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An improvement of the Berry�Esseen inequalitywith appliations to Poisson and mixed Poissonrandom sums∗Vitor Korolev†and Irina Shevtsova‡15 Deember 2009Abstrat.By a modi�ation of the method that was applied in (Korolev and Shevtsova, 2009), herethe inequalities
ρ(Fn,Φ) 6

0.335789(β3 + 0.425)√
nand

ρ(Fn,Φ) 6
0.3051(β3 + 1)√

nare proved for the uniform distane ρ(Fn,Φ) between the standard normal distribution funtion
Φ and the distribution funtion Fn of the normalized sum of an arbitrary number n > 1 ofindependent identially distributed random variables with zero mean, unit variane and �nitethird absolute moment β3. The �rst of these inequalities sharpens the best known version of thelassial Berry�Esseen inequality sine 0.335789(β3 +0.425) 6 0.335789(1+0.425)β3 < 0.4785β3by virtue of the ondition β3 > 1, and 0.4785 is the best known upper estimate of the absoluteonstant in the lassial Berry�Esseen inequality. The seond inequality is applied to loweringthe upper estimate of the absolute onstant in the analog of the Berry�Esseen inequality forPoisson random sums to 0.3051 whih is stritly less than the least possible value of the absoluteonstant in the lassial Berry�Esseen inequality. As a orollary, the estimates of the rate ofonvergene in limit theorems for ompound mixed Poisson distributions are re�ned.Key words: Central limit theorem, Berry�Esseen inequality, smoothing inequality, Poissonrandom sum, mixed Poisson distribution
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1 IntrodutionBy F3 we will denote the set of distribution funtions with zero �rst moment, unit seondmoment and �nite third absolute moment β3. Let X1, X2, . . . be independent randomvariables with ommon distribution funtion F ∈ F3 de�ned on a probability spae
(Ω,A,P). Denote

Fn(x) = F ∗n(x
√
n) = P

(
X1 + . . .+Xn√

n
< x

)
,

Φ(x) =

∫ x

−∞
φ(t)dt, φ(x) =

1√
2π
e−x2/2, x ∈ R.The lassial Berry�Esseen theorem states that there exists a �nite positive absoluteonstant C0 whih guarantees the validity of the inequality

ρ(Fn,Φ) ≡ sup
x

|Fn(x) − Φ(x)| 6 C0
β3

√
n

(1)for all n > 1 and any F ∈ F3 (Berry, 1941), (Esseen, 1942). The problem of establishingthe best value of the onstant C0 in inequality (1) is very important from the point of viewof pratial estimation of the auray of the normal approximation for the distributionfuntions of random variables whih may be assumed to have the struture of a sum ofindependent random summands.This problem has a long history and is very rih in deep and interesting results. Upperestimates for C0 were onsidered in very many papers. Here we will not repeat a detailedhistory of the e�orts to lower the upper estimates of C0 from the original works of A.Berry (Berry, 1941) and C.-G. Esseen (Esseen, 1942) to the papers of I. S. Shiganov(Shiganov, 1982), (Shiganov, 1986) presented in (Korolev and Shevtsova, 2009). We willrestrit ourselves only to an outline of the reent history of the subjet.After some lull that lasted more than twenty years, reently the interest to the problemof improving the Berry�Esseen inequality rose again and resulted in very interesting andin some sense path-learing works. In 2006 I. G. Shevtsova improved Shiganov's upperestimate by approximately 0.06 and obtained the estimate C0 6 0.7056 (Shevtsova,2006). In 2008 she sharpened this estimate to C0 6 0.7005 (Shevtsova, 2008). In 2009the ompetition for improving the onstant beame espeially keen. On 8 June, 2009 I.S. Tyurin submitted his paper (Tyurin, 2009a) to the ¾Theory of Probability and ItsAppliations¿. That paper, along with other results, ontained the estimate C0 6 0.5894.Two days later the summary of those results was submitted to ¾Doklady Akademii Nauk¿(translated into English as ¾Doklady Mathematis¿) (Tyurin, 2009b). Independently, on14 September, 2009 V. Yu. Korolev and I. G. Shevtsova submitted their paper (Korolevand Shevtsova, 2009) to the ¾Theory of Probability and Its Appliations¿. In that paperthe inequality
ρ(Fn,Φ) 6

0.34445(β3 + 0.489)√
n

, n > 1, (2)was proved whih holds for any distribution F ∈ F3 yielding the estimate C0 6 0.5129 byvirtue of the ondition β3 > 1. Finally, on 17 November, 2009 the paper (Tyurin, 2009)2



was submitted to the ¾Russian Mathematial Surveys¿ (its English version (Tyurin,2009d) appeared on 3 Deember, 2009 on arXiv:0912.0726v1). In this paper the estimate
C0 6 0.4785 is proved. So, the best known upper estimate of the absolute onstant C0 inthe lassial Berry�Esseen inequality (1) is C0 6 0.4785 (Tyurin, 2009).On the other hand, in 1956 C.-G. Esseen showed that C0 > CE where

CE =

√
10 + 3

6
√

2π
= 0.409732...(Esseen, 1956). In 1967 V. M. Zolotarev put forward the hypothesis that in (1) C0 = CE(Zolotarev, 1967a), (Zolotarev, 1967b). However, up till now this hypothesis has beenneither proved nor rejeted.To prove (2) we used an observation that from inequality (1) it obviously follows thatfor any k > 0 there exists a �nite positive absolute onstant Ck whih guarantees thevalidity of the inequality

ρ(Fn,Φ) 6 Ck
β3 + k√

n
(3)for all n > 1 and F ∈ F3 (for example, inequality (3) trivially holds with Ck = C0).Following the lines of the reasoning we used in (Korolev and Shevtsova, 2009) toprove (2), with the only hange in the way of estimation of the di�erene betweenharateristi funtions in the neighborhood of zero (see lemma 2 below), in this paperwe will demonstrate a speial method of numerial estimation of Ck in (3). This methodyields two speial values of k: k = k0 and k = 1. The �rst value, k0, minimizes the upperestimate of Ck(1 + k) yielding the best (within the method under onsideration) upperestimate of C0 in (1) sine

C0 6 min
k>0

Ck(1 + k)by virue of the ondition β3 > 1. At the same time the seond value, k = 1, minimizes
Ck in (3). As we will see, k = 1 plays the main role in improving the absolute onstant inthe analog of the Berry�Esseen inequality for Poisson and mixed Poisson random sums.Inequality (3) with k = k0 and k = 1 is an improvement of the inequality

ρ(Fn,Φ) 6 0.3450
β3 + 1√

nwe proved in (Korolev and Shevtsova, 2010a). In (Korolev and Shevtsova, 2010b) thisinequality was applied to sharpening the analog of the Berry�Esseen inequality for Poissonrandom sums and it was for the �rst time demonstrated that the absolute onstant inthis analog an be made stritly less than that in the lassial Berry�Esseen inequality.In the papers (Shevtsova, 2010a) and (Korolev and Shevtsova, 2010a) it was shownthat the onstant Ck in (3) annot be made less than the so-alled lower asymptotiallyexat onstant in the entral limit theorem, that is,
Ck >

2

3
√

2π
= 0.2659...,so that the gaps between the least possible value of the onstant Ck and its upperestimates given in theorems 1 and 2 below are rather small and do not exeed 0.07 and3



0.035, respetively, whih is important from the point of view of pratial appliations ofinequalities (6) and (7).Our investigations were to a great extent motivated by a series of results of H◦akanPrawitz and Vladimir Zolotarev outlined below.First, sine estimates of the auray of the normal approximation for distributions ofsums of independent random variables are traditionally onstruted with the use of theso-alled smoothing inequalities whih estimate the (uniform) distane between the pre-limit distribution funtion of the standardized sum of independent random variables andthe limit standard normal distribution funtion through some integral of the (weighted)absolute value of the di�erene between the orresponding harateristi funtions, theshape of the dependene of the �nal estimate on the moments of summands is fullydetermined by the shape of dependene of the majorant of harateristi funtions onthese moments. In (Prawitz, 1973) the following result was presented. Let f(t) be theharateristi funtion orresponding to the distribution funtion F ∈ F3. Denote
κ = sup

x>0

|cosx− 1 + x2/2|
x3

= 0.09916191...and let θ0 = 3.99589567... be the unique root of the equation
3(1 − cos θ) − θ sin θ − θ2/2 = 0,lying in the interval (π, 2π). Then

|f(t)| 6





1 − t2

2
+ κ (β3 + 1) |t|3, |t| 6

θ0
(β3 + 1)

