
MATH 341: PROBABILITY: FALL 2009
COMMENTS ON HW PROBLEMS

STEVEN J. MILLER (SJM1@WILLIAMS.EDU)

ABSTRACT. A key part of any math course is doing the homework. This ranges from
reading the material in the book so that you can do the problems to thinking about the
problem statement, how you might go about solving it, and whysome approaches work
and others don’t. Another important part, which is often forgotten, is how the problem
fits into math. Is this a cookbook problem with made up numbersand functions to
test whether or not you’ve mastered the basic material, or does it have important appli-
cations throughout math and industry? Below I’ll try and provide some comments to
place the problems and their solutions in context.

1. HW #1

The first assignment was: Due Thursday, 9/17 (but as this is the first assignment, no
late penalty if you put it in my mailbox by 10am on Friday the 18th): Section 1.3: #2,
#3, #5; Combinatorics: (1) There are 2n people who enter as n pairs of two. The people
are then randomly matched in pairs. What is the probability everyone is matched with
their initial partner? There are two ways to interpret this problem; either is fine so long
as you state which interpretation. In one interpretation, say there are n people from
Williams and n from Amherst, matched in n pairs with each pairhaving someone from
Williams and someone from Amherst. In the new matching, you must match someone
from Williams with someone from Amherst. In the other interpretation, anyone can be
matched with anyone. You may solve either problem, just clearly state which one you
are doing (not surprisingly, the answers differ). (2) Consider n people ordered 1, 2, ...,
n. We randomly assign another ordering to these people – whatis the probability at
least one person is assigned the same number twice? Section 1.4: #2, #4. Section 1.8:
#2, #4, #6, #12.

Section 1.3: Problem 2: This problem on Murphy’s law is quite important, and will
be used later for the elementary analysis of the symmetric random walk (also known
as the Gambler’s ruin). If we consider a sequence ofk tosses, then the probability it is
observed when we toss a fair coink times is justp = 1/2k, or the probability it does
not happen is1− p = 1− 1/2k. If we toss a fair coinkN times, then the probability it
does not happen in one of these blocks is(1− p)N , which tends to 0 asN → ∞. Note
that the sequence could still occur even if it doesn’t occur entirely in one block. For
example, say our sequence is TTHT. Imagine we toss the coin 20times, and get

THHT THTH THHT TTTH HHTH.
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Note none of the blocks of four have the sequence TTHT, but it does occur in the se-
quence of 20 (part in the first and part in the second blocks).

Section 1.3: Problem 3: For this problem, the trick is to just enumerate so that you
cover all possibilities. This problem is more to test understanding of the material in-
stead of applications for later. I find it is easiest to give each cup a label (so red cup 1,
red cup 2). We might as well place the six saucers in order: redsaucer 1, red saucer
2, ..., star saucer 2. There are 6! ways to arrange the 6 cups onthe saucers (we ARE
distinguishing between which red cup is place on a given saucer). To count how many
ways to place the cups so that nothing is placed on the same color, there are three pos-
sibilities: the two reds are placed on the two whites, the tworeds are placed on the two
stars, or one red on a white and one red on a star. The problem iscompleted by counting
all configurations like this.

Section 1.3: Problem 5: This problem can be interpreted as saying that if we have
a countable collection of events and each event happens withprobability 1, then their
intersection happens with probability 1. The simplest way to prove this is by induction.
If X andY happen with probability one, thenℙ(X ∩Y ) = ℙ(X) +ℙ(Y )−ℙ(X ∪Y ).
Note every probability on the right hand side equals 1 (no event can have probability
greater than 1, andX ⊂ X ∪ Y soℙ(A ∪ Y ) = 1). This impliesℙ(X ∩ Y ) = 1.
Proceed by induction, settingX = ∪n

r=1Ar andY = An+1 to getℙ(∩n+1
r=1Ar) = 1 for

all n. The proof is completed by invoking Lemma 5 on page 7. We couldhave argued
slightly differently above. The key is provingℙ(X ∩ Y ) = 1; another approach is to
use partitions, and observeℙ(X) = ℙ(X ∩ Y ) +ℙ(X ∩ Y c). Asℙ(Y ) = 1, ℙ(Y c) = 0
and thusℙ(X ∩Y c) = 0 (asX ∩Y c ⊂ Y c). Thusℙ(X) = ℙ(X ∩Y ), and asℙ(X) = 1
we finally deduceℙ(X ∩ Y ) = 1. Note how important in this problem then = 2 case
is in the inductive proof. Frequently in induction proofs wejust need to use the result
with n to proven+ 1; however, a sizable number of times the general proof basically
just reduces to understanding then = 2 case.

Combinatorics Problem (1): If anyone can be matched with anyone, there are(2n −
1)!! ways to do this, where the double factorial means we take the product of every other
term (6!! = 6 ⋅ 4 ⋅ 2 and5!! = 5 ⋅ 3 ⋅ 1). One way to see this is to note this is just

(
2n

2

)(
2n− 2

2

)
⋅ ⋅ ⋅
(
4

2

)(
2

2

)
⋅ 1

n!
;

we divide byn! as we have attached labels to each pair of people, and there aren’t
supposed to be labels. We could also proceed by induction. The first person must
be matched with someone; there are2n − 1 ways to do this. We now pair off the
remaining2n − 2 people, which by induction happens(2n − 3)!! ways, so there are
(2n − 1) ⋅ (2n − 3)!! = (2n − 1)!! ways. If you must be matched with someone from
the opposite side, there are onlyn! ways.

Combinatorics Problem (2): We solve this by inclusion-exclusion. LetAi be the event
that i is in theith place,Aij be thati andj are in their respective places (withi ∕= j),
and so on. Noteℙ(A134) = ℙ(A459) and so on. Then the probability that at least one
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person is in the right spot is

ℙ

(
n∪

k=1

Ai

)
=

∑

i≤n

ℙ(Ai)−
∑

i<j≤n

ℙ(Aij +
∑

i<j<k≤n

ℙ(Aijk − ⋅ ⋅ ⋅

=

(
n

1

)
ℙ(A1)−

(
n

2

)
ℙ(A12) +

(
n

3

)
ℙ(A123)− ⋅ ⋅ ⋅

=
n

1!

1

n
− n(n− 1)

2!

n(n− 1)

+

n(n− 1)(n− 2)

3!

1

n(n− 1)(n− 2)
− ⋅ ⋅ ⋅

=
1

1!
− 1

2!
+

1

3!
− ⋅ ⋅ ⋅+ (−1)n+1 1

n!
.

As n → ∞, this tends to1− 1/e; this follows from algebra applied to the Taylor series
expansion ofex with x = −1.

Section 1.4: Problem 2: This is another good problem to use induction, where again
the key step is whenn = 2. By the definition, we haveℙ(X ∩Y ) = ℙ(X∣Y )ℙ(Y ). The
base case is takingX = A2 andY = A1. In general, we setX = An+1 ∩ ⋅ ⋅ ⋅ ∩ A2 and
Y = A1, and the result follows by induction.

Section 1.4: Problem 4: No one asked me about this, so assuming all is good.

