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Quantitatively, probability refers to an entity that has a numerical measure associated with it.  The concept of numerical probability originated in the study of games of chance.  However, in the 18th-century, the concept developed abstractly – specific reference to coins, playing cards, dice etc. became unnecessary. 


The first major use of numerical probability in Physics took place in the mid-to-late 1800 s when Clausius, Maxwell, Boltzmann, and Gibbs developed the field of Statistical Mechanics.  This triumph of intellectual thought continues to have a profound effect throughout the Physical Sciences, particularly in its modern form of Quantum Statistical Mechanics.   


The notion of numerical probability is related to belonging to a class; for example, if the probability is 1/6 that the next throw of a dice will be a “1” then this statement has to do with a class of events that includes the specific event.

An aspect is a symbol denoting a distinct state.  If an aspect is possible in a ways, and is not possible in b ways then the probability of the aspect occurring is defined as 

a/(a + b).

This definition implies that no condition favors one aspect over another, and therefore all (a + b) aspects have the same chance of occurring.  The total number of aspects is dependent upon the knowledge of the observer.  We note

[a/(a + b)] + [b/(a + b)] = 1, a certainty
where the first term is the probability of occurrence, and the second term is the probability of non-occurrence.


The probability of two independent events both occurring is the probability given by the product of the two separate, independent probabilities.  The question of the independence of the events being studied frequently presents difficulties in dealing with a particular statistical problem.


On tossing an ideal coin there are two possible aspects – a head “H” or a tail “T”.  It is axiomatic that the ratio (number of heads/ number of tails) for a very large number of tosses is equal to 1.  The probability of each event is the accepted value of ½. 

 
If we now consider two unlike coins, labeled 1 and 2, (they are distinguishable) then there are said to be 4 complexions:

Complexion        coin 1           coin 2        symbol         probability

        I                      H                    H                 a1a2               ¼

        II                     T                    T                  b1b2              ¼

        III                   H                    T                  a1b2              ¼

        IV                    T                    H                 b1a2               ¼

Here, a –> head, b –> tail, a1 –> head for coin 1, etc.

The possible, independent complexions are represented by forming the product

(a1 + b1)(a2 +b2),

and the probability of each complexion is ¼.

The probability of a composite event, such as a1a2, is seen to be the product of the component events.


If we consider two similar coins, the complexions III and IV are no longer distinguishable, and therefore the number of complexions is reduced to 3.  In this case, the events are represented by the terms of the binomial
(a + b)2 = a2 + 2ab + b2
The probability of a2 = probability of b2 = ¼, and the probability of

ab = ½, twice that of a2 and b2.

We see that the probability is greatest for the state with the same number of heads as tails.  Explicitly
Statistical             symbol                       weight =                       probability

  state                                         # complexions in any state 

  both H                    a2                     1 complexion                             ¼

  both T                    b2                     1 complexion                             ¼

  H and T 

 or                            ab                      2 complexions                           ½                 

 T and H


In the case of three dissimilar coins, we have 8 complexions:

   Complexion              Symbol

         I                            a1a2a3

         II                           a1a2b3

         III                          a1b2a3

         IV                           a1b2b3

         V                            b1a2a3

         VI                           b1a2b3

         VII                          b1b2a3

         VIII                         b1b2b3

The possible complexions are obtained by taking the product

(a1 + b1)(a2 + b2)(a3 + b3)

All complexions are equally probable; the probability of each one is 1/8.

In the case of three similar coins, we have 4 statistical states:

Statistical state             Symbol                  Weight               Probability

      all H                                a3                             1                        1/8

      all T                                b3                             1                        1/8

  2H + 1T                            a2b                            3                        3/8

  1H + 2T                             ab2                           3                        3/8

The symbols of the states are represented by the terms of (a + b)3.  

The most likely states are those that have the closest approach to equality between the numbers of heads and tails.


We now consider the case of any number of coins, N.

I)  All dissimilar: the possible complexions are represented by the product

(a1 + b1)(a2 + b2) (a3 + b3) . . . .(aN + bN)

II)  All identical: the possible combinations are given by the terms in the binomial expansion:

(a + b)N = aN + aN–1b + [N(N – 1)/2! ]aN–2b2 + . . .bN
                                       = aN + NC1aN–1b + NC2aN–2b2 + . . .bN
where NCr is the number of combinations of N things taken r at a time.

The statistical states are represented by

aN, aN – 1b, aN–2b2, . . bN
where arbs symbolizes r heads and s tails such that r + s = N.


The weight, or possibility number, is the number of different complexions in a statistical state; it is the number of combinations of N things r at a time:

NCr = N!/r!s!.

The total number of complexions is equal to ∑ NCr .


The probability, W, of the combination arbs is

W = NCr / ∑ NCr = (N!/r!s! )/2N
(noting that ∑ NCr = (1 + 1)N = 2N)


In order to find the combination of heads and tails that is the most likely to occur in a large number of trials, we must calculate the maximum value of W which means calculating the maximum value of NCr.  If N is even, it is shown in standard works of Algebra that the maximum value of NCr is obtained when r = N/2 or when r = s; the state in which there are as many heads as tails is the state of maximum probability.  Denoting this probability by Wmax we have

Wmax = {N!/[(N/2)!]2} x {1/2N}
Let us consider a state that differs slightly from the state of maximum probability; we therefore introduce the values

r = (N/2) + ∆  and s = (N/2) – ∆,

and we let W’ be the probability for this combination.

Therefore,

W’ = {N!/[(N/2) + ∆]! • [(N/2) – ∆]! } x {1/2N}
leading to

W’/Wmax  = [(N/2)!]2/{((N/2) + ∆)! • ((N/2) – ∆)!}

If N is sufficiently large, we may use Stirling’s theorem 

lnN! ≈ NlnN – N + (1/2)ln(2πN),

and for N “very large”, 

lnN! ≈ NlnN – N.

