality (1) smoothing inequalities of the sametype were used. This type of smoothing inequalities was introdu
ed by V. M. Zolotarev.In the original paper (Zolotarev, 1965), just as in similar inequalities in the earlierpapers of Berry (Berry, 1941) and Esseen (Esseen, 1942), the kernel was used whi
hhad a probabilisti
 sense, that is, whi
h was the probability density of some symmetri
probability distribution. In the paper of Van Beek (Van Beek, 1972) it was noti
ed thatthis 
ondition is not 
ru
ial. Van Beek proposed to use symmetri
 kernels with alternatingsigns. Con
urrently with (Van Beek, 1972), the paper of V. Paulauskas (Paulauskas, 1971)was published in whi
h the original smoothing inequality of Zolotarev was generalized(and hen
e, sharpened) to the 
ase of positive non-symmetri
 kernels. It is interesting tonoti
e that although in the �nal part of the paper of Paulauskas it was noted that thesmoothing inequality proved in that paper was destined, in the �rst pla
e, for improvingthe 
onstant in the Berry�Esseen inequality, as far as we know, unfortunately no one everused the Paulauskas inequality for this purpose. In (Shevtsova, 2009b) a new smoothinginequality was proved whi
h generalizes (and hen
e, sharpens) both Paulauskas' and VanBeek's inequalities to the 
ase of non-symmetri
 kernels with alternating signs. However,all these inequalities yield worse estimates than the Prawitz smoothing inequality provedin (Prawitz, 1972b). 7



The 
hara
teristi
 fun
tion of the standardized sum (X1+. . .+Xn)/
√
n will be denoted

fn(t),
fn(t) =

∞∫

−∞

eitxdFn(x), t ∈ R.Also denote
rn(t) = |fn(t) − e−t2/2|.Lemma 1 (Prawitz, 1972b). For an arbitrary distribution fun
tion F and n > 1 forany 0 < t0 6 1 and T > 0 we have the inequality

ρ(Fn,Φ) 6 2

∫ t0

0

|K(t)|rn(Tt) dt+ 2

∫ 1

t0

|K(t)| · |fn(Tt)|dt+

+2

∫ t0

0

∣∣∣∣K(t) − i

2πt

∣∣∣∣ e
−T 2t2/2dt+

1

π

∫ ∞

t0

e−T 2t2/2dt

t
,where

K(t) =
1

2
(1 − |t|) +

i

2

[
(1 − |t|) cotπt +

signt

π

]
, −1 6 t 6 1. (8)Remark 5. In (Vaaler, 1985) a proof of a result similar to the Prawitz inequalitystated by lemma 1 was given by a te
hniques di�erent from that used in (Prawitz, 1972b)and it was also proved that the kernel K(t) de�ned by (8) is in some sense optimal.Now 
onsider the estimates of the 
hara
teristi
 fun
tions appearing in lemma 1. For

ε > 0 set
χ(t, ε) =





t2/2 − κε|t|3, |t| 6 θ0/ε,

1 − cos εt

ε2
, θ0 < ε|t| 6 2π,

0, |t| > 2π/ε,

(9)where θ0 = 3.99589567... is the unique root of the equation
θ2 + 2θ sin θ + 6(cos θ − 1) = 0, π 6 θ 6 2π, (10)

κ ≡ sup
x>0

| cosx− 1 + x2/2|
x3

=
cos x− 1 + x2/2

x3

∣∣∣∣
x=θ0

= 0.09916191... (11)It 
an easily be made sure that the fun
tion χ(t, ε) monotoni
ally de
reases in ε > 0 forany �xed t ∈ R.The Lyapunov fra
tion will be denoted ℓ = β3/
√
n. In addition, denote

ℓn = ℓ+ 1/
√
n.Lemma 2. For any F ∈ F3, n > 1 and t ∈ R the following estimates take pla
e:

|fn(t)| 6

[
1 − 2

n
χ(t, ℓn)

]n/2

≡ f1(t, ℓn, n),8



|fn(t)| 6 exp{−χ(t, ℓn)} ≡ f2(t, ℓn),

|fn(t)| 6 exp
{
− t2

2
+ κℓn|t|3

}
≡ f3(t, ℓn).Remark 6. Apparently, the fun
tion f1(t, ℓn, n) was used in the problem of numeri
alevaluation of the absolute 
onstants in the estimates of the a

ura
y of the normalapproximation for the �rst time in (Korolev and Shevtsova, 2009). The se
ond and thethird estimates presented in lemma 2 are due to H. Prawitz (Prawitz, 1973), (Prawitz,1975b).Remark 7. Evidently, f1(t, ε, n) 6 f2(t, ε) for all n > 1, ε > 0 and t ∈ R. Moreover,from the result of Prawitz (Prawitz, 1973) it follows that f2(t, ε) 6 f3(t, ε) for all ε > 0and t ∈ R, thus the sharpest estimate for |fn(t)| is given by f1(t, ℓn, n), while the estimates

fj(t, ℓn), j = 2, 3, possess a useful property of monotoni
ity in ℓn whi
h is very importantfor the 
omputational pro
edure.Lemma 3 (Tyurin, 2009a), (Tyurin, 2009
), (Tyurin, 2009d). For any F ∈ F3, n > 1and t ∈ R we have
rn(t) 6 ℓe−t2/2

∫ |t|

0

u2

2
eu2/2

∣∣∣f
( u√

n

)∣∣∣
n−1

du.The 
ombination of lemmas 2 and 3 allows to obtain an estimate for the di�eren
eof the 
hara
teristi
 fun
tions in the neighborhood of zero, whi
h is sharper than all theanalogous estimates used in the pre
eding works:
rn(t) 6 ℓe−t2/2

∫ |t|

0

u2

2
eu2/2

[
1 − 2

n
χ
(
u, ℓ+

1√
n

)](n−1)/2

du ≡ r1(t, ℓ, n), t ∈ R.From what was said above it follows that the substitution of the fun
tions fj(t, ℓn), j =
2, 3, instead of f1(t, ℓn, n) into the right-hand side of the last inequality does not make theresulting estimate less, thus, we obtain two more estimates for rn(t) whi
h monotoni
allyin
rease in ℓ:

rn(t) 6 ℓe−t2/2

∫ |t|

0

u2

2
eu2/2 exp

{
− n− 1

n
· χ
(
u, ℓ+

1√
n

)}
du ≡ r2(t, ℓ, n),

rn(t) 6 ℓe−t2/2

∫ |t|

0

u2

2
exp

{
κℓnu

3 +
u2

2n

(
1 − 2κℓnu

)}
du ≡ r3(t, ℓ, n), t ∈ R,(re
all that ℓn = ℓ + 1/

√
n).Noti
ing that

∣∣∣∣K(t) − i

2πt

∣∣∣∣ =
1

2
(1 − t)