Section 1.8: Problem 2: To have exactly two kings and one ace in 13 cards means
we choose 2 of 4 kings, 1 of 4 aces, and then 10 of 44 non-king andnon-aces. Thus
the number of possible hands is

(
4
2

)(
4
1

)(
44
10

)
; as there are

(
52
13

)
ways to choose 13 cards

for the hand, the probability is just the ratio. As no one asked about this problem, I’ll
assume the second part is fine.For problems like this, it is very easy to double count.
The danger is getting a third king or a second ace. I find it is easiest to break it up
like this, where we first go through the kings, then the aces, then the remaining. note
the numbers in then chooser’s up top add to 52 and the bottom adds to 13.

Section 1.8: Problem 4: For (a),Ω = {HHH,HHT,HTH, THH, HTT , THT ,
TTH, TTT} (there are28 possibilities; it is important to enumerate in such as way
that none are missed). There are many choices for the�-field. The simplest is to take
ℱ = {',Ω}; while this satisfies all the requirements of a�-field, it is a very poor
choice. It allows us to only talk about probabilities of nothing happening or some-
thing happening. The larger the�-field, the better. IfΩ is finite or countable, we
can and should take the�-field to be2Ω, the set of all subsets ofΩ. As Ω has 8 el-
ements, here there would be28 = 256 elements in the�-field. Some of these are
',Ω, {HHH, TTT}, {HHT, THT, TTT} and so on. Finally we must define a mea-
sure. If we can define a probability on each element! ∈ Ω then we can define the
probability of anA in the�-field by ℙ(A) =

∑
!∈A ℙ(!). This is very important, as

we would hate to have to define the probability of each of the 256 possible subsets of
Ω directly; defining the probabilities of the singletons ofΩ induces the probabilities
elsewhere. As we are told the coin is biased, letp be the probability of a head, and
thenℙ(!) = p#H(!)(1 − p)1−#H(!), where#H(!) is the number of heads in! (thus
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ℙ(HTH) = p2(1 − p)). If we had an uncountableΩ, we couldn’t do this. For us, if
we have[0, 1], [0, 1]n, ℝ or ℝn (or anything like that), we take for the�-field the set of
subsets ofΩ generated by open intervals.

Section 1.8: Problem 6: As no one asked about this, I’ll assume all is good.

Section 1.8: Problem 12: Not surprisingly, this is another induction problem where
the key observation is using then = 2 claim. We haveℙ(X ∩ Y ) = ℙ(X) + ℙ(Y ) −
ℙ(X ∪ Y ). Now takeX = A1 ∩ ⋅ ⋅ ⋅ ∩ An andY = An+1. The algebra becomes a bit
tedious, but we have

ℙ

(
n+1∩

k=1

Ak

)
= ℙ

(
n∩

k=1

Ak

)
+ ℙ(An+1)− ℙ ((A1 ∩ ⋅ ⋅ ⋅ ∩ An) ∪ An+1) .

In the expansion above, the difficult part is the last piece. It is a mix of intersections and
unions, and our desired formula only has unions on the right.The solutions is to note

(A1 ∩ ⋅ ⋅ ⋅ ∩An) ∪ An+1 = (A1 ∪An+1) ∩ ⋅ ⋅ ⋅ ∩ (An ∪ An+1) ;

to see this, argue as follows: eitherx ∈ An+1 or x ∈ Ak for all k ≤ n. Now we have
a probability of the union ofn sets, and can expand.In induction after induction, we
see the advantage of grouping terms and using the results from then = 2 case.

2. HW #2

Homework: Due Thursday 9/24 (though you may place in my mailbox anytime up
till 10am on Friday 9/25): Section 1.5: #1, #2, #4 (also determine if it is true if p is
not prime), #8. Section 1.7: #1, #3 (hint: you can solve this without using difference
equations!), #4. Section 1.8: #28 (also determine if we musthave 10% colored, or if
we can do more, and generalize to 4-dimensions if possible).Section 2.1: #2, #4, #5c.
Section 2.3: #3 (very important problem for simulating random variables), #4, #5.

Section 1.5: Problem 1: Lots of ways to do this problem. Easiest is probably to first
show that ifX andY are independent then so too areX andY c. We can now reason
and getAc andBc are independent as follows:A,B independent impliesA andBc are
independent; we then takeX = Bc andY = A to getBc andAc are independent. This
is a nice trick, marching down like so.

Section 1.5: Problem 2: Consider (assumingn ≥ 3) the eventsA12, A23 andA13.
If the first two happen, then the first and second rolls are the same as well as the the
second and third. Thus, the first and thirdmustbe the same!

Section 1.5: Problem 4: The primality ofp is very important. If the events are in-
dependent, thenℙ(A ∩ B) = ℙ(A)ℙ(B). Here,ℙ(C) = c/p wherec is the number
of elements ofC, and thus is an integer between 0 andp (remember the probability
of C is just the cardinality ofC divided by p). If A andB are independent, then
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ℙ(A ∩ B) = ℙ(A)ℙ(B). LettingNC denote the number of elements inC, this means
NA∩B/p = NANB/p

2, orpNA∩B = NANB. Asp is prime, ifp divides a product it must
divide one of the two factors, and thus eitherp∣A or p∣B. Without loss of generality,
assumep∣A; there are only two ways this can happen, namely eitherA is empty orA
is the entire space. What isp is not prime? Letp = 6 and setΩ = {1, 2, 3, 4, 5, 6},
A = {1, 2, 3} andB = {3, 4}. Thenℙ(A) = 3/6, ℙ(B) = 2/6 andℙA ∩ B = 1/6.
Thus it is essential thatp be prime.In problems like this, it is a very good idea to ask
how important a condition is. Frequently the result is either false if the condition
fails, or the proof is much harder.

Section 1.7: Problem 1: This is a computational problem to make sure you have un-
derstood the section. I think the final answer is something like 1−p2

2−p2
. Whenever you do

a problem, it is worthwhile trying to get a feel for the answer. Is it reasonable? What
kind of tests can we do? Well, first off we need to make sure the answer is between 0
and 1, as it is a probability – this is always the case, and thusso far so good. (At least
one student showed me a calculation with an error; I was able to easily find the error in
one place because the resulting probability exceeded 1.) Isthe answer reasonable asp
approaches natural limits? Ifp → 1 then the probability tends to 0; this is as expected,
for in this caseall roads are blocked. What aboutp → 0 – is 1/2 reasonable? Yes: in
this case it is very rare for roads to be blocked, and thus onlyroads that must be blocked
are. If we are told that there is no path fromA toC, then it is just as likely that there are
two blocked roads fromA to B as fromB to C. In problems such as this, you should
always do simple tests like this to see how reasonable an answer is. Is the probability
between 0 and 1? What can you say about the answer in extreme cases / limits? Try
to tell a story: ifp → 1 then all roads are blocked so....

Section 1.7: Problem 3: One solution is to use difference equations. The probability
we eventually reachN is justk/N , while the probability we reach0 is 1 − k/N (by
symmetry); thus the probability neither of these two eventshappens is1 − (k/N) −
(1− k/N) = 0. This solution is somewhat unsatisfying, as it requires us to solve
difference equations to get the probabilityk/N (and the difference equation doesn’t
even have distinct roots to its characteristic polynomial!). We can find a more elegant
solution by using the Murphy’s Law problem from Section 1.3 (problem #2). Imag-
ine we flip our fair coinN times and get all tails. Then no matter where we are in
{1, 2, . . . , N − 2, N − 1}, afterN tails we must hit the boundary of0. As ‘eventually’
we getN consecutive tails, we must eventually either hit0 or have been absorbed atN .

