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Abstract

We study the class of logarithmic skew-normal (LSN) distributions. They have heavy
tails; however, all their moments of positive integer orders are finite. We are interested
in the problem of moments for such distributions. We show that the LSN distributions
are all nonunique (moment-indeterminate). Moreover, we explicitly describe Stieltjes
classes for some LSN distributions; they are families of infinitely many distributions,
which are different but have the same moment sequence as a fixed LSN distribution.
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1. Introduction

The normal and lognormal distributions occupy a central position in both the theory and
applications of probability and statistics. However, when modelling complex random phenom-
ena in applied areas, there was a real need of more flexible distributions which were beyond the
normal; see, e.g. O’Hagan and Leonard (1976), Azzalini (1985), or Schmoyeri et al. (1996).
This is why the class of skew-normal distributions was introduced in Azzalini (1985) and
intensively studied by many authors.

In this paper we focus on the class of logarithmic skew-normal distributions and investigate
their moment determinacy. It is worth mentioning that these distributions have been used
recently in Chai and Bailey (2008) to analyze the continuous (coronary artery calcification)
data in a two-part stochastic model.

In Section 2 we present basic properties of logarithmic skew-normal distributions, including
a probabilistic representation. In Section 3 we study the problem of moments for this class of
distributions, showing that they are all moment-indeterminate. This extends the classical result
for moment-indeterminacy of the lognormal distribution given in Stieltjes (1894) and developed
in Heyde (1963). In Section 4 we present explicit Stieltjes classes for some logarithmic skew-
normal distributions. Finally, some possible extensions of the main results are briefly discussed
in Section 5.
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2. Logarithmic skew-normal distributions: basic properties

We use φ and � to denote the standard normal density function and the standard normal
distribution function, respectively. For any constant λ ∈ R = (−∞, ∞), consider the random
variable Xλ obeying a skew-normal distribution (denoted by SN(λ)), i.e. Xλ ∼ SN(λ). The
density function fλ of Xλ is fλ(x) = 2φ(x)�(λx), x ∈ R. To see that fλ is a bona fide density
function, we have, by the symmetry property of �,

∫ ∞
−∞ fλ(x) dx = 2

∫ ∞
0 φ(x) dx = 1.

Definition. We say that the positive random variable Yλ has a logarithmic skew-normal
distribution, and write Yλ ∼ LSN(λ), if its logarithmic transform ln Yλ ∼ SN(λ). The density
function of Yλ, denoted by gλ, is given by:

gλ(y) = 2

y
φ(ln y)�(λ ln y), y > 0. (1)

The skew parameter λ regulates the shape of the distribution. If λ = 0, LSN(λ) reduces to
the standard lognormal distribution LN(0, 1).

To derive some basic properties of LSN distributions, we need the following result from
Arnold and Lin (2004).

Lemma 1. (Arnold and Lin (2004, Lemma 2, p. 598).) The standard normal distribution
function � obeys the property − ln �(−x) = O(x2) as x → ∞. More precisely,

lim
x→∞

− ln �(−x)

x2 = 1

2
.

The next statement shows that the LSN distributions have heavy tails.

Proposition 1. For any λ ∈ R, the random variable Yλ ∼ LSN(λ) does not have a moment
generating function. Equivalently, E[etYλ ] = ∞ for each t > 0.

Proof. Using the expression for the density gλ, (1), we obtain

E[etYλ ] =
∫ ∞

0
etygλ(y) dy =

∫ ∞

0

2

y
etyφ(ln y)�(λ ln y) dy =

∫ ∞

0
hλ(y) dy.

Here t > 0 is fixed and hλ(y) := (2/y)etyφ(ln y)�(λ ln y) > 0 for all y > 0. We want to
show that Jλ := ∫ ∞

0 hλ(y) dy = ∞ for any λ ∈ R.
Indeed, for λ ≥ 0, we have lim infy→∞ �(λ ln y) ≥ 1

2 . This implies that hλ(y) → ∞ as
y → ∞; hence, in this case Jλ = ∞.