Using this key theorem, we find

W’/Wmax ≈ exp{–4∆2/N}; this has a Gaussian form.


The above method may be extended to objects with many states, and not just two.  For example, let N balls be thrown from a distance into a box containing q square cells, side-by-side, and suppose that the diameter of each ball is less than the cell size.  Let nr balls be observed in cell qr.  (Here, ∑nr = N).  The possibility number is

P = N! /∏ nr!

and the probability is

W = (N!/∏nr!)•(1/q)N where q is the total number of cells.

The Maxwell – Boltzmann Distribution

We shall consider an ideal container at constant temperature that contains a very large number, N, of identical molecules of an ideal gas – a gas that consists of point-like masses with interaction energies between pairs that are negligibly small compared with kinetic energies. It is assumed that there are no external forces acting on the system.  In a volume of one cm3, a typical gas at standard temperature and pressure contains approximately 1019 molecules; it is therefore impossible to describe the configuration in terms of the coordinates of each molecule.  We replace this unobservable idea with the idea of a complexion and range, or extent of configuration: the coordinates of a molecule lie in 

x –> x + ∆x , y + ∆y, and z + ∆z (the ∆’s are small and finite).  Let the complete volume be divided into a finite number of cells, each with a volume ∆x∆y∆z.  A molecule in a particular cell corresponds to a coin with a definite aspect, after a toss.  A complexion is defined by the aspects of the molecules – the way in which the molecules are distributed among the cells.  If there are c cells and a total of N molecules then the number of complexions in which there are

n1 molecules in cell 1

n2 molecules in cell 2

.

nr molecules in cell r

.

nc molecules in cell c.

is

N! / ∏r=1,c nr! = P, the complexion or possibility number.

For N sufficiently large, we again use Stirling’s theorem, and obtain 

lnP ≈ NlnN – ∑r=1,c nrlnnr
(noting that all the numbers nr must be sufficiently large).

By assigning a maximum value to P, with the constraint that ∑r=1,c nr = N, we can obtain information on the form of the distribution of molecules in space – the equilibrium distribution.  In this way, we find that the most probable distribution is uniform – the density is the same, everywhere.  However, to obtain a complete description of the system, it is necessary to consider not only the spatial distribution but also the velocity distribution of the molecules; we are dealing with a dynamical situation.  Let the velocity components of a molecule at (x, y, z) be (vx, vy, vz); we now have a six-dimensional space – the phase space of the molecule.  An aspect of the molecule is found by stating that the x–coordinate is in

x –> x + ∆x, … etc. and the x–component of the velocity is in

vx –> vx + ∆vx, … etc.  A phase cell is ∆x∆y∆z∆vx∆vy∆vz.  If each molecule has a mass m then the momentum components at (x, y, z) are px. py, pz (px = mvx, etc.) and the hyper-phase cell is ∆x∆y∆z∆px∆py∆pz.  (It is interesting to note that the units of ∆x∆px are “action”; in Quantum Mechanics, this quantity is equal to Planck’s constant, h).


We introduce the postulate: if the phase cells have the same magnitude, any aspect of a given molecule is as probable as any other.

The possibility number of the distribution in phase cells is

P = N! / ∏r=1,c nr!

and the probability is

W = P /cN.

We now ask the question: “what do we know about this problem?” – we have two constraints:

1.  The total number of molecules is fixed
∑r=1,c nr = N

and

2.  At constant temperature, the total energy is fixed (there are no external forces)

Let the energies characteristic of each cell be (1 , (2 , . . . (r , . . . (c then the total energy is

E =  n1(1 + n2(2  + . . . nr(r  + . . . nc(c
For an ideal gas, the energies, (r, are essentially all kinetic. 

Following Boltzmann, we assume that the equilibrium state is the state of maximum probability.


The defining equations for this problem are

P = N! / ∏r=1,c nr! , N = ∑r=1,c nr , and E = ∑r=1,c nr(r .

Let (r = nr/N – known as the partition function.

We have ∑r=1,c  (r = 1 and nr = N(r .
Using Stirling’s theorem gives

lnP = N(lnN – 1) – ∑nr (lnnr – 1)

                      = N(lnN – 1) – ∑N(r(lnN + ln(r – 1)
                                = N(lnN – 1) – N∑(r(lnN – 1) – N∑(rln(r
                                                                         = – N∑(rln(r .

The three defining equations can therefore be written

lnP = – N∑(rln(r
N = N∑(r
and

E = N∑(r (r
The condition of maximum probability is given by

(lnP = –N∑(1 + ln(r)((r = 0



           (N = N∑((r = 0
and




            (E = N∑(r ((r = 0.
We introduce the Lagrange undetermined multipliers, ( and (, leading to

∑(ln(r + ( + ((r) ((r = 0.
The variations are arbitrary and therefore

ln(r + ( + ((r = 0,

 or

(r = (1/ƒ) exp{– ((r} where ƒ is a constant.

The partition function, given by this equation, is proportional to the molecules with an energy (r.  The quantity ( (inversely proportional to E/N, the average energy of a molecule) is called the distribution constant.

Boltzmann showed that the entropy, S, is related to the probability, W, by the equation

S = k lnW, where k is Boltzmann’s constant,

from which it follows that ( = 1/kT, where T is the absolute temperature.

We therefore find that, for the state of maximum probability, 

(r ~ exp{– (r / kT}
This is the form of the Maxwell-Boltzmann function.
We note that 

f(r = exp{– (r / kT}
and 

f∑(r = ∑exp{– (r / kT}
but ∑(r = 1, therefore

f = ∑exp{– (r / kT}, the sum of the partition functions.
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