Section 1.7: Problem 4: I agree: here’s one approach. LetA be the event that we
preferx to y. Then

ℙ(A) = ℙ(A ∩ C) + ℙ(A ∩ Cc)

= ℙ(A∣C)ℙ(C) + ℙ(A∣Cc)ℙ(Cc)

= 1 ⋅ ℙ(C) + 1 ⋅ ℙ(Cc) = 1,

where above we usedℙ(A∣C) = 1 andℙ(A∣Cc) = 1 as we were told that givenC
(respectively,Cc) we preferx to y. This is a very important problem. When we try
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to prove results, it is often easier to break into cases that cover all possibilities, as
then we get to assume additional results in each case. For example, we might have
a result is true if the Riemann hypothesis holds (where we usecertain consequences
of the Riemann hypothesis holding), as well as it is true if the Riemann hypothe-
sis is false (where we use certain consequences of its failure); thus the claim must
be true, as either the Riemann hypothesis is true or it is false. This is a power-
ful way to attack many problems, as in each case we now have a lot more at our
disposal. (For those interested, I’m thinking of the proof of Skewes’ number; see
http://en.wikipedia.org/wiki/Skewes number.

Section 1.8: Problem 28: Each cube has 8 vertices on the surface of the sphere. If I
try to be as obstructionist as possible, I will arrange it so that exactly one of the 8 ver-
tices on each cube is blue; this uses as little paint as possible to block you as much as
possible. Note no vertex is on two distinct cubes, so withoutloss of generality I might
as well assume that I always paint the vertex in the positive octant blue. I thus need to
paint at least 1/8 or 12.5% of the sphere blue to ensure that there is no cube where all
vertices are red, but I only have enough paint to do 10%. The generalization to higher
dimensions is actually straightforward – all that matters is the number of vertices! In
four dimensions we have24 = 16 vertices, so any number less than 1/16 will suffice to
ensure that we can find a hypercube with all vertices painted red.This is a red-herring
problem. It seems that for higher dimensions we’ll need to know things such as the
hypervolume and surface area of the spheres, but all we need to know is the number
of vertices on the hypercube. Whenever doing a problem, think about the key features
of the problem – what really matters, and what might be misleading. We do need to
have some of the symmetry of the sphere (it is important coloring one vertex blue
cannot block multiple cubes), but we do not need any fine properties of the sphere.

Section 2.1: Problem 2: ℙ(Y ≤ y) is the same asℙ(aX + b ≤ y) or ℙ(X ≤ y−b
a
) =

F
(
y−b
a

)
. For problems like this, I find it is best to go slow. Start with the definition of

the (cumulative) distribution function ofY , and then do some algebra to express this
in terms of the (cumulative) distribution function ofX.

Section 2.1: Problem 4: This is a straightforward calculation, so long as� ∈ [0, 1]
(if not the properties break down; for instance, it need not assign non-negative prob-
abilities to intervals). The product is a distribution function (this can be seen after
some algebra).Similar to a previous problem, we should ask how important isthe
condition that � ∈ [0, 1]. It turns out that the result is false. If� = 4, we have
H(x) = 4F (x) − 3G(X). This satisfies the right behavior asx → ±∞, but can
give negative probabilities. For example, ifF arises from the uniform distribution on
[2, 3] andG from the uniform on [0, 1], thenH(1) = −3.

Section 2.1: Problem 5c: Let F ′(x) = f(x). There is no problem with the limits
asx → ±∞ so long as we remember thatu log u → 0 asu tends to 0 from above.
We must show that this function is non-decreasing to complete the proof that it is a
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distribution function. The simplest way to see this is to take a derivative, which gives

f(x)− f(x) log(1− F (x)) + (1− F (x))
−f(x)

1− F (x)
= −f(x) log(1− F (x));

asF (x) ∈ [0, 1] we havelog(1− F (x)) < 0 (it is the logarithm of a negative number),
and thus the first derivative is positive (so the function is increasing.I find the above
is a very useful way to prove certain types of claims. Namely,take the first derivative
and show it is positive – this suffices to give strictly increasing.

Section 2.3: Problem 3: This is perhaps one of the most important problems in the
entire course! AsF is continuous and strictly increasing, it has a continuous inverse
F−1. Noteℙ(Y ≤ y) = ℙ(F−1(X) ≤ y); however,F−1(X) ≤ y meansX ≤ F (y).
Thenℙ(Y ≤ y) equalsℙ(X ≤ F (y)); asF (y) ∈ [0, 1], from the givens of the problem
ℙ(X ≤ F (y)) = F (y), which completes the proof.Why is this problem so important?
One way of interpreting the result is to say that if we can simulate any random vari-
able that is uniformly distributed (or equidistributed) on[0, 1], then we can simulate
any random variable whose cumulative distribution function is strictly increasing.
Of course, how does one generate a random number uniformly? This is a very hard
question. See for instancehttp://www.random.org/.

Section 2.3: Problem 4: The first part is a computation. The second is false. The eas-
iest example isf is the uniform density on[0, 1] andg the uniform density on[2, 43].
Thenf(x)g(x) = 0 for all x. It’s often a good idea to play around searching for
counterexamples, or seeing what makes examples succeed. Just becausef and g are
non-negative and integrate to 1, nothing implies the same must be true for their prod-
uct.

Section 2.3: Problem 5: This is a calculation, and a test of Math 103/104. For (a),
note the integral diverges unlessd > 1, in which case it converges. For (b) the easiest
way to proceed is to change variables, withu = 1 + ex (it’s more convenient to do this
thanu = ex). For problems like this, look at the integrand asx → ±∞, 0 and any
other special points. If the integrand is not decaying at an appropriate rate....

3. HW #3

Homework: Due Thursday October 1 (though you may place in my mailbox anytime
up till 10am on Friday 10/2): Section 2.5: #2, #6. Section 2.7: #1, #4af, #7, #11, #18.
Create two homework problems and TeX them up. They may be on anything related
to probability; the first one you must be able to solve (and include the solution in your
write-up); for the second, it’s fine not to be able to do it (feel free to include a problem
whose solution you’d like to know). I will share the problemsand solutions with the
class.
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Section 2.5: Problem 2: For ℙ(X = x, Y = y), asY = 1 − X this is impossible
unless(x, y) = (0, 1) or (1, 0). The answer is that(1, 0) happens with probabilityp,
(0, 1) with probability1 − p and(0, 0) and(1, 1) have probability 0. The analysis for
the second part is similar.

Section 2.5: Problem 6: Interestingly, this isnot a cumulative distribution function
(CDF)! While every square has four right angles and two pairsof parallel sides, it is not
the case that every quadrilateral with four right angles andtwo pairs of parallel sides
is a square (i.e., rectangles exist). Lemma 5 on page 39 listsproperties a CDF should
have; however, just because something has those propertiesdoes not make it a CDF. To
be a CDF, it must assign non-negative probabilities to rectangles. We can evaluate the
probability thata ≤ X ≤ b andc ≤ Y ≤ d in terms ofF by using Problem 4 of this
section. If we use that for this problem for the region1 ≤ X ≤ 2 and1 ≤ Y ≤ 2, we
find that this square is assigned a negative probability; thus thisF cannot be a CDF.