Then, for λ < 0, we have, by Lemma 1, the asymptotic equivalence

ln �(λ ln y) � − 1
2 (λ ln y)2 as y → ∞,

which implies that

ln hλ(y) � 1

2
ln

(
2

π

)
− ln y + ty − 1

2
(λ2 + 1)(ln y)2 → ∞ as y → ∞.

Hence, also in this case, Jλ = ∞. This completes the proof.

In general, the existence of the moment generating function implies that all moments of
positive integer orders are finite. However, there are distributions that do not have moment gen-
erating functions, but still have finite moments of any positive order; see, e.g. Stoyanov (1997,
Sections 8 and 11). This is exactly the case for LSN distributions.
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Proposition 2. For any λ ∈ R, the random variable Yλ ∼ LSN(λ) has finite moments of all
positive integer orders. Equivalently, E[Y k

λ ] < ∞ for any positive integer k.

In the next proposition we give an explicit formula for the moment E[Y t
λ] = E[etXλ ] for any

t ∈ R, not just for positive integers k; see, e.g. Azzalini (1985, p. 174).

Proposition 3. Let Yλ ∼ LSN(λ) for some λ ∈ R. Then, for any real t , the t-order moment
E[Y t

λ] is given by

mt(λ) := E[Y t
λ] = E[etXλ ] = 2et2/2�(δt), where δ = λ√

1 + λ2
.

Proof. The proof follows directly by checking that

d

dλ
mt(λ) = 2et2/2φ(δt)

d

dλ
(δt).

We next give a probabilistic representation for an LSN random variable.

Proposition 4. Any LSN random variable is distributionally equivalent to a product of two
independent random variables, one which is lognormal and one which is log-half-normal.
Specifically, for any λ ∈ R, the random variable Yλ ∼ LSN(λ) has the following representation:

Yλ
d= eδ|Z1| exp[

√
1 − δ2Z2], where δ = λ√

1 + λ2
,

Z1 and Z2 are two independent standard normal random variables, and ‘
d=’ denotes equality

in distribution.

The proof of Proposition 4 is based on the probabilistic representation of any skew-normal
random variable as a linear combination of two independent random variables: one standard
normal and one standard half-normal (see Henze (1986)).

From the above we know that Yλ ∼ LSN(λ) has all finite moments; hence, we can turn to
one of the main questions discussed in this work: is the distribution of Yλ uniquely determined
by its moments? The answer is presented in the next section.

3. The problem of moments for LSN distributions

Suppose that a random variable ξ with distribution function F on the real line has finite
moments, {E[ξk]}, for all positive integer orders k. If F is uniquely determined by the
moment sequence {E[ξk]}∞k=1, we say that ξ , and also F , is unique, or moment-determinate
(M-determinate). Otherwise, ξ , and also F , is M-indeterminate.

In general, if ξ has a moment generating function, not only are all moments finite, but F

is also unique, or M-determinate. Note, however, that there are heavy-tailed distributions, i.e.
without moment generating functions, such that all their moments are finite and the distributions
are M-determinate; see, e.g. Stoyanov (1997, Section 11).

Since, by Proposition 3, we explicitly know the moments of Yλ ∼ LSN(λ), an obvious idea
is to try to use the well-known Carleman criterion. Recall that if F is a distribution on the
interval (0, ∞) with finite moments mk = ∫ ∞

0 xk dF(x), k = 1, 2, . . . , and we calculate the
Carleman quantity

C[{mk}] :=
∞∑

k=1

(mk)
−1/(2k),
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then the condition C = ∞ is sufficient for F to be M-determinate. In other words, F is the only
distribution with the moment sequence {mk}. There are, however, M-determinate distributions
for which the Carleman quantity C is finite; see, e.g. Stoyanov (1997, Section 11). In all cases,
if F is M-indeterminate then C < ∞ necessarily.