,

1 − 1 − cos
(
(β3 + 1)t

)

(β3 + 1)2
, θ0 6 (β3 + 1)|t| 6 2π,

1, |t| >
2π

(β3 + 1)
.As is easily seen, the majorant for |f(t)| established by this inequality depends on β3through the funtion ψ(β3) = β3 + 1. This is the �rst hint at that the �nal estimate for

ρ(Fn,Φ) should also depend on β3 through the funtion ψ(β3) = β3 + 1.Seond, in (Prawitz, 1975b) H. Prawitz announed an inequality with unusualstruture
ρ(Fn,Φ) 6

2

3
√

2π
· β3√

n− 1
+

1

2
√

2π(n− 1)
+
c1(β3)

2 + c2β3 + c3
n− 1

, n > 2, F ∈ F3, (4)where c1, c2 and c3 are some �nite positive onstants. In the same paper he suggestedthat the oe�ient
2

3
√

2π
= 0.2659...at β3/

√
n− 1 annot be made smaller. Probably, H. Prawitz intended to publish the stritproof of (4) in the seond part of his work whih, unfortunately, for some reasons remainedunpublished (the title of (Prawitz, 1975b) ontains the Roman number I indiating theassumed ontinuation). 4



This Prawitz' inequality (4) seemed to have bepuzzled some speialists in limittheorems of probability theory. In partiular, it was bypassed in the well-known books(Petrov, 1987), (Zolotarev, 1997) (in both of these books there is even no referene toany of Prawitz' works). Only in the book (Petrov, 1995) there appears a referene tothe paper (Prawitz, 1975a) dealing with some estimates for harateristi funtions, butthe paper (Prawitz, 1975b) ontaining inequality (4) is again ignored. In MathematialReviews (Dunnage, 1977) there is only a fuzzy remark onerning ¾some improvementsfor identially distributed summands¿. Probably, this attitude of some speialists toinequality (4) is aused by that at �rst sight this inequality ontradits the Esseen'sresult that C0 > CE ited above, sine
2

3
√

2π
<

√
10 + 3

6
√

2π
.However, a thorough analysis of the published part of Prawitz' work onvines thatinequality (4) is valid. A strit proof of a similar inequality for not neessarily identiallydistributed summands with the third term being O((β3/

√
n)5/3

) was given by V. Bentkus(Bentkus, 1991), (Bentkus, 1994) (for identially distributed summands, the result ofBenkus is slightly worse than (4) where the third term is O((β3/
√
n)2
)).Inequality (4) has a very interesting struture: from the main term of order O(n−1/2)of the estimate of the auray of the normal approximation a summand of the form

1/
√
n is separated. This summand may be onsiderably less than the Lyapunov fration

β3/
√
n. Moreover, in the double array sheme it may happen so that even if the Lyapunovondition β3/

√
n → 0 holds, the quantity β3 = β3(n) may in�nitely inrease as n → ∞so that the summand of the form n−1/2 is in�nitesimal with a higher order of smallnessthan the Lyapunov fration β3(n)/

√
n. Thus, inequality (4) is the seond hint at that ina reasonable estimate of ρ(Fn,Φ) depending on β3 the term of order O(n−1/2) should besplit into two summands of the form β3/

√
n and 1/

√
n respetively.By the way, speaking of the history of inequality (4), it has to be noted that atuallyit is a further development of the inequality

ρ(Fn,Φ) 6
0.32β3 + 0.25√

n− 2
, n > 3, (5)whih holds under the ondition √

n− 1 > 3.9(β3 + 1). The proof of (5) was given byH.Prawitz in his leture on 16 June, 1972 at the Summer Shool of the Swedish StatistialSoiety in L�ottorp (Prawitz, 1972a).So, the �nal shape of inequality (3) was prompted by the works of H. Prawitzmentioned above. As this is so, the main role goes to the problem of a proper estimationof the onstant Ck. To solve this problem we use a method whih is a further developmentof the ideas of V. Zolotarev presented in (Zolotarev, 1965), (Zolotarev, 1966), (Zolotarev,1967a) and (Zolotarev, 1967b). This method will be desribed in detail below.The paper is organized as follows. In Setion 2 the basi results are proved. Namely,here we prove inequality (3) with k = k0 = 0.425 (theorem 1) and with k = 1 (theorem 2).In Setion 3 theorem 2 is applied to sharpening the analog of the Berry�Esseen inequalityfor Poisson random sums. We show that despite a prevalent opinion that the absolute5



onstant in this inequality should not be less than the absolute onstant in the lassialBerry�Esseen inequality, as a matter of fat this is not so and the onstant in the Berry�Esseen inequality for Poisson random sums does not exeed 0.3051, whih is, as it has beenalready mentioned, stritly less than the least possible value CE ≈ 0.4097 of the onstant
C0 in (1). Finally, in Setions 4 and 5 the result of Setion 3 is used for improving theestimates of the rate of onvergene of ompound mixed Poisson distributions with zeroand non-zero means to sale and loation mixtures of normal laws, respetively.2 The basi results2.1 Formulations and disussionPratial alulations show that under the algorithm we use for the estimation of Ck (seeSetion 3) the resulting majorant of the onstant Ck dereases as k inreases from 0 to 1.At the same time for 0 6 k 6 k0 ≈ 0.425 the obtained estimates of Ck(1 + k) remainonstant, and for k > k0 they begin to inrease although in the interval k0 < k < 1 theobtained estimate of Ck dereases. Thus, we an present two omputationally optimalvalues of k in (3): k0 = 0.425 and k1 = 1. The �rst of them delivers the minimum valueto the upper estimate of Ck(1 + k), thus solving the problem of estimation of C0 in (1),whereas the seond, maximin, minimizes the estimate of Ck in (3).The use of k = k0 in (3) gives the following result.Theorem 1. For all n > 1 and all distributions with zero mean, unit variane and�nite third absolute moment β3 we have the inequality

ρ(Fn,Φ) 6
0.335789(β3 + 0.425)√

n
. (6)Remark 1. Under the onditions imposed on the moments of the random variable X1we always have β3 > 1. Therefore,

0.335789(β3 + 0.425) 6 0.335789(1 + 0.425)β3 < 0.4785β3.Hene, inequality (6) is always sharper than the lassial Berry�Esseen inequality (1) withthe best known onstant C0 = 0.4785 for all possible values of β3, although the same priorinformation onerning the distribution F is required for its validity (namely, only thevalue of the third absolute moment β3).Remark 2. Inequality (6) is an ¾unonditional¿ variant of the ¾onditional¿ Prawitzinequality (5) and is a pratially omputable analog of inequality (4) with a slightly(approximately by 0.07) worse �rst oe�ient and a slightly better (approximately by0.05) seond oe�ient, but without the third summand that ontains unknown onstants.Remark 3. Even if the hypothesis of V. M. Zolotarev that C0 = CE = 0.4097... in(1) (see (Zolotarev, 1967a), (Zolotarev, 1967b)) turns out to be true, then, due to that
β3 > 1, inequality (6) will be sharper than the lassial Berry�Esseen inequality (1) for
β3 > 1.93.The use of k = 1 in (3) yields the following result.6



Theorem 2. For all n > 1 and all distributions with zero mean, unit variane and�nite third absolute moment β3 we have the inequality
ρ(Fn,Φ) 6