√
1 +

(
cot πt− 1

πt

)2

, 0 6 t 6 1,we 
an estimate ρ(Fn,Φ) for any n > 2 and F with a �xed Lyapunov fra
tion ℓ as
ρ(Fn,Φ) 6 2

∫ t0

0

|K(t)| · r1(Tt, ℓ, n) dt+ 2

∫ 1

t0

|K(t)| · f1(Tt, ℓ+ 1/
√
n, n) dt+9



+
1

π

∫ ∞

t0

e−T 2t2/2dt

t
+

∫ t0

0

(1 − t)

√
1 +

(
cot πt− 1

πt

)2

e−T 2t2/2dt ≡ D(ℓ, n, t0, T )with arbitrary positive T and t0 6 1.The following lemma makes it possible to bound above the set of the values of n under
onsideration when estimating the 
onstant Ck in inequality (3) with 0 < k 6 1.Lemma 4. For any positive N , k 6 1 and ε > k/
√
N for all t ∈ R the followingestimates hold:

sup
n>N

fj

(
t, ε+

1 − k√
n

)
= fj

(
t, ε+

1 − k√
N

)
≡ f̃j,N(t, ε), j = 1, 2,

sup
n>N

r2

(
t, ε− k√

n
, n
)

6 εe−t2/2

∫ |t|

0

u2

2
exp

{u2

2
− N − 1

N
χ
(
u, ε+

1 − k√
N

)}
du ≡ r̃2,N(t, ε),For

|t| 6 T (N, ε) ≡ min
{
N1/4ε−1/2, (2κε)−1

}we also have the estimate
sup
n>N

r3

(
t, ε− 1√

n
, n
)

6
1

6κ

(
eκε|t|3 − 1

)
e−t2/2 ≡ r̃3(t, ε).P r o o f. The �rst two statements are trivial 
onsequen
es of the monotoni
ity of thefun
tions χ(t, ε+ (1 − k)/

√
n) and fj(t, ε+ (1 − k)/

√
n), j = 1, 2, with respe
t to n > 1.To prove the third statement note that the fun
tion r3 
an be written in the form

r3

(
t, ε− 1√

n
, n
)

= e−t2/2

∫ |t|

0

u2

2
exp

{
κεu3 + g(n, u)

}
du,where

g(x, u) = ln
(
ε− 1√

x

)
+
a(u)

x
, x > 0, a(u) =

u2

2

(
1 − 2κεu

)
, u > 0.Sin
e |t| 6 (2κε)−1 under the 
onditions of the lemma, we have a(u) > 0 for all u 6 |t|.Let us establish that g(x, u) monotoni
ally in
reases in x > N and u 6 T (N, ε). Indeed,the derivative

∂g(x, u)

∂x
=

1

2x(ε
√
x− 1)

− a(u)

x2is non-negative if and only if x−2a(u)ε
√
x+2a(u) > 0. Sin
e a(u) > 0, the last 
onditionis satis�ed, if√x > 2a(u)ε ≡ εu2(1−2κεu), or, parti
ulary, if√x > εu2. So, for all x > Nand u 6 T (N, ε) with T (N, ε) de�ned in the formulation of the lemma the fun
tion g(x, u)monotoni
ally in
reases in x > N , when
e it follows that

sup
n>N

g(n, u) = lim
n→∞

g(n, u) = ln ε, 0 6 u 6 T (N, ε),and
sup
n>N

r3

(
t, ε− 1√

n
, n
)

6
1

2
εe−t2/2

∫ |t|

0

u2eκεu3

du =
1

6κ

(
eκε|t|3 − 1

)
e−t2/2 ≡ r̃3(t, ε),10



Q. E. D.Finally, the pro
ess of 
omputational optimization 
an be properly organized with thehelp of the following statements.Lemma 5 (Bhatta
harya and Ranga Rao, 1976). For any distribution F with zeromean and unit varian
e we have
ρ(F,Φ) 6 sup

x>0

(
Φ(x) − x2

1 + x2

)
= 0.54093654 . . .Lemma 6. For any F ∈ F3 and n > 400 su
h that β3 + 1 6 0.1

√
n the followingestimate takes pla
e:

ρ(Fn,Φ) 6 0.2727 · β
3

√
n

+
0.2041√

n
.The statement of lemma 6 is a result of the algorithm des
ribed in (Prawitz, 1975b) or(Gaponova and Shevtsova, 2009).Sin
e the fun
tion

g(b) =
0.2727b+ 0.2041

b+ k
, b > 1,monotoni
ally in
reases for k > 0.2041/0.2727 = 0.74 . . . and monotoni
ally de
reases for

0 6 k 6 0.74, we have
sup
b>1

g(b) =

{
0.2727, k > 0.75,

0.4768/(1 + k), k 6 0.74.Thus, from lemma 6 it follows that for all n and β3 su
h that (β3 + k)/
√
n < 0.05(1 + k)inequality (3) holds with Ck = 0.2727 for k > 0.75 and with Ck = 0.4768/(1 + k) for

k 6 0.74. In parti
ular, for k = 0.425 we have
ρ(Fn,Φ) 6 0.3346 · β

3 + 0.425√
n

, if β3 + 0.425√
n

6 0.07125.The lemmas presented above give the grounds for restri
ting the domain of the valuesof ε = (β3 + k)/
√
n by a bounded interval separated from zero (more details will be givenbelow) and for looking for the 
onstant Ck in the form

Ck = max
ε
C(ε), C(ε) = D(ε)/ε, D(ε) = sup {D(ε, n) : n > n∗} , (11)where
D(ε, n) = inf

0<t061, T>0
D(ε− k/

√
n, n, t0, T ), (12)

n∗ = max{1, ⌈(1 + k)2/ε2⌉},here ⌈x⌉ is the least integer no less than x. The 
ondition n > n∗ is a 
onsequen
e ofthe inequality β3 > 1. For the estimation of the supremum in n in the de�nition of D(ε),lemma 4 is used for N large enough. The 
omputation of the maximum in ε is essentiallybased on the property of monotoni
ity in ε of all the fun
tions used for the estimation11



of |fn(t)| and rn(t), and hen
e, on the monotoni
ity of the fun
tion D(ε) = εC(ε). Thisproperty makes it possible to estimate maxεC(ε) using the values of C(ε) only in a �nitenumber of points. In parti
ular, the following statement holds.Lemma 7. For all ε2 > ε1 > 0 the following inequality is true:
max