In our case mk(λ) = E[Y k
λ ] = 2ek2/2�(kδ), k = 1, 2, . . . , so we need to analyze the

Carleman quantity C = C(λ), which depends on λ through δ = λ/
√

1 + λ2. We have

C(λ) := C[{mk(λ)}] =
∞∑

k=1

(mk(λ))−1/(2k) =
∞∑

k=1

(2ek2/2�(kδ))−1/(2k) =
∞∑

k=1

cke−k/4,

where ck = (2�(kδ))−1/(2k). Since

lim
k→∞ ck = 1 for λ ≥ 0 and lim

k→∞
ln ck

kδ2/4
= 1 for λ < 0,

it immediately follows that C(λ) < ∞ for any λ ∈ R. Hence, the Carleman criterion does
not hold, although it perhaps suggests that Yλ is M-indeterminate. This is the statement of
Theorem 1, below, and its proof is based on a different idea.

It is well known that the standard lognormal distribution is M-indeterminate. This result, in
a slightly different form, is due to Stieltjes (1894). Heyde (1963) extended the result to general
lognormal distributions and his analysis was given in modern probabilistic/statistical terms.
See also Stoyanov (1997, Section 11) and Stoyanov (2000). As mentioned before, the random
variable Yλ ∼ LSN(λ) with λ = 0 has a standard lognormal distribution, LN(0, 1). It is one of
our aims in this paper to show that, for any λ ∈ R, the LSN distributions, LSN(λ), share the
same moment indeterminacy property as that of the standard lognormal distribution.

Theorem 1. For any λ ∈ R, the random variable Yλ is M-indeterminate.

Proof. We use the Krein criterion (see, e.g. Akhiezer (1965, p. 87), Slud (1993), Lin (1997),
Stoyanov (2000), or Pakes et al. (2001)). So we need to calculate the Krein quantity, K[gλ],
where

K[gλ] :=
∫ ∞

0

− ln gλ(y
2)

1 + y2 dy.

For the M-indeterminacy of Yλ, it suffices to show that K[gλ] < ∞ for λ ∈ R. By (1),

K[gλ] = I1 + I2 + I3 + I4,

where

I1 =
∫ ∞

0

− ln 2

1 + y2 dy, I2 =
∫ ∞

0

2 ln y

1 + y2 dy,

I3 =
∫ ∞

0

− ln φ(2 ln y)

1 + y2 dy, I4 =
∫ ∞

0

− ln �(2λ ln y)

1 + y2 dy.

Integrals I1–I4 can easily be seen to be finite by checking, by means of Lemma 1, that, for
a finite positive constant c,

| ln φ(2 ln y)| + | ln �(2λ ln y)| ≤ c(1 + (ln y)2), y > 0,

and that, for r = 0, 1, 2, we have ∫ ∞

0

| ln y|r
1 + y2 dy < ∞.
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Theorem 1 exhibits the moment indeterminacy of Yλ ∼ LSN(λ) for any fixed λ. It is,
therefore, interesting to clarify what happens if λ → +∞ or λ → −∞.

Theorem 2. Let Z be a standard normal random variable, Z ∼ N(0, 1), and define η = e|Z|,
usually called the log-half-normal random variable. Then, denoting by

d−→ convergence in
distribution, the following properties hold.

(a) Yλ
d−→ η as λ → +∞ and Yλ

d−→ 1/η as λ → −∞.

(b) The left limit 1/η is M-determinate, while the right limit η is M-indeterminate.

(c) For t > 0, mt(λ) = E[Y t
λ] is an increasing function of λ ∈ R, while mt(λ) is decreasing

in λ for t < 0.

(d) For any k = 1, 2, . . . , we have

lim
λ→+∞ mk(λ) = 2ek2/2�(k) = E[ek|Z|] = E[ηk],

lim
λ→−∞ mk(λ) = 2ek2/2�(−k) = E[e−k|Z|] = E

[(
1

η

)k]
.