Remark 3.1. This exercise is important as it illustrates a common theme:intuition in
one-dimension frequently does not transfer to higher dimensions. On page 29 (Section
2.1) we learn that a similar lemma characterizes CDFs in one-variable – such a simple
characterization does not hold in two dimensions. A very nice challenge problem is
to see what conditions do uniquely characterize which functions are CDFs in two and
higher dimensions.

Section 2.7: Problem 1: As the probability that the first head occurs on tossn is
(1− p)n−1p, we have

ℙ(X > m) =

∞∑

n=m+1

(1−p)n−1p = (1−p)mp

∞∑

k=0

(1−p)k =
(1− p)mp

1− (1− p)
= (1−p)m.

The distribution function is just 1 minus this (by the law of total probability), or1 −
(1− p)m. Note we could have also calculatedℙ(X > m) by evaluating1− ℙ(X ≤ m)
and using thefinitegeometric series formula.

Section 2.7: Problem 4af: NoteF is continuous. For (a) we have

ℙ(1/2 ≤ X ≤ 3/2) = F (3/2)− F (1/2) = 3/4− 1/4 = 1/2.

For (f):
ℙ(Z ≤ z) = ℙ(

√
X ≤ z) = ℙ(X ≤ z2) = F (z2)

asX is non-negative.

Section 2.7: Problem 7: The first airline is overbooked if all 10 seats are filled,
which happens with probability(9/10)10 ≈ 0.348678. The second is overbooked
if 20 or 19 people show up, which happens with probability

(
20
20

)
(9/10)20(1/10)0 +(

20
19

)
(9/10)19(1/10)1 ≈ 0.391747. Thus there is a higher probability the second plane

is overbooked. For problems like this, it is worthwhile trying to get a feel for the an-
swer. Imagine we have a nine trillion seats and sell 10 trillion tickets. We expect nine
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trillion people to show up, and there should be approximately equal probability that
more or less than nine trillion show up. Thus, in the limit as the size tends to infinity,
there should be about a 50% chance the plane is overbooked, which is greater than the
34.87%.

Section 2.7: Problem 11: I’ll write this up later.

Section 2.7: Problem 18: For both problems, there are
(
64
8

)
ways to place the pawns

on the board (where we do not care about the order in which the pawns are placed).
(a) There are 18 ways to have 8 pawns in a line (8 horizontal lines, 8 vertical and two
diagonal). Thus the probability that the 8 pawns are in a lineis 8/

(
64
8

)
. (b) There aren!

ways to placen pawns on ann×n board such that each row and each column has exactly
one pawn. To see this, each pawn has coordinates(i, j) with i, j ∈ {1, . . . , n}. The
solution is obtained by putting the pawns in order by their first coordinate; their second
coordinates are just a permutation of{1, . . . , n}, and there aren! such permutations.
This problem is useful in abstract algebra. Instead of a chessboard, we consider an
n×n matrix with a 1 if there is a pawn in the square, and a 0 otherwise. These matrices
are called permutation matrices, and form a group under matrix multiplication. Cayley’s
theorem says any finite group is isomorphic to a subgroup of these matrices. (Note: for
the problem asked in the book, we taken = 8 and find the probability that no two are
in the same row or column is just8!/

(
64
8

)
.)

4. HW #4

Due Thursday October 8 (though you may place in my mailbox anytime up till 10am
on Friday 10/9): Section 3.1: #1ac (hint: famous sum), #3 andSection 4.1: #1b. Sec-
tion 3.2: #1, #4 and Section 4.2: #1 (also do when F is uniform on [0,1] and K = .9);
obviously your solution will depend on the unknown distribution F. Section 3.3: #1, #2,
#7 and Section 4.3: #1a, #2.

Section 3.1: Problem 1ac: For (a), the function is clearly non-negative. Its sum is
∞∑

n=1

C

2n
= C

∞∑

n=1

1

2n
= C

1
2

1− 1
2

= C;

thus to be a density we must takeC = 1. Here we used the geometric series formula
starting not atn = 0 but atn = 1. For (c), we again have a non-negative function whose
sum now is

∞∑

n=1

C

n2
= C

∞∑

n=1

1

n2
= C

�2

6
;

we have discussed this sum previously in class, and while it is not apparent why that
sum is�2/6, it should be clear that it is finite. The reason is this is ap-series from
calculus:

∑∞
n=1 1/n

p converges ifp > 1 and diverges ifp ≤ 1. Thus there issome
choice ofC so that the sum is 1. To see this, we use the Intermediate ValueTheorem
(IVT). Note the sum is clearly a continuous function ofC. If C = 0 the sum is zero,
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while if C = 2 the sum is at least 2. Thus there is some choice ofC so that the sum is
1 by the IVT. AsC�2/6 = 1, we see we must takeC = 6/�2.

The reason this problem is so important is that it is an example of theTheory of
Normalization Constants. Namely, we frequently have a non-negative function that
has a finite sum or integral, and thus there must be some way to rescale it so that it sums
or integrates to 1; in other words, we can make it a probability density. This frequently
arises in my work in Random Matrix Theory. I have horrible expressions involving
N(N + 1)/2 variables (withN → ∞ and the normalization constant is given by a
horrendous formula. Instead of working with that, I can juststudy the integrand and get
it for free. One nice application of this is a proof of Wallis’formula for�; for details,
see my paper in the Monthly:

http://www.williams.edu/go/math/sjmiller/public html/math/

papers/StatProofWallis Final.pdf

Section 3.1: Problem 3: A fair coin is tossedn times. Every coin that lands on heads
is tossed again. What is the probability mass function for the number of heads after the
second toss?

We solve this problem two ways. The first is the ‘natural’ approach. It has the
advantage of being a reasonable method to try, but leads to a very messy formula.

Our first solution uses conditional probability. Let’s say we want to compute all the
ways of havingm heads on the second toss, with clearly0 ≤ m ≤ n. We can express
this probability as

n∑

k=m

ℙ(m heads on second toss∣k heads on first) ⋅ ℙ(k heads on first toss).

Why? We must have tossed some number of heads on the first toss,which we denote
by k. Clearlyk ≥ m as otherwise we can’t havem heads on the second. The answer is
thus

n∑

k=m

(
k

m

)
pm(1− p)k−m ⋅

(
n

k

)
pk(1− p)n−k.

It is worth asking what would happen if we forgot about the restriction thatm < n;
for example, what ifn = 4 andm = 6? We would have the binomial coefficient

(
4
6

)

– how is this defined? We might at first expect it to be4!
6!
(−2)!; this works but you

need to know that(−2)! is defined to be infinity! We’ll discuss this later when we talk
about the Gamma function, which generalizes the factorial function. There is another
way to ‘see’ what the definition should be. We expect the answer to be zero, as the
combinatorial interpretation is:how many ways are there to choose 6 objects from 4
when order doesn’t matter?Clearly there arenosuch ways, and thus the answer should
be zero. Another way of defining

(
n
k

)
is

n(n− 1) ⋅ ⋅ ⋅ (n− (k − 1))

k(k − 1) ⋅ ⋅ ⋅1 .
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In our case, we would have(
4

6

)
=

4 ⋅ 3 ⋅ 2 ⋅ 1 ⋅ 0 ⋅ (−1)

6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 0

as we have a 0 in the numerator.
Remember, in mathematics we can make almost any definition wewant – the ques-

tion is when our definition is useful. The above is a great way to define the choose
function when the bottom exceeds the top, and agrees with ourcombinatorial intuition.