0.3051(β3 + 1)√
n

. (7)Remark 4. Inequality (7) is another ¾unonditional¿ variant of the ¾onditional¿Prawitz inequality (5). Moreover, the �rst oe�ient in (7) is less than that in (5) byapproximately 0.02 whereas the seond oe�ient in (7) is greater than that in (5) byapproximately 0.05.2.2 Proofs of basi results2.2.1 Auxiliary statementsAs we have already mentioned above, to prove theorem 1 we will follow the lines of theapproah proposed and developed by V. M. Zolotarev in his works (Zolotarev, 1965),(Zolotarev, 1966) and (Zolotarev, 1967). This approah is based on the appliationof smoothing inequalities whih make it possible to estimate the distane betweendistribution funtions via the distanes between the orresponding harateristifuntions. Within this approah the key points are: (i) the hoie of a proper smoothinginequality; (ii) the hoie of a proper smoothing kernel in a smoothing inequality; (iii)the hoie of proper estimates for the distane between harateristi funtions; (iv) thehoie of a proper omputational optimization proedure.We will desribe these points one after another as they are used in the proof oftheorems 1 and 2. The orresponding statements will have the form of lemmas.We begin with the smoothing inequality. In most papers dealing with the estimationof the onstant in the Berry�Esseen inequality (1) smoothing inequalities of the sametype were used. This type of smoothing inequalities was introdued by V. M. Zolotarev.In the original paper (Zolotarev, 1965), just as in similar inequalities in the earlierpapers of Berry (Berry, 1941) and Esseen (Esseen, 1942), the kernel was used whihhad a probabilisti sense, that is, whih was the probability density of some symmetriprobability distribution. In the paper of Van Beek (Van Beek, 1972) it was notied thatthis ondition is not ruial. Van Beek proposed to use symmetri kernels with alternatingsigns. Conurrently with (Van Beek, 1972), the paper of V. Paulauskas (Paulauskas, 1971)was published in whih the original smoothing inequality of Zolotarev was generalized(and hene, sharpened) to the ase of positive non-symmetri kernels. It is interesting tonotie that although in the �nal part of the paper of Paulauskas it was noted that thesmoothing inequality proved in that paper was destined, in the �rst plae, for improvingthe onstant in the Berry�Esseen inequality, as far as we know, unfortunately no one everused the Paulauskas inequality for this purpose. In (Shevtsova, 2009b) a new smoothinginequality was proved whih generalizes (and hene, sharpens) both Paulauskas' and VanBeek's inequalities to the ase of non-symmetri kernels with alternating signs. However,all these inequalities yield worse estimates than the Prawitz smoothing inequality provedin (Prawitz, 1972b). 7



The harateristi funtion of the standardized sum (X1+. . .+Xn)/
√
n will be denoted

fn(t),
fn(t) =

∞∫

−∞

eitxdFn(x), t ∈ R.Also denote
rn(t) = |fn(t) − e−t2/2|.Lemma 1 (Prawitz, 1972b). For an arbitrary distribution funtion F and n > 1 forany 0 < t0 6 1 and T > 0 we have the inequality

ρ(Fn,Φ) 6 2

∫ t0

0

|K(t)|rn(Tt) dt+ 2

∫ 1

t0

|K(t)| · |fn(Tt)|dt+

+2

∫ t0

0

∣∣∣∣K(t) − i

2πt

∣∣∣∣ e
−T 2t2/2dt+

1

π

∫ ∞

t0

e−T 2t2/2dt

t
,where

K(t) =
1

2
(1 − |t|) +

i

2

[
(1 − |t|) cotπt +

signt

π

]
, −1 6 t 6 1. (8)Remark 5. In (Vaaler, 1985) a proof of a result similar to the Prawitz inequalitystated by lemma 1 was given by a tehniques di�erent from that used in (Prawitz, 1972b)and it was also proved that the kernel K(t) de�ned by (8) is in some sense optimal.Now onsider the estimates of the harateristi funtions appearing in lemma 1. For

ε > 0 set
χ(t, ε) =





t2/2 − κε|t|3, |t| 6 θ0/ε,

1 − cos εt

ε2
, θ0 < ε|t| 6 2π,

0, |t| > 2π/ε,

(9)where θ0 = 3.99589567... is the unique root of the equation
θ2 + 2θ sin θ + 6(cos θ − 1) = 0, π 6 θ 6 2π, (10)

κ ≡ sup
x>0

| cosx− 1 + x2/2|
x3

=
cos x− 1 + x2/2

x3

∣∣∣∣
x=θ0

= 0.09916191... (11)It an easily be made sure that the funtion χ(t, ε) monotonially dereases in ε > 0 forany �xed t ∈ R.The Lyapunov fration will be denoted ℓ = β3/
√
n. In addition, denote

ℓn = ℓ+ 1/
√
n.Lemma 2. For any F ∈ F3, n > 1 and t ∈ R the following estimates take plae:

|fn(t)| 6

[
1 − 2

n
χ(t, ℓn)

]n/2

≡ f1(t, ℓn, n),8



|fn(t)| 6 exp{−χ(t, ℓn)} ≡ f2(t, ℓn),

|fn(t)| 6 exp
{
− t2

2
+ κℓn|t|3

}
≡ f3(t, ℓn).Remark 6. Apparently, the funtion f1(t, ℓn, n) was used in the problem of numerialevaluation of the absolute onstants in the estimates of the auray of the normalapproximation for the �rst time in (Korolev and Shevtsova, 2009). The seond and thethird estimates presented in lemma 2 are due to H. Prawitz (Prawitz, 1973), (Prawitz,1975b).Remark 7. Evidently, f1(t, ε, n) 6 f2(t, ε) for all n > 1, ε > 0 and t ∈ R. Moreover,from the result of Prawitz (Prawitz, 1973) it follows that f2(t, ε) 6 f3(t, ε) for all ε > 0and t ∈ R, thus the sharpest estimate for |fn(t)| is given by f1(t, ℓn, n), while the estimates

fj(t, ℓn), j = 2, 3, possess a useful property of monotoniity in ℓn whih is very importantfor the omputational proedure.Lemma 3 (Tyurin, 2009a), (Tyurin, 2009), (Tyurin, 2009d). For any F ∈ F3, n > 1and t ∈ R we have
rn(t) 6 ℓe−t2/2

∫ |t|

0

u2

2
eu2/2

∣∣∣f
( u√

n

)∣∣∣
n−1

du.The ombination of lemmas 2 and 3 allows to obtain an estimate for the di�ereneof the harateristi funtions in the neighborhood of zero, whih is sharper than all theanalogous estimates used in the preeding works:
rn(t) 6 ℓe−t2/2

∫ |t|

0

u2

2
eu2/2

[
1 − 2

n
χ
(
u, ℓ+

1√
n

)](n−1)/2

du ≡ r1(t, ℓ, n), t ∈ R.From what was said above it follows that the substitution of the funtions fj(t, ℓn), j =
2, 3, instead of f1(t, ℓn, n) into the right-hand side of the last inequality does not make theresulting estimate less, thus, we obtain two more estimates for rn(t) whih monotoniallyinrease in ℓ:

rn(t) 6 ℓe−t2/2

∫ |t|

0

u2

2
eu2/2 exp

{
− n− 1

n
· χ
(
u, ℓ+

1√
n

)}
du ≡ r2(t, ℓ, n),

rn(t) 6 ℓe−t2/2

∫ |t|

0

u2

2
exp

{
κℓnu

3 +
u2

2n

(
1 − 2κℓnu

)}
du ≡ r3(t, ℓ, n), t ∈ R,(reall that ℓn = ℓ + 1/

√
n).Notiing that

∣∣∣∣K(t) − i

2πt

∣∣∣∣ =
1

2
(1 − t)

√
1 +

(
cot πt− 1

πt

)2

, 0 6 t 6 1,we an estimate ρ(Fn,Φ) for any n > 2 and F with a �xed Lyapunov fration ℓ as
ρ(Fn,Φ) 6 2

∫ t0

0

|K(t)| · r1(Tt, ℓ, n) dt+ 2

∫ 1

t0

|K(t)| · f1(Tt, ℓ+ 1/
√
n, n) dt+9



+
1

π

∫ ∞

t0

e−T 2t2/2dt

t
+

∫ t0

0

(1 − t)

√
1 +

(
cot πt− 1

πt

)2

e−T 2t2/2dt ≡ D(ℓ, n, t0, T )with arbitrary positive T and t0 6 1.The following lemma makes it possible to bound above the set of the values of n underonsideration when estimating the onstant Ck in inequality (3) with 0 < k 6 1.Lemma 4. For any positive N , k 6 1 and ε > k/
√
N for all t ∈ R the followingestimates hold:

sup
n>N

fj

(
t, ε+

1 − k√
n

)
= fj

(
t, ε+

1 − k√
N

)
≡ f̃j,N(t, ε), j = 1, 2,

sup
n>N

r2

(
t, ε− k√

n
, n
)

6 εe−t2/2

∫ |t|

0

u2

2
exp

{u2

2
− N − 1

N
χ
(
u, ε+

1 − k√
N

)}
du ≡ r̃2,N(t, ε),For

|t| 6 T (N, ε) ≡ min
{
N1/4ε−1/2, (2κε)−1

}we also have the estimate
sup
n>N

r3

(
t, ε− 1√

n
, n
)