Proof. Claim (a) follows immediately from the probabilistic representation of Yλ given in
Proposition 4. We can also use the definitions of Z, Xλ, and Yλ, and apply Slutsky’s theorem
to conclude first that Xλ

d−→ |Z| as λ → +∞ and Xλ
d−→ −|Z| as λ → −∞, and then that

Yλ
d−→ η as λ → +∞ and Yλ

d−→ 1/η as λ → −∞. For claim (b), we first note that the random
variable 1/η = e−|Z| is bounded; hence, it is M-determinate. On the other hand, the Krein
quantity for η is finite, which also tells us that η is M-indeterminate. Finally, the proofs of
claims (c) and (d) are based on elementary properties of the normal distribution function and
are thus omitted.

4. Stieltjes classes for LSN distributions

We start with a distribution function F = LSN(λ), λ ≥ 0, and we let f denote the density
function, instead of gλ as in (1).

In general, a Stieltjes class for an M-indeterminate distribution, e.g. F , is a parameterized
family of different distributions all having the same moments as F ; see Stoyanov (2004). In
the absolutely continuous case, the Stieltjes class, denoted by S, is defined in terms of f and
another function p, which is called a perturbation function:

S = S(f, p) = {fε : fε(x) = f (x)[1 + εp(x)], x ∈ R, ε ∈ [−1, 1]}.
Here p is a measurable function with |p(x)| ≤ 1 for all x ∈ R. The density f and the
perturbation p are such that the product function v(x) := f (x)p(x), x ∈ R, has vanishing
‘moments’ in the sense that

∫ ∞
−∞ xkv(x) dx = 0 for any k = 0, 1, 2, . . . .

To construct a Stieltjes class for the LSN(λ) distribution with λ ≥ 0, we need some
preparation. First, consider the function p̃ = (p̃(x), x ∈ R), defined as follows:

p̃(x) =

⎧⎪⎨
⎪⎩

(
x

x − 1

)1+ln x(x−1)/2 sin[π ln(x − 1)]
�(λ ln x)

= 	(x − 1)

	(x)

sin[π ln(x − 1)]
�(λ ln x)

if x > 1,

0 if x ≤ 1.
(2)
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Here 	 is the lognormal LN(0, 1) density:

	(x) = 1√
2π

1

x
exp

[
−1

2
(ln x)2

]
, x > 0; 	(x) = 0, x ≤ 0.

This kind of function with λ = 0 has been considered in Stoyanov and Tolmatz (2005). Here
we need a property of p̃.

Lemma 2. For any λ ≥ 0, the function p̃ is bounded, i.e. there is a positive constant c̃ such
that |p̃(x)| ≤ c̃ < ∞ for all x ∈ R.

Proof. To show the validity of the statement, we need the following three facts.

Fact 1. The function p̃ is continuous on the interval (1, ∞).

Fact 2. At the boundary points 1 and ∞, we have

lim
x→1+

	(x − 1)

	(x)
= 0, lim

x→∞
	(x − 1)

	(x)
= 1.

Fact 3. For any λ ≥ 0 and x > 1, we have 1
2 ≤ �(λ ln x) ≤ 1.

The statement of the lemma now easily follows from facts 1–3.

Theorem 3. Suppose that X is a random variable and that X ∼ LSN(λ) for some λ ≥ 0.
Denote by F the distribution function of X, and let f be its density function (see (1)):

f (x) = f (x | λ) = 2

x
φ(ln x)�(λ ln x), x > 0.

Furthermore, define the function p = (p(x), x ∈ R) as follows:

p(x) = p(x | λ) = 1

c̃
p̃(x), x ∈ R,

where p̃ is given by (2) and c̃ is the constant in Lemma 2. Then the family of functions

S = S(f, p) = {fε : fε(x) = f (x)[1 + εp(x)], x ∈ R, ε ∈ [−1, 1]}
is a Stieltjes class for the M-indeterminate distribution F .