We now give an alternate solution. A much better way to look atthis problem is
to think what must happen for a coin to end up heads after two tosses. The only way
this can occur is if the first and second tosses are heads, which (since the coin lands on
heads with probabilityp) happens with probabilityp ⋅ p = p2. Our situation turns out
to be equivalent to the following:Toss a biased coin (with probabilityp2 of landing on
heads) a total ofn times; what is the probability mass function?The answer is just

ℙ(m heads) =

(
n

m

)(
p2
)m (

1− p2
)n−m

=

(
n

m

)
p2m(1− p2)n−m.

The above analysis illustrates one of the most common ways toprove combinatorial
identities. Namely, we calculate a given quantity two different ways. As both count the
same object, they must be equal. Typically one is easily computed, and thus the other,
harder combinatorial expression must equal the easier one.For example, in our case
above the second approach was fairly easy to compute. If we take p = 1/2 and set the
first and second solutions equal to each other, we find

n∑

k=m

(
k

m

)(
n

k

)(
1

2

)n+k

=

(
n

m

)
3n−m

22n
.

We can verify this identity for any choices ofm ≤ n; however, is there a way of proving
this directly (and not relying on us being clever and noticing this counting problem was
equivalent to another)?

Section 4.1: Problem 1b: Our proposed density is again non-negative, so the question
is just whether or not it will integrate to 1 for some choice ofC. We have

∫ ∞

−∞
C exp(−x− exp(−x))dx = C

∫ ∞

−∞
exp(−x) exp(− exp(−x))dx.

We do au substitution. Let

u = exp(− exp(−x))

so
du = exp(−x) exp(− exp(−x))dx,

andx : −∞ → ∞ becomesu : 0 → 1. Thus our integral is

C

∫ 1

0

du = 1.

There are other change of variables we could make, but this isthe simplest. See the
comments for Section 3.1, #1 for more on problems like this.
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Section 3.2: Problem 1: Clearly all three are not independent, as if we knowX and
Y then we knowZ. From construction,X andY are independent, and by symmetry
it suffices to showX andZ are independent (Y andZ are independent by a similar
argument). To see that they are independent we must show

ℙX = x, Z = z = ℙX = xℙZ = z.

We have four possibilities:x ∈ {−1, 1} andz ∈ {−1, 1}. A straightforward calcula-
tion shows eachℙX = x andℙZ = z = 1/2, whileℙX = x, Z = z = 1/4.

Section 3.2: Problem 4: We use the idea from the basketball game in class, namely
that this is a memoryless game. For the first problem, afterA throws a 6 we do not
care if she (A is obviously named Alice) throws another 6 beforeB (clearly Bob) orC
(surely Charlie) does; all we care about is thatB then throws a 6 before Charlie. Letx
be the probability thatA rolls the first 6. Then

x =
1

6
+

(
5

6

)3

x;

this is because she either rolls a 6 on her first try, or she andB andC all miss, and
then it is as if we’ve started the game fresh. (Note how important the memoryless
feature is in solving these problems!) We thus findx = 1

6
+ 125

216
x, or after some algebra

x = 36
91

. We now keep rolling, and we only care about the rolls ofB andC. It suffices
to determine the probabilityB gets the next 6, as clearlyC will then be the last to roll
(from a previous homework problem, related to Murphy’s law,we do know eventually
C will roll a 6). Let y be the probabilityB rolls a 6 beforeC, given thatB rolls first. A
similar analysis gives

y =
1

6
+

(
5

6

)2

y,

or y = 1
6
+ 25

36
y, which givesy = 6

11
. Thus the probability thatA is first, thenB and

thenC is just
36

91
⋅ 6

11
⋅ 1 =

216

1001
.

For the second part, we now wantA to roll the first 6, and then the next 6mustbe
rolled byB, and then the nextmustbe rolled byC; thus, we now care aboutA’s sub-
sequent rolls. Fortunately we’ve already solved this problem! In the analysis above,
we may interpretx = 36/91 as the probability that the first 6 is rolled by the person
currently rolling. Thus the answer here is justx3 = (36/91)3; the reason is that onceA
rolls a six, it is nowB’s turn to roll.

Section 4.2: Problem 1: This is another example of the geometric series / waiting for
a success. The probabilityp that we have an acceptable offer is1 − F (K), while the
probability we have an offer that is too low is1− p = F (K). Thus the probability that
the first acceptable offer is thenth is just

(1− p)n−1p = F (K)n−1(1− F (K)),
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and hence the expected value is
∞∑

n=1

n(1− p)n−1p =

∞∑

n=1

F (K)n−1(1− F (K).

From class we know that this sum is just1/p (we proved this by differentiating the
geometric series), and sincep = 1− F (K) thus the expected value is

1

1− F (K)
=

1

F (K)
.

If we take our density to be the uniform distribution on[0, 1] andK = .9, thenF (K) =
.9 and the answer is just 10. Note that we really don’t need to know the density andK;
all we need to know is the value ofF (K).

It is worth reflecting on whether or not an answer of1/p is reasonable. Ifp = 1 then
the expected value is 1 – this is eminently reasonable, as we clearly win on the first
offer. If p = 0 then we never win, and this is seen by the expected number becoming
infinite. It is always worth checking answers at extreme cases (or in limits as we ap-
proach extreme cases, such asp → 0) to get some feel for what is going on.

Section 3.3: Problem 1: UsuallyE[1/X] is not1/E[X ]. Almost anything is a counter-
example. A trivial one is to takeX = ±1 with probability 1/2 for each. Another
example is to takeX = 2 or 4 with probability 1/2 for each, as

E[1/X] =
1

2
⋅ 1
2
+

1

4
⋅ 1
2

=
3

8
,

while
1

E[X ]
=

1

2 ⋅ 1
2
+ 4 ⋅ 1

2

=
1

3
.

It is possible for them to be equal – this is always the case ifX = x with probability 1
for some non-zerox. Assume we haveX = xi with probabilitypi for i ∈ {1, 2} and
we want these two to be equal. Asp2 = 1− p1, lettingp = p1 that requires

p

x1
+

1− p

x2
=

1

x1p + x2(1− p)
or

x1(1− p) + px2

x1x2

=
1

x1p+ x2(1− p)
,

which simplifies to

(x1(1− p) + px2) (x1p+ x2(1− p))− x1x2 = 0.

Are there any non-trivial solutions to this? We have three unknowns and only one equa-
tion, so this should be solvable. Of course, we do have restrictions: 0 < p < 1 and
x1 ∕= x2. (We takep ∕= 0, 1 as otherwise this reduces to the trivial solution.)