6
1

6κ

(
eκε|t|3 − 1

)
e−t2/2 ≡ r̃3(t, ε).P r o o f. The �rst two statements are trivial onsequenes of the monotoniity of thefuntions χ(t, ε+ (1 − k)/

√
n) and fj(t, ε+ (1 − k)/

√
n), j = 1, 2, with respet to n > 1.To prove the third statement note that the funtion r3 an be written in the form

r3

(
t, ε− 1√

n
, n
)

= e−t2/2

∫ |t|

0

u2

2
exp

{
κεu3 + g(n, u)

}
du,where

g(x, u) = ln
(
ε− 1√

x

)
+
a(u)

x
, x > 0, a(u) =

u2

2

(
1 − 2κεu

)
, u > 0.Sine |t| 6 (2κε)−1 under the onditions of the lemma, we have a(u) > 0 for all u 6 |t|.Let us establish that g(x, u) monotonially inreases in x > N and u 6 T (N, ε). Indeed,the derivative

∂g(x, u)

∂x
=

1

2x(ε
√
x− 1)

− a(u)

x2is non-negative if and only if x−2a(u)ε
√
x+2a(u) > 0. Sine a(u) > 0, the last onditionis satis�ed, if√x > 2a(u)ε ≡ εu2(1−2κεu), or, partiulary, if√x > εu2. So, for all x > Nand u 6 T (N, ε) with T (N, ε) de�ned in the formulation of the lemma the funtion g(x, u)monotonially inreases in x > N , whene it follows that

sup
n>N

g(n, u) = lim
n→∞

g(n, u) = ln ε, 0 6 u 6 T (N, ε),and
sup
n>N

r3

(
t, ε− 1√

n
, n
)

6
1

2
εe−t2/2

∫ |t|

0

u2eκεu3

du =
1

6κ

(
eκε|t|3 − 1

)
e−t2/2 ≡ r̃3(t, ε),10



Q. E. D.Finally, the proess of omputational optimization an be properly organized with thehelp of the following statements.Lemma 5 (Bhattaharya and Ranga Rao, 1976). For any distribution F with zeromean and unit variane we have
ρ(F,Φ) 6 sup

x>0

(
Φ(x) − x2

1 + x2

)
= 0.54093654 . . .Lemma 6. For any F ∈ F3 and n > 400 suh that β3 + 1 6 0.1

√
n the followingestimate takes plae:

ρ(Fn,Φ) 6 0.2727 · β
3

√
n

+
0.2041√

n
.The statement of lemma 6 is a result of the algorithm desribed in (Prawitz, 1975b) or(Gaponova and Shevtsova, 2009).Sine the funtion

g(b) =
0.2727b+ 0.2041

b+ k
, b > 1,monotonially inreases for k > 0.2041/0.2727 = 0.74 . . . and monotonially dereases for

0 6 k 6 0.74, we have
sup
b>1

g(b) =

{
0.2727, k > 0.75,

0.4768/(1 + k), k 6 0.74.Thus, from lemma 6 it follows that for all n and β3 suh that (β3 + k)/
√
n < 0.05(1 + k)inequality (3) holds with Ck = 0.2727 for k > 0.75 and with Ck = 0.4768/(1 + k) for

k 6 0.74. In partiular, for k = 0.425 we have
ρ(Fn,Φ) 6 0.3346 · β

3 + 0.425√
n

, if β3 + 0.425√
n

6 0.07125.The lemmas presented above give the grounds for restriting the domain of the valuesof ε = (β3 + k)/
√
n by a bounded interval separated from zero (more details will be givenbelow) and for looking for the onstant Ck in the form

Ck = max
ε
C(ε), C(ε) = D(ε)/ε, D(ε) = sup {D(ε, n) : n > n∗} , (11)where
D(ε, n) = inf

0<t061, T>0
D(ε− k/

√
n, n, t0, T ), (12)

n∗ = max{1, ⌈(1 + k)2/ε2⌉},here ⌈x⌉ is the least integer no less than x. The ondition n > n∗ is a onsequene ofthe inequality β3 > 1. For the estimation of the supremum in n in the de�nition of D(ε),lemma 4 is used for N large enough. The omputation of the maximum in ε is essentiallybased on the property of monotoniity in ε of all the funtions used for the estimation11



of |fn(t)| and rn(t), and hene, on the monotoniity of the funtion D(ε) = εC(ε). Thisproperty makes it possible to estimate maxεC(ε) using the values of C(ε) only in a �nitenumber of points. In partiular, the following statement holds.Lemma 7. For all ε2 > ε1 > 0 the following inequality is true:
max

ε16ε6ε2

C(ε) 6 C(ε2) ·
ε2

ε1
.2.2.2 Proof of theorem 1Denote

ε = ℓ+
0.425√
n

=
β3 + 0.425√

n
.Then for ε 6 0.07 inequality (6) is a onsequene of lemma 6, and for ε > 1.62 >

0.541/0.335789 it follows from lemma 5. Thus, to ompute Ck the maximization withrespet to ε in (11) is onduted on the interval 0.07 6 ε 6 1.62. To ompute thesupremum with respet to n > n∗ = ⌈(1.425/ε)2⌉ we use lemma 4 with N = 600 for
ε 6 0.1, N = 300 for 0.1 < ε 6 0.2 and N = 100 for ε > 0.2. For the mentioned values of
ε we have n∗(0.07) = 415, n∗(0.1) = 204, n∗(0.2) = 51. The maximum with respet to εis estimated by lemma 7 and is attained in the two points: n = 5, ε ≈ 0.822 (β3 ≈ 1.413,
t0 ≈ 0.385, T = 5.755) and n = 8, ε ≈ 0.504 (β3 = 1, t0 ≈ 0.293, T = 8.911). Bothextremal values do not exeed 0.335789, whene, theorem 1 is proved.2.2.3 Proof of theorem 2Denote

ε = ℓ +
1√
n

=
β3 + 1√

n
.Then for ε 6 0.1 inequality (7) is a onsequene of lemma 6, and for ε > 1.78 >

0.541/0.3051 it follows from lemma 5. Thus, to ompute Ck the maximization with respetto ε in (11) is onduted on the interval 0.1 6 ε 6 1.78. To ompute the supremum withrespet to n > n∗ = ⌈4/ε2⌉ we use the last statement of lemma 4 with N = 200 and
T (200, ε) = min{5.04/ε, 3.76/

√
ε}. It turned out, that the extremal value is attained at

n→ ∞ and ε ≈ 0.985 (t0 = 0.356, T = 6.147) and it does not exeed 0.3051, Q. E. D.3 An improvement of the analog of the Berry�Esseeninequality for Poisson random sums3.1 The history of the problemIn this setion we will use theorem 1 to improve the analog of the Berry�Esseen inequalityfor Poisson random sums. Let X1, X2, ... be independent identially distributed randomvariables with
EX1 ≡ µ, DX1 ≡ σ2 > 0 and E|X1|3 ≡ β3 <∞. (13)12



Let Nλ be a random variable with the Poisson distribution with parameter λ > 0. Assumethat for any λ > 0 the random variables Nλ and X1, X2, ... are independent. Set
Sλ = X1 + . . .+XNλ(for de�niteness we assume that Sλ = 0 if Nλ = 0). Poisson random sums Sλ arevery popular mathematial models of many real objets. In partiular, in insuranemathematis Sλ desribes the total laim size under the lassial risk proess in the¾dynamial¿ ase. Many examples of applied problems from various �elds where Poissonrandom sums are enountered an be found in, say, (Gnedenko and Korolev, 1996) or(Bening and Korolev, 2002).It is easy to see that

ESλ = λµ, DSλ = λ(µ2 + σ2).The distribution funtion of the standardized Poisson random sum
S̃λ ≡ Sλ − λµ√

λ(µ2 + σ2)will be denoted Fλ(x).It is well known that under the onditions on the moments of the random variable X1given above, the so-alled Berry�Esseen inequality for Poisson random sums holds: thereexists an absolute positive onstant C <∞ suh that
ρ(Fλ,Φ) ≡ sup

x
|Fλ(x) − Φ(x)| 6 C

β3

(µ2 + σ2)3/2
√
λ
. (14)Inequality (14) has rather an interesting history. Apparently, it was �rst proved in (Rotar,1972a) and was published in (Rotar, 1972b) with C = 2.23 (the dissertation (Rotar,1972a) was not published whereas the paper (Rotar, 1972b) does not ontain a proof ofthis result). Later, with the use of a traditional tehnique based on the Esseen smoothinginequality this estimate was proved in (von Chossy, Raððl, 1983) with C = 2.21 (theauthors of this paper delared that C = 3 in the formulation of the orresponding theorem,whih is, of ourse, true, but atually in the proof of this theorem they obtained the value