Proof. The crucial point is to show that the product functionv := fp has vanishing moments,
i.e. that

∫ ∞
0 xkf (x)p(x) dx = 0 for any k = 0, 1, 2, . . . . We use the function

v0(x) = 1

x
exp

[
−1

2
(ln x)2

]
sin(π ln x), x > 0,

and the property that
∫ ∞

0 xkv0(x) dx = 0 for any k = 0, 1, 2, . . . . Details can be found in
Heyde (1963) or Gradshteyn and Ryzhik (2000, Formula 4.133); see also Stoyanov (1997,
Section 11). In other words, v0(x), x > 0, is a function with vanishing moments. Then the
shifted function ṽ(x) := v0(x − 1), x > 1, also has vanishing moments. Finally, we conclude
that the product function v(x) = f (x)p(x) = cṽ(x), x > 1, has vanishing moments. This
completes the proof.
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Remark. We can use the same M-indeterminate distribution F and its density f in combination
with other perturbations p to construct new Stieltjes classes, which are different from those
mentioned above. Results from Stoyanov (2004) and Stoyanov and Tolmatz (2005) can easily
be adapted to LSN distributions. Moreover, for any Stieltjes class, we can introduce the so-
called index of dissimilarity, which is a measure of how much the distribution functions in this
class differ. Details can be found in Stoyanov (2004).

5. Possible extensions

1. Knowing that any random variable Yλ ∼ LSN(λ) is M-indeterminate, we can easily show
that some nonlinear transformations of Yλ, called Box–Cox transformations, are also M-
indeterminate. In particular, for any nonzero real r , the power (Yλ)

r is M-indeterminate.
Also, the Stieltjes class in Theorem 3 can be adapted to this case with rλ > 0 and r2

integer.

2. The skew-normal distribution, SN(λ), is in fact a conditional distribution in the hidden
truncation model described below.

Let (Z1, Z2) be a bivariate normally distributed random vector with mean (0, 0),
variances var(Z1) = var(Z2) = 1, and correlation coefficient ρ ∈ (−1, 1). Then the
conditional distribution of Z1, given Z2 > 0 (usually ignored and, thus, called a hidden
truncation at the mean), is SN(λ(ρ)), where λ(ρ) = ρ/

√
1 − ρ2 (see, e.g. Azzalini and

Dalla Valle (1996)). In general, for any a ∈ R, the conditional distribution of Z1, given
Z2 > a (a hidden truncation at a), has density function

fa,λ(x) = [�(−a)]−1φ(x)�

( −a√
1 − ρ2

+ λ(ρ)x

)
, x ∈ R (3)

(see, e.g. Arnold and Beaver (2000)). Let Ya,λ be a positive random variable such that
ln Ya,λ has the density function fa,λ in (3). Then Ya,λ is M-indeterminate. This will be
an extension of our Theorem 1. The proof follows the same steps and the details are thus
omitted. The Stieltjes class in Theorem 3 can be adapted to this case with ρ > 0.

3. Suppose that in the original definition of the skew-normal density 2φ(x)�(λx), x ∈ R,
we replace the normal density φ by an arbitrary symmetric density g(x), x ∈ R, and the
standard normal distribution function � by an arbitrary symmetric distribution function
H(x), x ∈ R. Both symmetries are with respect to 0. Then, for λ ∈ R, we define the
function f (x | λ) = 2g(x)H(λx), x ∈ R, which is a density. The distribution F with
density f is said to be a skew-symmetric distribution. A positive random variable Y is
said to obey a logarithmic skew-symmetric distribution if its logarithmic transform ln Y

has a skew-symmetric distribution. It is possible to find conditions on the density g and
the distribution H such that Y is M-indeterminate. This also extends our Theorem 1.
Details will be reported elsewhere.

4. We suggest that the class of LSN distributions is linked to stochastic models involv-
ing distributions which are more flexible than the normal and lognormal distributions.
Besides Chai and Bailey’s (2008) paper cited in the introduction, other relevant refer-
ences include Azzalini et al. (2003), Williamson and Gaston (2005), and Yamazaki and
Lueck (1990).
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