ε16ε6ε2

C(ε) 6 C(ε2) ·
ε2

ε1
.2.2.2 Proof of theorem 1Denote

ε = ℓ+
0.425√
n

=
β3 + 0.425√

n
.Then for ε 6 0.07 inequality (6) is a 
onsequen
e of lemma 6, and for ε > 1.62 >

0.541/0.335789 it follows from lemma 5. Thus, to 
ompute Ck the maximization withrespe
t to ε in (11) is 
ondu
ted on the interval 0.07 6 ε 6 1.62. To 
ompute thesupremum with respe
t to n > n∗ = ⌈(1.425/ε)2⌉ we use lemma 4 with N = 600 for
ε 6 0.1, N = 300 for 0.1 < ε 6 0.2 and N = 100 for ε > 0.2. For the mentioned values of
ε we have n∗(0.07) = 415, n∗(0.1) = 204, n∗(0.2) = 51. The maximum with respe
t to εis estimated by lemma 7 and is attained in the two points: n = 5, ε ≈ 0.822 (β3 ≈ 1.413,
t0 ≈ 0.385, T = 5.755) and n = 8, ε ≈ 0.504 (β3 = 1, t0 ≈ 0.293, T = 8.911). Bothextremal values do not ex
eed 0.335789, when
e, theorem 1 is proved.2.2.3 Proof of theorem 2Denote

ε = ℓ +
1√
n

=
β3 + 1√

n
.Then for ε 6 0.1 inequality (7) is a 
onsequen
e of lemma 6, and for ε > 1.78 >

0.541/0.3051 it follows from lemma 5. Thus, to 
ompute Ck the maximization with respe
tto ε in (11) is 
ondu
ted on the interval 0.1 6 ε 6 1.78. To 
ompute the supremum withrespe
t to n > n∗ = ⌈4/ε2⌉ we use the last statement of lemma 4 with N = 200 and
T (200, ε) = min{5.04/ε, 3.76/

√
ε}. It turned out, that the extremal value is attained at

n→ ∞ and ε ≈ 0.985 (t0 = 0.356, T = 6.147) and it does not ex
eed 0.3051, Q. E. D.3 An improvement of the analog of the Berry�Esseeninequality for Poisson random sums3.1 The history of the problemIn this se
tion we will use theorem 1 to improve the analog of the Berry�Esseen inequalityfor Poisson random sums. Let X1, X2, ... be independent identi
ally distributed randomvariables with
EX1 ≡ µ, DX1 ≡ σ2 > 0 and E|X1|3 ≡ β3 <∞. (13)12



Let Nλ be a random variable with the Poisson distribution with parameter λ > 0. Assumethat for any λ > 0 the random variables Nλ and X1, X2, ... are independent. Set
Sλ = X1 + . . .+XNλ(for de�niteness we assume that Sλ = 0 if Nλ = 0). Poisson random sums Sλ arevery popular mathemati
al models of many real obje
ts. In parti
ular, in insuran
emathemati
s Sλ des
ribes the total 
laim size under the 
lassi
al risk pro
ess in the¾dynami
al¿ 
ase. Many examples of applied problems from various �elds where Poissonrandom sums are en
ountered 
an be found in, say, (Gnedenko and Korolev, 1996) or(Bening and Korolev, 2002).It is easy to see that

ESλ = λµ, DSλ = λ(µ2 + σ2).The distribution fun
tion of the standardized Poisson random sum
S̃λ ≡ Sλ − λµ√

λ(µ2 + σ2)will be denoted Fλ(x).It is well known that under the 
onditions on the moments of the random variable X1given above, the so-
alled Berry�Esseen inequality for Poisson random sums holds: thereexists an absolute positive 
onstant C <∞ su
h that
ρ(Fλ,Φ) ≡ sup

x
|Fλ(x) − Φ(x)| 6 C

β3

(µ2 + σ2)3/2
√
λ
. (14)Inequality (14) has rather an interesting history. Apparently, it was �rst proved in (Rotar,1972a) and was published in (Rotar, 1972b) with C = 2.23 (the dissertation (Rotar,1972a) was not published whereas the paper (Rotar, 1972b) does not 
ontain a proof ofthis result). Later, with the use of a traditional te
hnique based on the Esseen smoothinginequality this estimate was proved in (von Chossy, Raððl, 1983) with C = 2.21 (theauthors of this paper de
lared that C = 3 in the formulation of the 
orresponding theorem,whi
h is, of 
ourse, true, but a
tually in the proof of this theorem they obtained the value

C = 2.21).In the paper (Mi
hel, 1993) the property of in�nite divisibility of 
ompound Poissondistributions was used to prove that the 
onstant in (14) is the same as that in the
lassi
al Berry�Esseen inequality. Although Shiganov's estimate C0 6 0.7655 (Shiganov,1986), had been known by that time (the original paper by Shiganov had been publishedin Russian even earlier, in 1982), Mi
hel used the previous re
ord value due to Van Beek(Van Beek, 1972) and announ
ed in (Mi
hel, 1993) that C 6 0.8 in (14). Being not awareof this paper of Mi
hel, the authors of the paper (Bening, Korolev and Shorgin, 1997)used an improved version of the Esseen smoothing inequality and obtained the estimate
C 6 1.99. As it has been already noted, the method of the proof used in (Mi
hel, 1993)is based on the fa
t that if for the absolute 
onstant C0 in the 
lassi
al Berry�Esseeninequality (1) an estimate C0 6 M is known, then inequality (14) holds with C = M .13