C = 2.21).In the paper (Mihel, 1993) the property of in�nite divisibility of ompound Poissondistributions was used to prove that the onstant in (14) is the same as that in thelassial Berry�Esseen inequality. Although Shiganov's estimate C0 6 0.7655 (Shiganov,1986), had been known by that time (the original paper by Shiganov had been publishedin Russian even earlier, in 1982), Mihel used the previous reord value due to Van Beek(Van Beek, 1972) and announed in (Mihel, 1993) that C 6 0.8 in (14). Being not awareof this paper of Mihel, the authors of the paper (Bening, Korolev and Shorgin, 1997)used an improved version of the Esseen smoothing inequality and obtained the estimate
C 6 1.99. As it has been already noted, the method of the proof used in (Mihel, 1993)is based on the fat that if for the absolute onstant C0 in the lassial Berry�Esseeninequality (1) an estimate C0 6 M is known, then inequality (14) holds with C = M .13



This irumstane was also noted by the authors of the paper (Korolev and Shorgin, 1997)in whih independently of the paper (Mihel, 1993) the same result was obtained, but withanother urrently best estimate M = 0.7655. As we noted in Setion 1, the best knownestimate of the absolute onstant in the lassial Berry�Esseen inequality was obtainedin (Tyurin, 2009), (Tyurin, 2009d): C0 6 0.4785. Therefore, following the logis of thereasoning used in (Mihel, 1993) and (Korolev and Shorgin, 1997) we an onlude thatinequality (14) holds at least with C = 0.4785.In this setion we show that atually binding the estimate of the onstant C in (14) tothe estimate of the absolute onstant C0 in the lassial Berry�Esseen inequality is moreloose. Namely, although the best known upper estimate of C0 isM = 0.4785 and moreover,although the unimprovable lower estimate of C0 is ≈ 0.4097..., inequality (14) atuallyholds with C = 0.3051. Thus, here we improve the result of (Korolev and Shevtsova,2010b) where we proved inequality (14) with C = 0.3450.3.2 Auxiliary resultsThe following lemma determines the relation between the distributions and moments ofPoisson random sums and the distributions and moments of sums of a non-random numberof independent summands. This lemma will be the main tool whih we will use to applythe results known for the lassial ase, to Poisson random sums.Here and in what follows the symbol d
= will stand for the oinidene of distributions.Also denote ν = λ/n.Lemma 7. The distribution of the Poisson random sum Sλ oinides with thedistribution of the sum of a non-random number n of independent identially distributedrandom variables whatever integer n > 1 is:

X1 + . . .+XNλ

d
= Yν,1 + . . .+ Yν,nwhere for eah n the random variables Yν,1, . . . , Yν,n are independent and identiallydistributed. Moreover, if the random variable X1 satis�es onditions (13), then for themoments of the random variable Yν,1 the following relations hold:

EYν,1 = µν, DYν,1 = (µ2 + σ2)ν,

E |Yν,1 − µν|3 6 νβ3(1 + 40ν) for n > λ.P r o o f. The proof is based on the property of in�nite divisibility of a ompoundPoisson distribution whih implies that for any integer n > 1 the harateristi funtion
fSλ

(t) of the Poisson random sum Sλ an be represented as
fSλ

(t) = exp
{
λ(f(t) − 1)

}
=
[
exp

{
ν(f(t) − 1)

}]n ≡
[
fYν,1(t)

]n
,where fYν,1 is the harateristi funtion of the random variable Yν,1. Hene, thedistribution of eah of the summands Yν,1, . . . , Yν,n oinides with the distribution of thePoisson random sum of the original random variables:

Yν,k
d
= X1 + . . .+XNν

, k = 1, . . . , n,14



where Nν is the Poisson-distributed random variable with parameter ν independent of thesequene X1, X2, . . . Hene we diretly obtain the relations for the �rst and the seondmoments of the random variables Yν,1 and X1. Let us prove the relation for the thirdabsolute moments. By the formula of total probability we have
E |Yν,1 − µν|3 6 e−ν

(
ν3|µ|3 + νE |X1 − µν|3 +

∞∑

k=2

νk

k!
E |X1 + . . .+Xk − µν|3

)
.Consider the seond and the third summands on the right-hand side separately. For thispurpose without loss of generality we will assume that n > λ, that is, ν 6 1. By virtue ofthe Minkowski inequality we have

(
E |X1 − µν|3

)1/3
6 (β3)1/3 + |µ|ν = (β3)1/3

(
1 +

|µ|ν
(β3)1/3

)
.Sine ν 6 1 and the ratio |µ|/(β3)1/3 does not exeed 1 by virtue of the Lyapunovinequality, we obtain

E |X1 − µν|3 6 β3(1 + ν)3
6 β3(1 + 7ν).To estimate the third summand notie that the Lyapunov inequality yields

∣∣∣
k∑

i=1

xi

∣∣∣
r

6 kr−1
k∑

i=1

|xi|r, xi ∈ R, i = 1, . . . , k, r > 1,(see, e. g., (Bhattaharya and Ranga Rao, 1976)). With r = 3, this inequality implies
E |X1 + . . .+Xk − µν|3 6 E (|X1| + . . .+ |Xk| + |µ|ν)3

6

6 (k + 1)2(kβ3 + (|µ|ν)3) 6 β3(k + 1)3(here we took into aount that |µ|3 6 β3 and ν 6 1). Thus,
E |Yν,1 − µν|3 6 ν3|µ|3 + νE |X1 − µν|3 +

∞∑

k=2

νk

k!
E |X1 + . . .+Xk − µν|3 6

6 νβ3
[
1 + (8 +K)ν

]where
K =

∞∑

k=2

(k + 1)3

k!
= 15e− 9 < 32.The lemma is proved.Corollary 1. Under onditions (13) the distribution of the standardized Poissonrandom sum S̃λ oinides with the distribution of the normalized non-random sum of nrandom variables whatever integer n > 1 is:

S̃λ
d
=

1√
n

n∑

k=1

Zν,k15



where for eah n the random variables Zν,1, . . . , Zν,n are independent and identiallydistributed. Moreover, these random variables have zero expetation, unit variane andfor all n > λ their third absolute moment satis�es the inequality
E |Zν,1|3 6

β3(1 + 40ν)
√
n

(µ2 + σ2)3/2
√
λ
. (15)P r o o f. Aording to lemma 7 for any n we have the representation

S̃λ =
Sλ − λµ√
λ(µ2 + σ2)

d
=

Yν,1 + . . .+ Yν,n − nµν√
(µ2 + σ2)nν

≡ 1√
n

n∑

k=1

Zν,k,in whih the random variables
Zν,k ≡ Yν,k − µν√

ν
=
Yν,k − EYν,k√

DYν,kare independent, identially distributed, have zero expetation and, unit variane.Moreover, by virtue of the same lemma for all n > λ we have the relation
E |Zν,1|3 =

E |Yν,1 − EYν,1|3
(DYν,1)3/2

6
β3(1 + 40ν)

(µ2 + σ2)3/2ν1/2
=
β3(1 + 40ν)

√
n

(µ2 + σ2)3/2
√
λ
.The orollary is proved.3.3 Main resultTheorem 2. Under onditions (13) for any λ > 0 we have the inequality

ρ(Fλ,Φ) 6
0.3051β3

(µ2 + σ2)3/2
√
λ
.P r o o f. From lemma 7 and orollary 1 it follows that for any integer n > 1

ρ(Fλ,Φ) = sup
x

∣∣∣∣P
(

1√
n

n∑

k=1

Zν,k < x

)
− Φ(x)

∣∣∣∣.Hene, by theorem 1 for an arbitrary integer n > 1 we have
ρ(Fλ,Φ) 6 0.3051

E|Zν,1|3√
n

+
0.3051√

n
. (16)Sine n > 1 is arbitrary, we an assume that n > λ, making it possible to use estimate(15) for the spei�ed n and, in the ontinuation of (16), to obtain the inequality

ρ(Fλ,Φ) 6 0.3051
β3(1 + 40λ/n)

(µ2 + σ2)3/2
√
λ

+
0.3051√

n
.Sine here n > λ is arbitrary, letting n→ ∞ we �nally obtain

ρ(Fλ,Φ) 6 lim
n→∞

[
0.3051

β3(1 + 40λ/n)

(µ2 + σ2)3/2
√
λ

+
0.3051√

n

]
=

0.3051β3

(µ2 + σ2)3/2
√
λ
,Q. E. D. 16



4 Convergene rate estimates in limit theorems formixed ompound Poisson distributions4.1 PreliminariesLet Λt be a positive random variable whose distribution depends on some parameter t > 0.The distribution funtion of Λt will be denoted Gt(x): Gt(x) = P(Λt < x). By a mixedPoisson distribution with a strutural distribution Gt we will mean the distribution of therandom variable N(t) whih takes values k = 0, 1, ... with probabilities
P
(
N(t) = k

)
=

1

k!