Section 3.3: Problem 2: This is a beautiful problem illustrating the power of expec-
tation. Not surprisingly, it starts off as another geometric series problem (i.e., waiting
for the first success). LetYj be the random variable which denotes how much time
we need to wait to get the next new coupon given that we havej distinct coupons (of
thec coupons). For each pick, the probability we get one of thej coupons we already
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have isj
c
, and thus the probabilityp we get a new coupon isp = 1 − j

c
= c−j

c
. Thus,

lettingp = c−j
c

we find the probability that we get the next new coupon on pickn is just
(1− p)n−1p, so the expected value is

∞∑

n=1

n ⋅ (1− p)n−1p =
∞∑

n=1

(
j

c

)n−1
c− j

c
;

asp = c−j
c

and the expected value is1/p, we haveE[Yj ] =
c

c−j
. Note the answer is

reasonable. Whenj = 0 the expected wait is just one pick (which makes sense, as we
have no coupons so anything is new). Whenj = c−1 we are missing only one coupon,
and the answer is an expected wait ofc (also reasonable!).

For the second part, ifY is the random variable which denotes how long we must
wait to get all the coupons, thenY = Y0 + ⋅ ⋅ ⋅+ Yc−1. As expectation is linear,

E[Y ] = E[Y0] + ⋅ ⋅ ⋅+ E[Yc−1] =
c

c− 0
+ ⋅ ⋅ ⋅+ c

c− (c− 1)
.

If we read the sum in reverse order and factor out ac, we notice it is

E[Y ] = c

(
1 +

1

2
+

1

3
+ ⋅ ⋅ ⋅+ 1

c

)
≈ c log c,

as the sum is thecth harmonic numberHc, which is aboutlog c (a better approximation
is log c+ , where is the Euler-Mascheroni constant and is about .5772156649). See

http://en.wikipedia.org/wiki/Harmonic number

for more information.

Section 3.3: Problem 7: First off, an A+ in the course to anyone who can find a
real world example of this in time for us to make bets (note this may fail if there are
administrative fees for placing bets). The problem means that if we place $1 on horse
i and that horse wins then we win�(i) dollars and get to keep our initial wager; if that
horse loses then we have lost our wager. Let us betbi dollars on horsei. Our total wager
is b1 + ⋅ ⋅ ⋅+ bn. If horsei wins then we win�(i)bi dollars and get to keep our wager of
bi; however, we have lost our wager everywhere else. The amountwe’ve lost is clearly
at mostb1 + ⋅ ⋅ ⋅+ bn (we shouldn’t include thebi here, but it is easier to do so). Thus,
as long as

(�(i) + 1)bi >

n∑

k=1

bk

then we end with more money than we started, and thus we win. Weare told that∑n
k=1

1
�(i)+1

< 1. If we let bi = 1
�(i)+1

then the sum of our bets is less than $1, but if

horsei wins we end with(�(i) + 1) ⋅ 1
�(i)+1

= 1. Thus, no matter which horse wins, we
end up with more money than we started! What is truly amazing about this problem is
that wedo notneed to know the probabilities of the horses winning! Another interesting
point to note is that the amount we win is independent of whichhorse triumphs!

What if we knew that horse 3 had a 99.9% chance of winning, and everything else
was as before. How should we place our bets? If we want to do math, exactly as before!
The odds of a horse winning are immaterial for this analysis.If we knew that horse 3
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would always win, yes, place all of our money on horse 3. If, however, we deviate from
the derived betting distribution, we are no longer doing math but actually gambling.

A few years ago my brother and some of his colleagues had the following odds on
the Patriots going undefeated in the regular season: Ed got 5to 1, Bozo (aka, Jason)
gave 8 to 1; Mike got 6 to 1, Bozo gave 8 to 1; Wilhelm got 5 to 1 andBozo gave 7 to
1. Was my brother happy, and if so, why? How should he have bet?

Section 4.3: Problem 1a: We need∫ ∞

0

x�e−xdx

to be finite. As the exponential function decays much faster than polynomials grow
(x� < ex/2 for x large), there is no trouble at infinity. We just need the integral to be
well-defined near 0. Near 0,e−x looks like 1, so we needx� to be integrable near the
origin. This forces� > −1. To see this, note for� ∕= −1 we have

lim
�→0

∫ 1

�

x�dx = lim
�→0

x1+�

1 + �

∣∣∣
1

�
= lim

�→0

1− �1+�

1 + �
,

and this forces� > −1. If � = −1 then
∫
dx/x is justlnx, which blows up.

Section 4.3: Problem 2: This is one of my favorite problems. At first the answer
seems too good to be true, as it is independent of the distribution of theXi’s! All
that matters is that they are identically distributed and that the sum is non-zero (so the
division makes sense). LetX have the same distribution as theXi’s. The key technique
here is to multiply by 1. We start with

E

[
1

1

]
= 1;

this trivial observation is the key to the proof. We now write1/1 in a clever way, and
use linearity of expectation:

1 = E

[
X1 + ⋅ ⋅ ⋅+Xn

X1 + ⋅ ⋅ ⋅+Xn

]

=

n∑

k=1

E

[
Xk

X1 + ⋅ ⋅ ⋅+Xn

]

= nE

[
X

X1 + ⋅ ⋅ ⋅+Xn

]
,

and so

E

[
X

X1 + ⋅ ⋅ ⋅+Xn

]
= E

[
Xk

X1 + ⋅ ⋅ ⋅+Xn

]
=

1

n
.

The key step above is that as theXk’s are identically distributed, the expected value of
any one of them over the sum is the same as that of any other overthe sum. We now
calculate the quantity of interest:

E

[
X1 + ⋅ ⋅ ⋅+Xm

X1 + ⋅ ⋅ ⋅+Xn

]
=

m∑

k=1

E

[
Xk

X1 + ⋅ ⋅ ⋅+Xn

]
=

m

n
.



16 STEVEN J. MILLER (SJM1@WILLIAMS.EDU)

5. HW #5

Due Thursday October 15 (though you may place in my mailbox anytime up till
10am on Friday 10/16): (1) Calculate the second and third centered moments of Bino-
mial(n,p); (2) Calculate the kth centered moment of the standard normal. Section 3.4:
#1. Section 3.11: #9, #13 (can do after Tuesday’s lecture). Section 4.14: #12.

First Problem: Calculate the second and the third moments ofX whenX ∼ Bin(n, p)
(this meansX is a random variable with the binomial distribution with parametersn
andp.

One natural way to compute this is from the definition. To evaluate the second mo-
ment, we either need to computeE[(X−�)2] orE[X2]−E[X ]2. In the latter, this leads
us to finding

n∑

k=0

k2 ⋅
(
n

k

)
pk(1− p)n−k.

While we can do this through differentiating identities, itis faster to use linearity of
expectation. LetX1, . . . , Xn be i.i.d.r.v. (independent identically distributed random
variables) with the Bernoulli distribution with parameterp. Note these are independent,
and we have the probabilityXi is 1 is p and the probabilityXi is 0 is 1 − p. Let
X = X1+ ⋅ ⋅ ⋅+Xn. As they are independent, the variance of the sum is the sum ofthe
variances:

Var(X1 + ⋅ ⋅ ⋅+Xn) = Var(X1) + ⋅ ⋅ ⋅+Var(Xn) = np(1− p),

as the variance of eachXi is justp(1− p). To see this, note

E[(Xi − �i)
2] = E[(Xi − p)2] = (1− p)2p+ (0− p)2p = p(1− p).