This 
ir
umstan
e was also noted by the authors of the paper (Korolev and Shorgin, 1997)in whi
h independently of the paper (Mi
hel, 1993) the same result was obtained, but withanother 
urrently best estimate M = 0.7655. As we noted in Se
tion 1, the best knownestimate of the absolute 
onstant in the 
lassi
al Berry�Esseen inequality was obtainedin (Tyurin, 2009
), (Tyurin, 2009d): C0 6 0.4785. Therefore, following the logi
s of thereasoning used in (Mi
hel, 1993) and (Korolev and Shorgin, 1997) we 
an 
on
lude thatinequality (14) holds at least with C = 0.4785.In this se
tion we show that a
tually binding the estimate of the 
onstant C in (14) tothe estimate of the absolute 
onstant C0 in the 
lassi
al Berry�Esseen inequality is moreloose. Namely, although the best known upper estimate of C0 isM = 0.4785 and moreover,although the unimprovable lower estimate of C0 is ≈ 0.4097..., inequality (14) a
tuallyholds with C = 0.3051. Thus, here we improve the result of (Korolev and Shevtsova,2010b) where we proved inequality (14) with C = 0.3450.3.2 Auxiliary resultsThe following lemma determines the relation between the distributions and moments ofPoisson random sums and the distributions and moments of sums of a non-random numberof independent summands. This lemma will be the main tool whi
h we will use to applythe results known for the 
lassi
al 
ase, to Poisson random sums.Here and in what follows the symbol d
= will stand for the 
oin
iden
e of distributions.Also denote ν = λ/n.Lemma 7. The distribution of the Poisson random sum Sλ 
oin
ides with thedistribution of the sum of a non-random number n of independent identi
ally distributedrandom variables whatever integer n > 1 is:

X1 + . . .+XNλ

d
= Yν,1 + . . .+ Yν,nwhere for ea
h n the random variables Yν,1, . . . , Yν,n are independent and identi
allydistributed. Moreover, if the random variable X1 satis�es 
onditions (13), then for themoments of the random variable Yν,1 the following relations hold:

EYν,1 = µν, DYν,1 = (µ2 + σ2)ν,

E |Yν,1 − µν|3 6 νβ3(1 + 40ν) for n > λ.P r o o f. The proof is based on the property of in�nite divisibility of a 
ompoundPoisson distribution whi
h implies that for any integer n > 1 the 
hara
teristi
 fun
tion
fSλ

(t) of the Poisson random sum Sλ 
an be represented as
fSλ

(t) = exp
{
λ(f(t) − 1)

}
=
[
exp

{
ν(f(t) − 1)

}]n ≡
[
fYν,1(t)

]n
,where fYν,1 is the 
hara
teristi
 fun
tion of the random variable Yν,1. Hen
e, thedistribution of ea
h of the summands Yν,1, . . . , Yν,n 
oin
ides with the distribution of thePoisson random sum of the original random variables:

Yν,k
d
= X1 + . . .+XNν

, k = 1, . . . , n,14



where Nν is the Poisson-distributed random variable with parameter ν independent of thesequen
e X1, X2, . . . Hen
e we dire
tly obtain the relations for the �rst and the se
ondmoments of the random variables Yν,1 and X1. Let us prove the relation for the thirdabsolute moments. By the formula of total probability we have
E |Yν,1 − µν|3 6 e−ν

(
ν3|µ|3 + νE |X1 − µν|3 +

∞∑

k=2

νk

k!
E |X1 + . . .+Xk − µν|3

)
.Consider the se
ond and the third summands on the right-hand side separately. For thispurpose without loss of generality we will assume that n > λ, that is, ν 6 1. By virtue ofthe Minkowski inequality we have

(
E |X1 − µν|3

)1/3
6 (β3)1/3 + |µ|ν = (β3)1/3

(
1 +

|µ|ν
(β3)1/3

)
.Sin
e ν 6 1 and the ratio |µ|/(β3)1/3 does not ex
eed 1 by virtue of the Lyapunovinequality, we obtain

E |X1 − µν|3 6 β3(1 + ν)3
6 β3(1 + 7ν).To estimate the third summand noti
e that the Lyapunov inequality yields

∣∣∣
k∑

i=1

xi

∣∣∣
r

6 kr−1
k∑

i=1

|xi|r, xi ∈ R, i = 1, . . . , k, r > 1,(see, e. g., (Bhatta
harya and Ranga Rao, 1976)). With r = 3, this inequality implies
E |X1 + . . .+Xk − µν|3 6 E (|X1| + . . .+ |Xk| + |µ|ν)3

6

6 (k + 1)2(kβ3 + (|µ|ν)3) 6 β3(k + 1)3(here we took into a

ount that |µ|3 6 β3 and ν 6 1). Thus,
E |Yν,1 − µν|3 6 ν3|µ|3 + νE |X1 − µν|3 +

∞∑

k=2

νk

k!
E |X1 + . . .+Xk − µν|3 6

6 νβ3
[
1 + (8 +K)ν

]where
K =

∞∑

k=2

(k + 1)3

k!
= 15e− 9 < 32.The lemma is proved.Corollary 1. Under 
onditions (13) the distribution of the standardized Poissonrandom sum S̃λ 
oin
ides with the distribution of the normalized non-random sum of nrandom variables whatever integer n > 1 is:

S̃λ
d
=

1√
n

n∑

k=1

Zν,k15



where for ea
h n the random variables Zν,1, . . . , Zν,n are independent and identi
allydistributed. Moreover, these random variables have zero expe
tation, unit varian
e andfor all n > λ their third absolute moment satis�es the inequality
E |Zν,1|3 6

β3(1 + 40ν)
√
n

(µ2 + σ2)3/2
√
λ
. (15)P r o o f. A

ording to lemma 7 for any n we have the representation

S̃λ =
Sλ − λµ√
λ(µ2 + σ2)

d
=

Yν,1 + . . .+ Yν,n − nµν√
(µ2 + σ2)nν

≡ 1√
n

n∑

k=1

Zν,k,in whi
h the random variables
Zν,k ≡ Yν,k − µν√

ν
=
Yν,k − EYν,k√

DYν,kare independent, identi
ally distributed, have zero expe
tation and, unit varian
e.Moreover, by virtue of the same lemma for all n > λ we have the relation
E |Zν,1|3 =

E |Yν,1 − EYν,1|3
(DYν,1)3/2

6
β3(1 + 40ν)

(µ2 + σ2)3/2ν1/2
=
β3(1 + 40ν)

√
n

(µ2 + σ2)3/2
√
λ
.The 
orollary is proved.3.3 Main resultTheorem 2. Under 
onditions (13) for any λ > 0 we have the inequality

ρ(Fλ,Φ) 6
0.3051β3

(µ2 + σ2)3/2
√
λ
.P r o o f. From lemma 7 and 
orollary 1 it follows that for any integer n > 1

ρ(Fλ,Φ) = sup
x

∣∣∣∣P
(

1√
n

n∑

k=1

Zν,k < x

)
− Φ(x)