∞∫

0

e−λλkdGt(λ), k = 0, 1, 2, ...Some speial examples of mixed Poisson distributions are very well-known. Themost well-known and most widely used mixed Poisson distribution is, of ourse, thenegative binomial distribution (sine it was �rst used in the form of a mixed Poissondistribution in (Greenwood and Yule, 1920) to model the frequenies of aidents).This distribution is generated by the strutural gamma-distribution. Other examplesof mixed Poisson distributions are the Delaporte distribution with the shifted gamma-strutural distribution (Delaporte, 1960), the Sihel distribution with the generalizedinverse Gaussian strutural distribution (Holla, 1967), (Sihel, 1971), Willmot, 1987),The generalized Waring distribution (Irwin, 1968), (Seal, 1978). The properties of mixedPoisson distributions are desribed in detail in (Grandell, 1997) and (Bening and Korolev,2002).Let X1, X2, ... be independent identially distributed random variables. Assume thatthe random variables N(t), X1, X2, ... are independent for eah t > 0. Set
S(t) = X1 + . . .+XN(t)(for de�niteness we assume that if N(t) = 0, then S(t) = 0). The random variable S(t)will be alled a mixed Poisson random sum and its distribution will be alled ompoundmixed Poisson.In what follows we will assume that the random variables X1, X2, ... possess three�rst moments for whih we will use the same notation as in Setion 3 (see (13)). Theasymptoti behavior of the distributions of mixed Poisson random sums S(t) when N(t)in�nitely grows in some sense, is prinipally di�erent depending on whether µ = 0 or not.The onvergene in distribution and in probability will be respetively denoted by thesymbols =⇒ and P−→.First onsider the ase µ = 0. In this ase the limit distributions for standardizedmixed Poisson sums are sale mixtures of normal laws. Without loss of generality, unlessotherwise indiated, we will assume that σ2 = 1.Theorem 3 (Korolev, 1996), (Bening and Korolev, 2002). Assume that Λt

P−→ ∞ as
t → ∞. Then, for a positive in�nitely inreasing funtion d(t) there exists a distributionfuntion H(x) suh that

P

(
S(t)√
d(t)

< x

)
=⇒ H(x) (t→ ∞)17



if and only if there exists a distribution funtion G(x) suh that for the same funtion
d(t)

Gt

(
xd(t)

)
=⇒ G(x) (t→ ∞) (17)and

H(x) =

∞∫

0

Φ
(
x/

√
y)dG(y), x ∈ R.Now onsider the ase µ 6= 0. This ase is important from the point of view of insuraneappliations. Reall that, in general, DX1 = σ2. Assume that there exist numbers ℓ ∈

(0,∞) and s ∈ (0,∞) suh that
EΛt ≡ ℓt, DΛt ≡ s2t, t > 0. (18)Then it is easy to make sure that

ES(t) = µℓt, DS(t) = [ℓ(µ2 + σ2) + µ2s2]t.In the book (Bening and Korolev, 2002) a general theorem presenting neessary andsu�ient onditions for the onvergene of ompound mixed Poisson distributions wasproved. The following theorem is a partiular ase of that result.Theorem 4 (Bening and Korolev, 2002). Let µ 6= 0. In addition to the onditionson the moments of the strutural random variable Λt assume that Λt
P−→ ∞ as t → ∞.Then, as t → ∞, ompound mixed Poisson distributions onverge to the distribution ofsome random variable Z, that is,

S(t) − µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

=⇒ Z,if and only if there exists a random variable V suh that
Λt − ℓt

s
√
t

=⇒ V.Furthermore,
P(Z < x) = EΦ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(σ2 + µ2)ℓ

)
, x ∈ R.It is easy to see that the limit random variable Z admits the representation

Z
d
=

[
1 +

µ2s2

(µ2 + σ2)ℓ

]−1/2

·X +
µs√

(µ2 + σ2)ℓ+ µ2s2
· V,where X is a random variable with the standard normal distribution independent of V .The basi distintions of the ase µ 6= 0 from the ase of ompound mixed Poissondistributions with zero expetations onsidered above are, �rst, the neessity of non-trivialentering and di�erent normalization required for the existene of non-trivial limit lawsand, seond, the shape of the limit law whih in this ase has the form of a loationmixture of normal laws. 18



4.2 Convergene rate estimates in limit theorems for mixedompound Poisson distributions with zero meanIt is easily seen that the distribution of the mixed Poisson random sum S(t) an berepresented as
P(S(t) < x) =

∞∫

0

P

( Nλ∑

j=1

Xj < x

)
dGt(λ), x ∈ R. (19)Reall that here we assume that

EX1 = 0, EX2
1 = 1, β3 = E|X1|3 <∞. (20)Let d(t), t > 0, be a positive in�nitely inreasing funtion. In this setion we will presentsome estimates of the rate of onvergene in theorem 3.For λ > 0 denote

ρ(λ) = sup
x

∣∣∣∣P
(

1√
λ

Nλ∑

j=1

Xj < x

)
− Φ(x)

∣∣∣∣.Let G(x) be a distribution funtion suh that G(0) = 0. If ondition (17) holds, then,aording to theorem 3, ompound mixed Poisson distribution of the mixed Poisson sum
S(t) normalized by the square root of the funtion d(t) onverges to the sale mixture ofnormal laws in whih G(x) is the mixing distribution. Denote

∆t = sup
x

∣∣∣∣P
(
S(t)√
d(t)

< x

)
−

∞∫

0

Φ

(
x√
λ

)
dG(λ)

∣∣∣∣, δt = sup
x

∣∣Gt

(
d(t)x

)
−G(x)

∣∣.Theorem 5. Assume that onditions (20) hold. Then for any t > 0 we have theestimate
∆t 6 0.3051 · β3

E[Λt]
−1/2 + 0.5 · δt.P r o o f. This statement was �rst proved in the paper (Gavrilenko and Korolev,2006) with a slightly worse onstant (also see (Korolev, Bening and Shorgin, 2007). Herewe present a modi�ed version of the proof. By virtue of representation (19) we have

∆t = sup
x

∣∣∣∣∣

∞∫

0

P

(
Nλ∑

j=1

Xj < x
√
d(t)

)
dGt(λ) −

∞∫

0

Φ

(
x√
λ

)
dG(λ)

∣∣∣∣∣ =

= sup
x

∣∣∣∣∣

∞∫

0

P

(
1√
λ

Nλ∑

j=1

Xj < x

√
d(t)√
λ

)
dGt(λ) −

∞∫

0

Φ

(
x√
λ

)
dG(λ)

∣∣∣∣∣ =

= sup
x

∣∣∣∣∣

∞∫

0

P

(
1√
λd(t)

Nλd(t)∑

j=1

Xj <
x√
λ

)
dGt

(
λd(t)

)
)

−
∞∫

0

Φ

(
x√
λ

)
dG(λ)

∣∣∣∣∣ 619



6 sup
x

∣∣∣∣∣

∞∫

0

[
P

(
1√
λd(t)

Nλd(t)∑

j=1

Xj <
x√
λ

)
− Φ

(
x√
λ

)]
dGt

(
λd(t)

)
∣∣∣∣∣+

+ sup
x

∣∣∣∣∣

∞∫

0

Φ

(
x√
λ

)
d
[
Gt

(
λd(t)

)
−G(λ)

]
∣∣∣∣∣.Continuing this hain of relations with the use of integration by parts and theorem 2 wefurther obtain

∆t 6

∞∫

0

sup
x

∣∣∣∣∣P
(

1√
λd(t)