We redo the calculations in a way that will help with the analysis of the third moment.
We have

E[X2] = E[(X1 + ⋅ ⋅ ⋅+Xn)
2]

= E[X2
1 + ⋅ ⋅ ⋅+X2

n + 2X1X2 + 2X2X3 + ⋅ ⋅ ⋅+ 2Xn−1Xn]

=

n∑

i=1

E[X2
i ] +

n−1∑

i=1

n∑

j=i+1

E[XiXj].

As theX ’s are independent,E[XiXj] = E[Xi]E[Xj ] = p2 (so long asi ∕= j); note there
are
(
n
2

)
pairs(i, j) with 1 ≤ i < j ≤ n. What aboutE[X2

i ]? That is readily seen to be
just12 ⋅ p + 02 ⋅ (1− p) = p. Substituting gives

E[X2] =

n∑

i=1

p+ 2

n−1∑

i=1

n∑

j=i+1

p2 = np +

(
n

2

)
p2.
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Thus the variance is

E[X2]− E[X ]2 = np+ 2
n(n− 1)p2

2
− (np)2 = np− np2 = np(1− p).

We thus recover our result from above.
How should we handle the third moment? AsE[X ] = np andE[X2] = p, we have

E[(X − �)3] = E[X3 − 3X2�+ 3X�2 − �3]

= E[X3]− 3npE[X2] + 3(np)2E[X ]− (np)3

= E[X3]− 3n2p2(1− p) + 3n3p3 − n3p3.

We can complete the analysis in a similar manner as above, namely expanding out

X3 = (X1 + ⋅ ⋅ ⋅+Xn)
3

and then using linearity of expectation. At this point, differentiating identities isn’t
looking so bad!

To solve this with differentiating identities, we must evaluate a sum such as

n∑

k=0

k3 ⋅
(
n

k

)
pk(1− p)n−k.

We start with the identity

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.

We apply the operatorx d
dx

three times to each side, and find (after some tedious but
straightforward algebra and calculus) that the left hand side equals

nx(x+ y)n−3
(
n2x2 + 3nxy − y(x− y)

)
.

Settingy = 1− x andx = p yields

np
(
1 + 3(n− 1)p+ (n2 − 3n+ 2)p2

)
=

n∑

k=0

k3 ⋅
(
n

k

)
pk(1− p)n−k.

The above is quite messy, and there is a very good chance we have made an algebra
mistake. Thus, let’s see if we can find another approach whichwill lead to cleaner
algebra. Instead of applyingx d

dx
three times, let’s applyx3 d

dx
. Applying this to(x+y)n

is very easy, givingx3 ⋅ n(n − 1)(n − 2)(x + y)n−3; applying it to the combinatorial
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expansion gives notk3 andk(k − 1)(k − 2). Collecting, we find

n(n− 1)(n− 2)x3(x+ y)n−3 = x3
n∑

k=0

k(k − 1)(k − 2)

(
n

k

)
xk−3yn−k

=

n∑

k=0

(
k3 − 3k2 + 2k

)(n
k

)
xkyn−k

=

n∑

k=0

k3

(
n

k

)
xkyn−k − 3

n∑

k=0

k2

(
n

k

)
xkyn−k

+ 2

n∑

k=0

k

(
n

k

)
xkyn−k.

Settingx = p andy = 1− p yields

n(n− 1)(n− 2)p3 = E[X3]− 3E[X2] + 2E[X ].

We have made a lot of progress, as we already knowE[X ] andE[X2] and can thus solve
for E[X3]. The point is that it is easiernot to try and findE[X ] directly, but rather to
find a related quantity. Note, of course, that this method requires us to knowE[X ] and
E[X2] before we can deduce the value ofE[X3]; this is not an unreasonable request, as
typically we want to know all the moments up to a certain point.

The general principle here is that algebra can be hard, painful and tedious, but if you
look at a problem the right way, you can minimize how much algebra you need to do.
It’s worthwhile to spend a few minutes thinking about how we can try and approach a
problem, as often this leads to a way with significantly less messy computations.

Second Problem: Calculate thekth moment of the standard normal.The density func-
tion of the standard normal is(2�)−1/2 exp(−x2/2). We are thus reduced to calculating

M(k) =

∫ ∞

−∞
xk ⋅ 1√

2�
e−x2/2dx.

The integral is clearly zero fork odd, as we are integrating an odd function over a
symmetric region. (Note the normal decays so rapidly that all the integrals exist). There
are at least two natural ways to handle evenk.

The standard approach is through induction and integrationby parts. Consider
∫ ∞

−∞
x2 ⋅ 1√

2�
e−x2/2dx.

To integrate by parts, we need to choose values foru anddv. While at first we might
think the natural choices are eitheru = x2 or dv = x2, if we try either we run into
problems. The reason is that there is no nice anti-derivative for e−x2/2. Fortunately, all
is not lost. The functione−x2/2 is screamingto us that it wants to be considered with a
factor ofx, as then itwill have a nice anti-derivative. Thus we try

u = x, dv =
1√
2�

e−x2/2xdx.
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This leads todu = dx andv = −(2�)−1/2e−x2/2. Thus we find

M(2) = uv
∣∣∣
∞

−∞
+

∫ ∞

−∞

1√
2�

e−x2/2dx = I(0) = 1.

We have thus shown that the second moment is 1!
More generally, assume we knowM(2k) = (2k − 1)!!. Then we proceed as above,

and to computeM(2k + 2) when we integrate by parts we setu = x2k+1, sodu =
(2k + 1)x2kdx. The boundary term vanishes when evaluated at±∞, and we find

M(2k + 2) = (2k + 1)

∫ ∞

−∞
x2k 1√

2�
e−x2/2dx

= (2k + 1)M(2k) = (2k + 1)(2k − 1)!! = (2k + 1)!!.

Similar to the previous problem, we show how it may also be done through differen-
tiating identities. It seems strange to talk about differentiating identities here, as

I(2k) =

∫ ∞

−∞
x2k 1√

2�
e−x2/2dx

has no free parameter! We begin with the fact that

1 =

∫ ∞

−∞

1√
2��2

e−x2/2�2

dx;

this is just the statement that the above is the probability density for a normal distribu-
tion with mean 0 and variance�2. Moving� to the other side gives

� =

∫ ∞

−∞

1√
2�

e−x2/2�2

dx.

We keep applying�3 d
d�

to both sides/ Why do we multiply by�3? The reason is that
the differentiation hits−x2�−2/2, and thus brings down a factor ofx2�−3. Hence if we
multiply by �3, we keep everything nice. Differentiating once gives

�3 ⋅ 1 = I(2).

Applying �3 d
d�

again gives
�3 ⋅ (3 ⋅ 1�2) = I(4),

or 3!!�5 = I(4). Differentiating again gives5!!�7 = I(6), and by induction we can
show(2k − 1)!!�2k+1 = I(2k). Setting� = 1 completes the analysis.

Note for this problem that while differentiating identities is quite useful, it was not
immediately apparent what identity we needed to use!

Section 3.4: Problem 1: We toss a coin that lands headsp percent of the time a total
of n times, and want to know the expected number and variance of the number of runs.
Remember a run is a set of consecutive heads or tails, and whenwe get a coin of the
opposite value then we start a new run. For example, inHHTTTTHTHT we have 6
runs; we start with a run of two heads, then have a run of four tails, then a run of one
head followed by a run of one tail followed by a run of one head followed by a run of
one tail.