∣∣∣∣.Hen
e, by theorem 1 for an arbitrary integer n > 1 we have
ρ(Fλ,Φ) 6 0.3051

E|Zν,1|3√
n

+
0.3051√

n
. (16)Sin
e n > 1 is arbitrary, we 
an assume that n > λ, making it possible to use estimate(15) for the spe
i�ed n and, in the 
ontinuation of (16), to obtain the inequality

ρ(Fλ,Φ) 6 0.3051
β3(1 + 40λ/n)

(µ2 + σ2)3/2
√
λ

+
0.3051√

n
.Sin
e here n > λ is arbitrary, letting n→ ∞ we �nally obtain

ρ(Fλ,Φ) 6 lim
n→∞

[
0.3051

β3(1 + 40λ/n)

(µ2 + σ2)3/2
√
λ

+
0.3051√

n

]
=

0.3051β3

(µ2 + σ2)3/2
√
λ
,Q. E. D. 16



4 Convergen
e rate estimates in limit theorems formixed 
ompound Poisson distributions4.1 PreliminariesLet Λt be a positive random variable whose distribution depends on some parameter t > 0.The distribution fun
tion of Λt will be denoted Gt(x): Gt(x) = P(Λt < x). By a mixedPoisson distribution with a stru
tural distribution Gt we will mean the distribution of therandom variable N(t) whi
h takes values k = 0, 1, ... with probabilities
P
(
N(t) = k

)
=

1

k!

∞∫

0

e−λλkdGt(λ), k = 0, 1, 2, ...Some spe
ial examples of mixed Poisson distributions are very well-known. Themost well-known and most widely used mixed Poisson distribution is, of 
ourse, thenegative binomial distribution (sin
e it was �rst used in the form of a mixed Poissondistribution in (Greenwood and Yule, 1920) to model the frequen
ies of a

idents).This distribution is generated by the stru
tural gamma-distribution. Other examplesof mixed Poisson distributions are the Delaporte distribution with the shifted gamma-stru
tural distribution (Delaporte, 1960), the Si
hel distribution with the generalizedinverse Gaussian stru
tural distribution (Holla, 1967), (Si
hel, 1971), Willmot, 1987),The generalized Waring distribution (Irwin, 1968), (Seal, 1978). The properties of mixedPoisson distributions are des
ribed in detail in (Grandell, 1997) and (Bening and Korolev,2002).Let X1, X2, ... be independent identi
ally distributed random variables. Assume thatthe random variables N(t), X1, X2, ... are independent for ea
h t > 0. Set
S(t) = X1 + . . .+XN(t)(for de�niteness we assume that if N(t) = 0, then S(t) = 0). The random variable S(t)will be 
alled a mixed Poisson random sum and its distribution will be 
alled 
ompoundmixed Poisson.In what follows we will assume that the random variables X1, X2, ... possess three�rst moments for whi
h we will use the same notation as in Se
tion 3 (see (13)). Theasymptoti
 behavior of the distributions of mixed Poisson random sums S(t) when N(t)in�nitely grows in some sense, is prin
ipally di�erent depending on whether µ = 0 or not.The 
onvergen
e in distribution and in probability will be respe
tively denoted by thesymbols =⇒ and P−→.First 
onsider the 
ase µ = 0. In this 
ase the limit distributions for standardizedmixed Poisson sums are s
ale mixtures of normal laws. Without loss of generality, unlessotherwise indi
ated, we will assume that σ2 = 1.Theorem 3 (Korolev, 1996), (Bening and Korolev, 2002). Assume that Λt

P−→ ∞ as
t → ∞. Then, for a positive in�nitely in
reasing fun
tion d(t) there exists a distributionfun
tion H(x) su
h that

P

(
S(t)√
d(t)

< x

)
=⇒ H(x) (t→ ∞)17



if and only if there exists a distribution fun
tion G(x) su
h that for the same fun
tion
d(t)

Gt

(
xd(t)

)
=⇒ G(x) (t→ ∞) (17)and

H(x) =

∞∫

0

Φ
(
x/

√
y)dG(y), x ∈ R.Now 
onsider the 
ase µ 6= 0. This 
ase is important from the point of view of insuran
eappli
ations. Re
all that, in general, DX1 = σ2. Assume that there exist numbers ℓ ∈

(0,∞) and s ∈ (0,∞) su
h that
EΛt ≡ ℓt, DΛt ≡ s2t, t > 0. (18)Then it is easy to make sure that

ES(t) = µℓt, DS(t) = [ℓ(µ2 + σ2) + µ2s2]t.In the book (Bening and Korolev, 2002) a general theorem presenting ne
essary andsu�
ient 
onditions for the 
onvergen
e of 
ompound mixed Poisson distributions wasproved. The following theorem is a parti
ular 
ase of that result.Theorem 4 (Bening and Korolev, 2002). Let µ 6= 0. In addition to the 
onditionson the moments of the stru
tural random variable Λt assume that Λt
P−→ ∞ as t → ∞.Then, as t → ∞, 
ompound mixed Poisson distributions 
onverge to the distribution ofsome random variable Z, that is,

S(t) − µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

=⇒ Z,if and only if there exists a random variable V su
h that
Λt − ℓt

s
√
t

=⇒ V.Furthermore,
P(Z < x) = EΦ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(σ2 + µ2)ℓ

)
, x ∈ R.It is easy to see that the limit random variable Z admits the representation

Z
d
=

[
1 +

µ2s2

(µ2 + σ2)ℓ

]−1/2

·X +
µs√

(µ2 + σ2)ℓ+ µ2s2
· V,where X is a random variable with the standard normal distribution independent of V .The basi
 distin
tions of the 
ase µ 6= 0 from the 
ase of 
ompound mixed Poissondistributions with zero expe
tations 
onsidered above are, �rst, the ne
essity of non-trivial
entering and di�erent normalization required for the existen
e of non-trivial limit lawsand, se
ond, the shape of the limit law whi
h in this 
ase has the form of a lo
ationmixture of normal laws. 18



4.2 Convergen
e rate estimates in limit theorems for mixed
ompound Poisson distributions with zero meanIt is easily seen that the distribution of the mixed Poisson random sum S(t) 
an berepresented as
P(S(t) < x) =