Nλd(t)∑

j=1

Xj < x

)
− Φ(x)

∣∣∣∣∣dGt

(
λd(t)

)
+

+ sup
x

∣∣∣∣∣

∞∫

0

[
Gt

(
λd(t)

)
−G(λ)

]
dλΦ

(
x√
λ

)∣∣∣∣∣ 6

6

∞∫

0

ρ(λ)dGt(λ) + sup
λ

∣∣Gt

(
λd(t)

)
−G(λ)

∣∣ · sup
x

∣∣∣∣∣

∞∫

0

dλΦ

(
x√
λ

)∣∣∣∣∣ 6

6 0.3051 · β3

∞∫

0

1√
λ
dGt(λ) + 0.5 · sup

λ

∣∣Gt

(
λd(t)

)
−G(λ)

∣∣ =

= 0.3051 · β3
E[Λt]

−1/2 + 0.5 · δt,Q. E. D.As an example of appliations of theorem 5 onsider the ase where for eah t > 0 therandom variable Λt has the gamma-distribution. This ase is very important in �nanialappliations for the asymptoti validation of suh popular models of the evolution of�nanial indexes as variane-gamma L�evy proesses (VG-proesses) (Madan and Seneta,1990) or two-sided gamma-proesses (Carr, Madan and Chang, 1998).As is well known, the density of the gamma-distribution with shape parameter r > 0and sale parameter σ > 0 has the form
gr,σ(x) =

σr

Γ(r)
e−σxxr−1, x > 0.Thus, the mixed Poisson distribution with the mixing gamma-distribution has theharateristi funtion

ψ(t) =

∞∫

0

exp{y(eit − 1)} σr

Γ(r)
e−σyyr−1dy =

=
σr

Γ(r)

∞∫

0

exp
{
− σy

(
1 +

1 − eit

σ

)}
yr−1dy =

(
1 +

1 − eit

σ

)−r

.20



By the re-parametrization
σ =

p

1 − p

(
p =

σ

1 + σ

)
, p ∈ (0, 1),we �nally obtain

ψ(t) =
( p

1 − (1 − p)eit

)r

, t ∈ R,whih oinides with the harateristi funtion of the negative binomial distribution withparameters r > 0 and p ∈ (0, 1). So, in the ase under onsideration for eah t > 0 therandom variable N(t) has the negative binomial distribution with parameters r > 0 and
p ∈ (0, 1):

P
(
N(t) = n

)
= Cn

r+n−1p
r(1 − p)n, n = 0, 1, 2, . . . . (21)Here r > 0 and p ∈ (0, 1) are the parameters and for non-integer r the quantity Cn

r+n−1 isde�ned as
Cn

r+n−1 =
Γ(r + n)

n! · Γ(r)
.In partiular, with r = 1, relation (21) determines the geometri distribution.The gamma-distribution funtion with sale parameter σ ana shape parameter r willbe denoted Gr,σ(x). It is easy to see that

Gr,σ(x) ≡ Gr,1(σx). (22)The random variable with the distribution funtion Gr,σ(x) will be denoted U(r, σ). Itis well known that
EU(r, σ) =

r

σ
.Fix the parameter r and take U(r, σ) as the random variable Λt assuming that t = σ−1:

Λt = U(r, t−1).As a funtion d(t) take
d(t) ≡ EΛt = EU(r, t−1).Obviously, we have

EU(r, t−1) = rt.Then with the aount of (22) we have
Gt

(
xd(t)

)
= P(U(r, t−1) < xrt) = P(U(r, 1) < xr) = P(U(r, r) < x) = Gr,r(x).Note that the distribution funtion on the right-hand side of the latter relation does notdepend on t. Therefore the hoie of d(t) spei�ed above trivially guarantees the validityof ondition (17) of theorem 3. Moreover, in this ase δt = 0 for all t > 0.Now alulate E[Λt]

−1/2 under the ondition
r >

1

2
. (23)21



We have
E[Λt]

−1/2 = E[U(r, t−1)]−1/2 =

∞∫

0

e−x/txr−3/2

trΓ(r)
dx =

Γ(r − 1
2
)

Γ(r)
√
t
.Thus we obtain the following statement whih is atually a partiular ase of theorem 5.Corollary 2. Let the random variable Λt have the gamma-distribution with shapeparameter r > 0 and sale parameter σ = 1/t, t > 0. Assume that onditions (20) and

(23) hold. Then for eah t > 0 we have
sup

x

∣∣∣∣P(S(t) < x
√
rt) −

∞∫

0

Φ

(
x√
y

)
dGr,r(y)

∣∣∣∣ 6 0.3051
Γ(r− 1

2
)

Γ(r)
· β

3

√
t
.If r = 1, then the random variable

N(t) = N1

(
U(1, t−1)

)
, t > 0,has the geometri distribution with parameter p = t−1. As this is so, the limit (as t→ ∞)distribution funtion of the standardized geometri sum S(t) is the Laplae distributionwith the density

l(x) =
1√
2
e−

√
2|x|, x ∈ R.The distribution funtion orresponding to the density l(x) will be denoted L(x),

L(x) =





1
2
e
√

2x, if x < 0,
1 − 1

2
e−

√
2x, if x > 0.Corollary 3. Let the random variable Λt have the exponential distribution withparameter σ = 1/t, t > 0. Assume that onditions (20) hold. Then for eah t > 0

sup
x

|P(S(t) < x
√
t) − L(x)| 6 0.5408 · β3√

t
.5 Convergene rate estimates in limit theorems formixed ompound Poisson distributions with non-zero meanHere we will present some estimates of the rate of onvergene in theorem 4.5.1 The ase of strutural random variables with �nite varianeUnder assumptions (18) denote

Ft(x) = P

(
S(t) − µℓt√

[ℓ(µ2 + σ2) + µ2s2]t
< x

)
,22



ρt = sup
x

∣∣∣∣∣Ft(x) − EΦ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(σ2 + µ2)ℓ

)∣∣∣∣∣ ,

G∗(v) = P (V < v) , δ̃t = sup
v

∣∣∣Gt

(
vs
√
t+ ℓt

)
−G∗(v)

∣∣∣ .Theorem 6. Let EX1 = µ 6= 0, DX1 = σ2, E|X1|3 = β3 < ∞, E |V | < ∞. Then forany t > 0 we have
ρt ≤ δ̃t +

1√
t
· inf

ǫ∈(0,1)

{
0.3051β3

(µ2 + σ2)3/2
√

(1 − ǫ)ℓ
+
s

ℓ

(
E|V |
ǫ

+Q(ǫ)

)∣∣∣∣
}
,where

Q(ǫ) = max

{
1

ǫ
,

√
1 + ǫ(

1 +
√

1 − ǫ
)√

2πe(1 − ǫ)

}
.P r o o f. A similar statement with slightly worse onstants was �rst proved in thepaper (Artyukhov and Korolev, 2008). Here we present a modi�ed version of the proof. Asabove, let Nλ be a random variable with the Poisson distribution with parameter λ > 0independent of the sequene X1, X2, . . . Then we an write

ρt = sup
x

∣∣∣∣∣P
(

S(t) − µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
− E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣ =

= sup
x

∣∣∣∣∣

∞∫

0

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣.Fix an arbitrary ǫ ∈ (0, 1). Then
ρt = sup

x

∣∣∣∣∣

∫

λ<(1−ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)+

+

∫

λ>(1+ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)+

+

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣ 623



6 sup
x

∣∣∣∣∣

∫

λ<(1−ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)+

+

∫

λ>(1+ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)

∣∣∣∣∣+

+ sup
x

∣∣∣∣∣

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣ 6

6 P

(∣∣∣∣
Λt

ℓt
− 1

∣∣∣∣ > ǫ

)
+

+ sup
x

∣∣∣∣∣

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣. (24)Further,
sup

x

∣∣∣∣∣

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

P

(
SNλ

− µℓt√
[ℓ(µ2 + σ2) + µ2s2]t

< x

)
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣ 6

6 sup
x

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

∣∣∣∣∣ P

(
SNλ

− µλ√
λ(µ2 + σ2)

<

<

√
ℓt

λ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

))
−

−Φ

(√
ℓt

λ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

))∣∣∣∣∣ dGt(λ)+

+ sup
x

∣∣∣∣∣

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

Φ

(√
ℓt

λ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

))
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣ ≡ I1 + I2.24



Consider I1. Denote
y =

√
ℓt

λ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

)
.Then I1 an be rewritten in the form

I1 = sup
y

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

∣∣∣∣∣P
(

SNλ
− µλ√

λ(µ2 + σ2)
< y

)
− Φ(y)