∞∫

0

P

( Nλ∑

j=1

Xj < x

)
dGt(λ), x ∈ R. (19)Re
all that here we assume that

EX1 = 0, EX2
1 = 1, β3 = E|X1|3 <∞. (20)Let d(t), t > 0, be a positive in�nitely in
reasing fun
tion. In this se
tion we will presentsome estimates of the rate of 
onvergen
e in theorem 3.For λ > 0 denote

ρ(λ) = sup
x

∣∣∣∣P
(

1√
λ

Nλ∑

j=1

Xj < x

)
− Φ(x)

∣∣∣∣.Let G(x) be a distribution fun
tion su
h that G(0) = 0. If 
ondition (17) holds, then,a

ording to theorem 3, 
ompound mixed Poisson distribution of the mixed Poisson sum
S(t) normalized by the square root of the fun
tion d(t) 
onverges to the s
ale mixture ofnormal laws in whi
h G(x) is the mixing distribution. Denote

∆t = sup
x

∣∣∣∣P
(
S(t)√
d(t)

< x

)
−

∞∫

0

Φ

(
x√
λ

)
dG(λ)

∣∣∣∣, δt = sup
x

∣∣Gt

(
d(t)x

)
−G(x)

∣∣.Theorem 5. Assume that 
onditions (20) hold. Then for any t > 0 we have theestimate
∆t 6 0.3051 · β3

E[Λt]
−1/2 + 0.5 · δt.P r o o f. This statement was �rst proved in the paper (Gavrilenko and Korolev,2006) with a slightly worse 
onstant (also see (Korolev, Bening and Shorgin, 2007). Herewe present a modi�ed version of the proof. By virtue of representation (19) we have

∆t = sup
x

∣∣∣∣∣

∞∫

0

P

(
Nλ∑

j=1

Xj < x
√
d(t)

)
dGt(λ) −

∞∫

0

Φ

(
x√
λ

)
dG(λ)

∣∣∣∣∣ =

= sup
x

∣∣∣∣∣

∞∫

0

P

(
1√
λ

Nλ∑

j=1

Xj < x

√
d(t)√
λ

)
dGt(λ) −

∞∫

0

Φ

(
x√
λ

)
dG(λ)

∣∣∣∣∣ =

= sup
x

∣∣∣∣∣

∞∫

0

P

(
1√
λd(t)

Nλd(t)∑

j=1

Xj <
x√
λ

)
dGt

(
λd(t)

)
)

−
∞∫

0

Φ

(
x√
λ

)
dG(λ)

∣∣∣∣∣ 619



6 sup
x

∣∣∣∣∣

∞∫

0

[
P

(
1√
λd(t)

Nλd(t)∑

j=1

Xj <
x√
λ

)
− Φ

(
x√
λ

)]
dGt

(
λd(t)

)
∣∣∣∣∣+

+ sup
x

∣∣∣∣∣

∞∫

0

Φ

(
x√
λ

)
d
[
Gt

(
λd(t)

)
−G(λ)

]
∣∣∣∣∣.Continuing this 
hain of relations with the use of integration by parts and theorem 2 wefurther obtain

∆t 6

∞∫

0

sup
x

∣∣∣∣∣P
(

1√
λd(t)

Nλd(t)∑

j=1

Xj < x

)
− Φ(x)

∣∣∣∣∣dGt

(
λd(t)

)
+

+ sup
x

∣∣∣∣∣

∞∫

0

[
Gt

(
λd(t)

)
−G(λ)

]
dλΦ

(
x√
λ

)∣∣∣∣∣ 6

6

∞∫

0

ρ(λ)dGt(λ) + sup
λ

∣∣Gt

(
λd(t)

)
−G(λ)

∣∣ · sup
x

∣∣∣∣∣

∞∫

0

dλΦ

(
x√
λ

)∣∣∣∣∣ 6

6 0.3051 · β3

∞∫

0

1√
λ
dGt(λ) + 0.5 · sup

λ

∣∣Gt

(
λd(t)

)
−G(λ)

∣∣ =

= 0.3051 · β3
E[Λt]

−1/2 + 0.5 · δt,Q. E. D.As an example of appli
ations of theorem 5 
onsider the 
ase where for ea
h t > 0 therandom variable Λt has the gamma-distribution. This 
ase is very important in �nan
ialappli
ations for the asymptoti
 validation of su
h popular models of the evolution of�nan
ial indexes as varian
e-gamma L�evy pro
esses (VG-pro
esses) (Madan and Seneta,1990) or two-sided gamma-pro
esses (Carr, Madan and Chang, 1998).As is well known, the density of the gamma-distribution with shape parameter r > 0and s
ale parameter σ > 0 has the form
gr,σ(x) =

σr

Γ(r)
e−σxxr−1, x > 0.Thus, the mixed Poisson distribution with the mixing gamma-distribution has the
hara
teristi
 fun
tion

ψ(t) =

∞∫

0

exp{y(eit − 1)} σr

Γ(r)
e−σyyr−1dy =

=
σr

Γ(r)

∞∫

0

exp
{
− σy

(
1 +

1 − eit

σ

)}
yr−1dy =

(
1 +

1 − eit

σ

)−r

.20



By the re-parametrization
σ =

p

1 − p

(
p =

σ

1 + σ

)
, p ∈ (0, 1),we �nally obtain

ψ(t) =
( p

1 − (1 − p)eit

)r

, t ∈ R,whi
h 
oin
ides with the 
hara
teristi
 fun
tion of the negative binomial distribution withparameters r > 0 and p ∈ (0, 1). So, in the 
ase under 
onsideration for ea
h t > 0 therandom variable N(t) has the negative binomial distribution with parameters r > 0 and
p ∈ (0, 1):

P
(
N(t) = n

)
= Cn

r+n−1p
r(1 − p)n, n = 0, 1, 2, . . . . (21)Here r > 0 and p ∈ (0, 1) are the parameters and for non-integer r the quantity Cn

r+n−1 isde�ned as
Cn

r+n−1 =
Γ(r + n)

n! · Γ(r)
.In parti
ular, with r = 1, relation (21) determines the geometri
 distribution.The gamma-distribution fun
tion with s
ale parameter σ ana shape parameter r willbe denoted Gr,σ(x). It is easy to see that

Gr,σ(x) ≡ Gr,1(σx). (22)The random variable with the distribution fun
tion Gr,σ(x) will be denoted U(r, σ). Itis well known that
EU(r, σ) =

r

σ
.Fix the parameter r and take U(r, σ) as the random variable Λt assuming that t = σ−1:

Λt = U(r, t−1).As a fun
tion d(t) take
d(t) ≡ EΛt = EU(r, t−1).Obviously, we have

EU(r, t−1) = rt.Then with the a

ount of (22) we have
Gt

(
xd(t)

)
= P(U(r, t−1) < xrt) = P(U(r, 1) < xr) = P(U(r, r) < x) = Gr,r(x).Note that the distribution fun
tion on the right-hand side of the latter relation does notdepend on t. Therefore the 
hoi
e of d(t) spe
i�ed above trivially guarantees the validityof 
ondition (17) of theorem 3. Moreover, in this 
ase δt = 0 for all t > 0.Now 
al
ulate E[Λt]

−1/2 under the 
ondition
r >

1

2
. (23)21



We have
E[Λt]

−1/2 = E[U(r, t−1)]−1/2 =

∞∫

0

e−x/txr−3/2

trΓ(r)
dx =

Γ(r − 1
2
)

Γ(r)
√
t
.Thus we obtain the following statement whi
h is a
tually a parti
ular 
ase of theorem 5.Corollary 2. Let the random variable Λt have the gamma-distribution with shapeparameter r > 0 and s
ale parameter σ = 1/t, t > 0. Assume that 
onditions (20) and

(23) hold. Then for ea
h t > 0 we have
sup

x

∣∣∣∣P(S(t) < x
√
rt) −

∞∫

0

Φ

(
x√
y

)
dGr,r(y)

∣∣∣∣ 6 0.3051
Γ(r− 1

2
)

Γ(r)
· β

3

√
t
.If r = 1, then the random variable

N(t) = N1

(
U(1, t−1)

)
, t > 0,has the geometri
 distribution with parameter p = t−1. As this is so, the limit (as t→ ∞)distribution fun
tion of the standardized geometri
 sum S(t) is the Lapla
e distributionwith the density

l(x) =
1√
2
e−

√
2|x|, x ∈ R.The distribution fun
tion 
orresponding to the density l(x) will be denoted L(x),

L(x) =





1
2
e
√

2x, if x < 0,
1 − 1

2
e−

√
2x, if x > 0.Corollary 3. Let the random variable Λt have the exponential distribution withparameter σ = 1/t, t > 0. Assume that 
onditions (20) hold. Then for ea
h t > 0

sup
x

|P(S(t) < x
√
t) − L(x)| 6 0.5408 · β3√

t
.5 Convergen
e rate estimates in limit theorems formixed 
ompound Poisson distributions with non-zero meanHere we will present some estimates of the rate of 
onvergen
e in theorem 4.5.1 The 
ase of stru
tural random variables with �nite varian
eUnder assumptions (18) denote

Ft(x) = P

(
S(t) − µℓt√

[ℓ(µ2 + σ2) + µ2s2]t
< x

)
,22



ρt = sup
x

∣∣∣∣∣Ft(x) − EΦ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(σ2 + µ2)ℓ

)∣∣∣∣∣ ,

G∗(v) = P (V < v) , δ̃t = sup
v

∣∣∣Gt

(
vs
√
t+ ℓt

)
−G∗(v)

∣∣∣ .Theorem 6. Let EX1 = µ 6= 0, DX1 = σ2, E|X1|3 = β3 < ∞, E |V | < ∞. Then forany t > 0 we have
ρt ≤ δ̃t +

1√
t
· inf

ǫ∈(0,1)

{
0.3051β3

(µ2 + σ2)3/2
√

(1 − ǫ)ℓ
+
s

ℓ

(
E|V |
ǫ

+Q(ǫ)

)∣∣∣∣
}
,where

Q(ǫ) = max

{
1

ǫ
,

√
1 + ǫ(

1 +
√

1 − ǫ
)√

2πe(1 − ǫ)

}
.P r o o f. A similar statement with slightly worse 
onstants was �rst proved in thepaper (Artyukhov and Korolev, 2008). Here we present a modi�ed version of the proof. Asabove, let Nλ be a random variable with the Poisson distribution with parameter λ > 0independent of the sequen
e X1, X2, . . . Then we 
an write

ρt = sup
x

∣∣∣∣∣P
(

S(t) − µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
− E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣ =

= sup
x

∣∣∣∣∣

∞∫

0

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣.Fix an arbitrary ǫ ∈ (0, 1). Then
ρt = sup

x

∣∣∣∣∣

∫

λ<(1−ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)+

+

∫

λ>(1+ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)+

+

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣ 623



6 sup
x

∣∣∣∣∣

∫

λ<(1−ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)+

+

∫

λ>(1+ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)

∣∣∣∣∣+

+ sup
x

∣∣∣∣∣

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣ 6

6 P

(∣∣∣∣
Λt

ℓt
− 1

∣∣∣∣ > ǫ

)
+

+ sup
x

∣∣∣∣∣

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣. (24)Further,
sup

x

∣∣∣∣∣

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣ 6

6 sup
x

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

∣∣∣∣∣ P

(
SNλ

− µλ√
λ(µ2 + σ2)

<

<

√
ℓt

λ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

))
−

−Φ

(√
ℓt

λ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

))∣∣∣∣∣ dGt(λ)+

+ sup
x

∣∣∣∣∣

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

Φ

(√
ℓt

λ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

))
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣ ≡ I1 + I2.24



Consider I1. Denote
y =

√
ℓt

λ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

)
.Then I1 
an be rewritten in the form

I1 = sup
y

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

∣∣∣∣∣P
(

SNλ
− µλ√

λ(µ2 + σ2)
< y

)
− Φ(y)

∣∣∣∣∣ dGt(λ) 6

6

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

sup
y

∣∣∣∣∣P
(

SNλ
− µλ√

λ(µ2 + σ2)
< y

)
− Φ(y)

∣∣∣∣∣ dGt(λ).To estimate the integrand on the right-hand side of the latter inequality we use theorem2 and obtain
I1 6

0.3051β3

(µ2 + σ2)3/2

∫

λ>(1−ǫ)ℓt

1√
λ
dGt(λ) 6

0.3051β3

(µ2 + σ2)3/2
√

(1 − ǫ)ℓt
. (25)Consider I2. We have

I2 6 sup
x

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

∣∣∣∣∣Φ
(√

ℓt

λ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

))
−

−Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

)∣∣∣∣∣ dGt(λ)+

+ sup
x

∣∣∣∣∣

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

)
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣ ≡ I21 + I22.Denote
z = x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t
.Then