∣∣∣∣∣ dGt(λ) 6

6

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

sup
y

∣∣∣∣∣P
(

SNλ
− µλ√

λ(µ2 + σ2)
< y

)
− Φ(y)

∣∣∣∣∣ dGt(λ).To estimate the integrand on the right-hand side of the latter inequality we use theorem2 and obtain
I1 6

0.3051β3

(µ2 + σ2)3/2

∫

λ>(1−ǫ)ℓt

1√
λ
dGt(λ) 6

0.3051β3

(µ2 + σ2)3/2
√

(1 − ǫ)ℓt
. (25)Consider I2. We have

I2 6 sup
x

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

∣∣∣∣∣Φ
(√

ℓt

λ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

))
−

−Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

)∣∣∣∣∣ dGt(λ)+

+ sup
x

∣∣∣∣∣

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

)
dGt(λ)−

−E Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsV√

(µ2 + σ2)ℓ

)∣∣∣∣∣ ≡ I21 + I22.Denote
z = x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t
.Then

I21 6

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

sup
z

∣∣∣∣Φ
(
z

√
ℓt

λ

)
− Φ(z)

∣∣∣∣ dGt(λ). (26)Consider the integrand in (26). By the Lagrange formula we have
∣∣∣∣Φ
(
z

√
ℓt

λ

)
− Φ(z)

∣∣∣∣ = |z| ·
∣∣∣∣

√
ℓt

λ
− 1

∣∣∣∣ϕ
(
θz + (1 − θ)z

√
ℓt

λ

)
(27)25



for some θ ∈ [0, 1] where
ϕ(x) = Φ′(x) =

1√
2π
e−x2/2is the standard normal density. The funtion ϕ(x) = ϕ(|x|) monotonially dereases as

|x| inreases. Therefore the funtion ϕ on the right-hand side of (27) attains its maximumvalue in θ ∈ [0, 1] at that value of its argument, whose absolute value is minimum. Butthe argument of the funtion ϕ on the right-hand side of (27) is itself a linear funtion of
θ. Therefore, the minimum absolute value of this argument is attained either at θ = 0 orat θ = 1. But at θ = 1 we have

θ

(
1 −

√
ℓt

λ

)
+

√
ℓt

λ
= 1,while at θ = 0 we have

θ

(
1 −

√
ℓt

λ

)
+

√
ℓt

λ
=

√
ℓt

λ
.In the de�nition of I21 λ satis�es the inequality λ 6 (1 + ǫ)ℓt. Therefore,

√
ℓt

λ
>

1√
1 + ǫ

.Hene,
θ

(
1 −

√
ℓt

λ

)
+

√
ℓt

λ
> min

{
1,

1√
1 + ǫ

}
=

1√
1 + ǫ

.Therefore in I21 we have (see (27))
sup

z

∣∣∣∣Φ
(
z

√
ℓt

λ

)
− Φ(z)

∣∣∣∣ 6

∣∣∣∣

√
ℓt

λ
− 1

∣∣∣∣ · sup
z

|z|ϕ
(

z√
1 + ǫ

)
. (28)Furthermore, (

zϕ

(
z√

1 + ǫ

))′
= ϕ

(
z√

1 + ǫ

)(
1 − z2

1 + ǫ

)
.Therefore the supremum in (28) is attained at z = ±

√
1 + ǫ and equals

sup
z

|z|ϕ
(

z√
1 + ǫ

)
=

√
1 + ǫ

2πe
.Thus,

I21 6

√
1 + ǫ

2πe

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

∣∣∣∣

√
ℓt

λ
− 1

∣∣∣∣ dGt(λ) =

=

√
1 + ǫ

2πe

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

∣∣∣∣

√
ℓt−

√
λ√

λ

∣∣∣∣ ·
∣∣∣∣

√
ℓt+

√
λ√

ℓt+
√
λ

∣∣∣∣ dGt(λ) =26



=

√
1 + ǫ

2πe

∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

|λ− ℓt|√
λ
(√

ℓt+
√
λ
) dGt(λ) 6

6

√
1 + ǫ

2πe
· 1√

1 − ǫ
(
1 +

√
1 − ǫ

)
∫

(1−ǫ)ℓt6λ6(1+ǫ)ℓt

∣∣∣∣
λ

ℓt
− 1

∣∣∣∣ dGt(λ) =

=

√
1 + ǫ

2πe(1 − ǫ)
· 1

1 +
√

1 − ǫ
· E
∣∣∣∣
Λt

ℓt
− 1

∣∣∣∣1
(∣∣∣∣

Λt

ℓt
− 1

∣∣∣∣ 6 ǫ

)
. (29)Here the symbol 1(A) denotes the indiator of a set A.Consider I22. We have

∫

λ: | λ
ℓt
−1|6ǫ

Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

)
dGt(λ) =

=

∫

λ: |λ−ℓt

s
√

t
|6ǫℓ

√
t/s

Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µs√

(µ2 + σ2)ℓ
· λ− ℓt

s
√
t

)
dGt(λ) =

=

∫

|v|6ǫℓ
√

t/s

Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsv√

(µ2 + σ2)ℓ

)
dGt(vs

√
t+ ℓt).Therefore,

I22 = sup
x

∣∣∣∣∣

∫

|v|6ǫℓ
√

t/s

Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsv√

(µ2 + σ2)ℓ

)
dGt(vs

√
t+ ℓt)−

−
∞∫

−∞

Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsv√

(µ2 + σ2)ℓ

)
dG∗(v) 6

6 sup
x

∣∣∣∣∣

∫

|v|6ǫℓ
√

t/s

Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsv√

(µ2 + σ2)ℓ

)
[
dGt(vs

√
t+ ℓt) −G∗(v)

]
∣∣∣∣∣+

+ sup
x

∣∣∣∣∣

∫

|v|>ǫℓ
√

t/s

Φ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsv√

(µ2 + σ2)ℓ

)
dG∗(v)

∣∣∣∣∣ ≡ I221 + I222.By integration by parts we obtain
I221 6 sup

x

∣∣∣∣∣

∫

|v|6ǫℓ
√

t/s

[
Gt(vs

√
t+ ℓt) −G∗(v)

]
dvΦ

(
x

√
1 +

µ2s2

(µ2 + σ2)ℓ
− µsv√

(µ2 + σ2)ℓ

) ∣∣∣∣∣ 627



6 sup
v

∣∣Gt(vs
√
t+ ℓt) −G∗(v)

∣∣ ≡ δ̃t. (30)Note that in (24) we an apply the Markov inequality and obtain the estimate
P

(∣∣∣∣
Λt

ℓt
− 1

∣∣∣∣ > ǫ

)
6

1

ǫ
· E
∣∣∣∣
Λt

ℓt
− 1

∣∣∣∣1
(∣∣∣∣

Λt

ℓt
− 1

∣∣∣∣ > ǫ

)
. (31)Further, again applying the Markov inequality we an make sure that

I222 6 P
(
|V | > ǫℓ

√
t/s
)

6
sE|V |
ǫℓ
√
t
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.The theorem is proved.If we additionally assume that the family of random variables
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5.2 The ase of strutural random variables with in�nite varianeAssumption (18) whih guarantees the existene of the variane of the strutural randomvariable Λt is not ruial. An analog of theorem 6 an be proved for the ase where onlythe existene of the mathematial expetation of Λt is assumed. Namely, the followingtheorem holds.Theorem 7. Let µ 6= 0. Assume that EΛt ≡ t and Λt
P−→ ∞ as t → ∞. Then,as t → ∞, the distributions of normalized mixed Poisson random sums onverge to thedistribution of some random variable Z, that is,
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.The proof of theorem 8 di�ers from the proof of theorem 6 only in notation.As an example of the situation in whih theorems 7 and 8 are valid, but theorems 4and 6 are not, onsider the ase where
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with 2 < α < 3 and V being the random variable with the density
p(x) =

α + 1

2(|x| + 1)α
, x ∈ R.It an be easily veri�ed that EΛt = t for any t > 0, but the seond moment of Λt isin�nite due to that the seond moment of the random variable V does not exist (andhene, the seond moment of the mixed Poisson random sum S(t) with the struturalrandom variable Λt does not exist). However, it an be easily seen that
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