I21 6

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

sup
z

∣∣∣∣Φ
(
z

√
ℓt

λ

)
− Φ(z)

∣∣∣∣ dGt(λ). (26)Consider the integrand in (26). By the Lagrange formula we have
∣∣∣∣Φ
(
z

√
ℓt

λ

)
− Φ(z)

∣∣∣∣ = |z| ·
∣∣∣∣

√
ℓt

λ
− 1

∣∣∣∣ϕ
(
θz + (1 − θ)z

√
ℓt

λ

)
(27)25



for some θ ∈ [0, 1] where
ϕ(x) = Φ′(x) =

1√
2π
e−x2/2is the standard normal density. The fun
tion ϕ(x) = ϕ(|x|) monotoni
ally de
reases as

|x| in
reases. Therefore the fun
tion ϕ on the right-hand side of (27) attains its maximumvalue in θ ∈ [0, 1] at that value of its argument, whose absolute value is minimum. Butthe argument of the fun
tion ϕ on the right-hand side of (27) is itself a linear fun
tion of
θ. Therefore, the minimum absolute value of this argument is attained either at θ = 0 orat θ = 1. But at θ = 1 we have

θ

(
1 −

√
ℓt

λ

)
+

√
ℓt

λ
= 1,while at θ = 0 we have

θ

(
1 −

√
ℓt

λ

)
+

√
ℓt

λ
=

√
ℓt

λ
.In the de�nition of I21 λ satis�es the inequality λ 6 (1 + ǫ)ℓt. Therefore,

√
ℓt

λ
>

1√
1 + ǫ

.Hen
e,
θ

(
1 −

√
ℓt

λ

)
+

√
ℓt

λ
> min

{
1,

1√
1 + ǫ

}
=

1√
1 + ǫ

.Therefore in I21 we have (see (27))
sup

z

∣∣∣∣Φ
(
z

√
ℓt

λ

)
− Φ(z)

∣∣∣∣ 6

∣∣∣∣

√
ℓt

λ
− 1

∣∣∣∣ · sup
z

|z|ϕ
(

z√
1 + ǫ

)
. (28)Furthermore, (

zϕ

(
z√

1 + ǫ

))′
= ϕ

(
z√

1 + ǫ

)(
1 − z2

1 + ǫ

)
.Therefore the supremum in (28) is attained at z = ±

√
1 + ǫ and equals

sup
z

|z|ϕ
(

z√
1 + ǫ

)
=

√
1 + ǫ

2πe
.Thus,

I21 6

√
1 + ǫ

2πe

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

∣∣∣∣

√
ℓt

λ
− 1

∣∣∣∣ dGt(λ) =

=

√
1 + ǫ

2πe

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

∣∣∣∣

√
ℓt−

√
λ√

λ

∣∣∣∣ ·
∣∣∣∣

√
ℓt+

√
λ√

ℓt+
√
λ

∣∣∣∣ dGt(λ) =26



=

√
1 + ǫ

2πe

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

|λ− ℓt|√
λ
(√

ℓt+
√
λ
) dGt(λ) 6

6

√
1 + ǫ

2πe
· 1√

1 − ǫ
(
1 +

√
1 − ǫ

)
∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

∣∣∣∣
λ

ℓt
− 1

∣∣∣∣ dGt(λ) =

=

√
1 + ǫ

2πe(1 − ǫ)
· 1

1 +
√

1 − ǫ
· E
∣∣∣∣
Λt

ℓt
− 1

∣∣∣∣1
(∣∣∣∣

Λt

ℓt
− 1

∣∣∣∣ 6 ǫ

)
. (29)Here the symbol 1(A) denotes the indi
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6 sup
v

∣∣Gt(vs
√
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∣∣ ≡ δ̃t. (30)Note that in (24) we 
an apply the Markov inequality and obtain the estimate
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an make sure that
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,when
e we obviously obtain the statement of the theorem sin
e the Lyapunov inequalityobviously implies that for ea
h t > 0
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e, from theorem 6 we obtain the following result.Corollary 4. In addition to the 
onditions of theorem 6, let (33) hold. Then for any
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5.2 The 
ase of stru
tural random variables with in�nite varian
eAssumption (18) whi
h guarantees the existen
e of the varian
e of the stru
tural randomvariable Λt is not 
ru
ial. An analog of theorem 6 
an be proved for the 
ase where onlythe existen
e of the mathemati
al expe
tation of Λt is assumed. Namely, the followingtheorem holds.Theorem 7. Let µ 6= 0. Assume that EΛt ≡ t and Λt
P−→ ∞ as t → ∞. Then,as t → ∞, the distributions of normalized mixed Poisson random sums 
onverge to thedistribution of some random variable Z, that is,

S(t) − µ√
t

=⇒ Z,if and only if there exists a random variable V su
h that
Λt − t√

t
=⇒ V.Moreover,
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( x− µV√

σ2 + µ2

)
, x ∈ R. (34)Relation (34) means that in theorem 8

Z
d
=
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µ2 + σ2 ·X + µVwhere the random variables X and V are independent and X has the standard normaldistribution.By analogy with the notation introdu
ed above, denote
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.The proof of theorem 8 di�ers from the proof of theorem 6 only in notation.As an example of the situation in whi
h theorems 7 and 8 are valid, but theorems 4and 6 are not, 
onsider the 
ase where

Λt = max{0,
√
tV + t} +

1

2tα/2

(2α+ 1

α

√
t− 1

)
,29



with 2 < α < 3 and V being the random variable with the density
p(x) =

α + 1

2(|x| + 1)α
, x ∈ R.It 
an be easily veri�ed that EΛt = t for any t > 0, but the se
ond moment of Λt isin�nite due to that the se
ond moment of the random variable V does not exist (andhen
e, the se
ond moment of the mixed Poisson random sum S(t) with the stru
turalrandom variable Λt does not exist). However, it 
an be easily seen that

Λt − t√
t

= max{−
√
t, V } +

1

2t(α+1)/2

(2α + 1

α

√
t− 1

)
=⇒ Vas t → ∞. This 
ase is an illustrative example of an interesting and non-trivial fa
t:unlike the 
lassi
al summation theory, for sums with a random number of summands (inparti
ular, for mixed Poisson random sums) with in�nite varian
es the existen
e of non-trivial weak limits is possible under the normalization of order t1/2 whi
h is ¾standard¿in the 
lassi
al theory only for sums with �nite varian
es.The authors have the pleasure to express their gratitude to Margarita Gaponova who
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