We solve the problem using binary indicator random variables and expectation. For
i ∈ {2, . . . , n}, letXi = 1 if tossi is different than tossi−1, and0 if the two tosses are
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the same. Note theXi’s are all identically distributed Bernoulli random variables with
probability2p(1−p). (To see this is the probability, note we just have to figure out how
likely it is to getHT or TH.) We let

X = 1 +X2 + ⋅ ⋅ ⋅+Xn;

we start with a 1 as the first toss always starts a run. Using linearity of expectation,

E[X ] = 1 + E[X2] + ⋅ ⋅ ⋅+ E[Xn] = 1 + (n− 1)2p(1− p).

Whenever we prove a formula, it is always worthwhile to see ifit is reasonable. Ifp =
0 or p = 1 then there is only one run, as expected. Further, note the expected number
of runs is largest whenp = 1/2 (this is a nice calculus problem, namely showing that
the maximum value ofp(1 − p) happens whenp = 1/2). In this case we getn+1

2
runs,

which is the average ofn (the most runs we could have) and1 (the fewest number of
runs we could have).

How do we compute the variance? Note that we may ignore the+1 term and just
studyX2 + ⋅ ⋅ ⋅+Xn. We have the formula

Var(X2 + ⋅ ⋅ ⋅+Xn) =

n∑

i=2

Var(Xi) + 2

n−1∑

i=2

n∑

j=i+1

CoVar(Xi, Xj).

For notational convenience, setq = 2p(1 − p), and note that eachXi is a Bernoulli
random variable with parameterq. The variance of eachXi is therefore justq(1 − q).
What about the covariance terms? We have

CoVar(Xi, Xj) = E[XiXj]− E[Xi]E[Xj ].

If j ≥ i + 2 thenXj andXi are independent (and thus there covariance is zero), while
if j = i+ 1 they are dependent. In this latter case, we haveE[Xi]E[Xj ] = q2, while

E[XiXj ] = 1⋅
(
p2(1− p) + p(1− p)2

)
+0⋅
(
1−

(
p2(1− p) + p(1− p)2

))
= p(1−p);

the reason this is the answer is that the only way forXiXj = 1 whenj = i+1 is for us
to haveHTH or THT . Therefore

Var(X2 + ⋅ ⋅ ⋅+Xn) = (n− 1)q(1− q) + (n− 1)
(
p(1− p)− q2

)
,

with q = 2p(1 − p). Simple algebra showsp(1 − p) = q
2
; asq ≤ 1/2, p(1 − p) ≥ q2.

Thus our variance is non-negative, and is a constant timesn, which implies our answer
is ‘reasonable’.

Section 3.11: Problem 9: We letX represent the number of heads inn tosses of a
biased coin that is heads with probabilityp (note we are changing notation slightly from
the book). Thus

ℙ(X = k) =

(
n

k

)
pk(1− p)n−k.

We wish to compute the probability thatX is even; thus we need to evaluate

n/2∑

i=0

(
n

2i

)
p2i(1− p)n−2i.
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An elegant way to solve this is to consider

1

2
(x+ y)n +

1

2
(y − x)n.

When we expand this out, only the terms involvingx to an even power survive. Setting
x = p andy = 1− p yields

1

2
1n +

1

2
(1− 2p)n =

n/2∑

i=0

(
n

2i

)
p2i(1− p)n−2i,

and thus the probability thatX is even is1
2
+ (1−2p)n

2
.

As always, our first thought should be: is our answer reasonable? As−1 ≤ 1−2p ≤
1, we see our probability is always between 0 and 1. For our nexttest, it is good to
consider extreme cases. What happens ifp = 0? Then there are never any heads and,
as zero is an even number, we should (and do!) have an even number of heads with
probability 1. If insteadp = 1 then there are an even number of heads ifn is even else
there is an odd number of heads; both of these observations are satisfied by our answer.
Finally, if p = 1/2 then there is precisely a 50% chance of having an even number of
heads. Is this reasonable?YES!To see why this is reasonable, note that it doesn’t matter
what the firstn − 1 tosses are; given any outcomes there, we have a 50% chance that
we have an even number of heads after the last toss (if there isalready an even number
of heads we need a tail, while if there is an odd number of headsthen we need a head,
with each of these events happening with probability one-half).

While this is an interesting problem, to me the really important aspect is seeing
whether or not our answer at the end of the day is reasonable. Learning how to do
these quick tests / checks is a very important skill.

Section 3.11: Problem 13: I have discussed this with a few of you. In the interest of
time, I’m hoping to modify someone’s TeX code here. The key observation is that we
need to use a generalization of the cookie problem.

Section 4.14: Problem 12: A random variable has a chi-square distribution withd
degrees of freedom if it has density

fd(x) =

{
1

2d/2Γ(d/2)
x

d
2
−1e−x/2 if x ≥ 0

0 otherwise,

whereΓ is the Gamma function (the generalization of the factorial function), which is
given by

Γ(s) =

∫ ∞

0

xs−1e−xdx.

We first show that ifX1 ∼ N(0, 1) (which meansX1 is normally distributed with
mean 0 and variance 1) thenX2

1 is a chi-square distribution with 1 degree of freedom.
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Let Y = X2
1 . Then

ℙ(Y ≤ y) = ℙ(X2 ≤ y)

= ℙ (−√
y ≤ X ≤ √

y)

= F (
√
y)− F (−√

y),

whereF is the anti-derivative of the standard normal’s densityf(x) = (2�)−1/2e−x2/2.
At first it looks like we have made no progress, as there is no nice, closed form ex-
pression for the anti-derivative of the standard normal. All is not lost, however. The
reasons this is progress is that the derivative of the cumulative distribution function is
the density. Thus, the density ofY , which we denote byℎ(y), is given by the derivative
of ℙ(Y ≤ y) with respect toy. Using the chain rule, we find

ℎ(y) =
d

dy
[F (

√
y)− F (−√

y)]

= F ′(
√
y)

1

2
√
y
− F ′(−√

y)
−1

2
√
y

= f(
√
y)y−1/2 =

1√
2�

e−y/2y
1
2
−1,

which is the density of a chi-square distribution with 1 degree of freedom (we need the
fact thatΓ(1/2) =

√
�).

What about the sum of the squares of two independent standardnormal distributions?
We again calculate the cumulative distribution function and then differentiate. We find

H(y) = ℙ(X2
1 +X2

2 ≤ y)

=

∫ ∫

x2
1+x2

2≤y

1√
2�

e−x2
1/2

1√
2�

e−x2
2/2dx1dx2

=

∫ ∫

x2
1+x2

2≤y

1

2�
e−(x2

1+x2
2)/2dx1dx2.

We now switch to polar coordinates, settingx1 = r cos �1 andx2 = r sin �2. The change
of variables formula givesdx1dx2 = rdrd�, and we obtain

H(y) =

∫ 2�

�=0

∫ √
y

r=0

1

2�
e−r2/2rdrd�

=

∫ √
y

r=0

e−r2/2rdr

= 1− e−y/2

(the integration is up to
√
y and noty as the radius-squared isy). Now that we know

the cumulative distribution functionH(y), the density is simply the derivative. Thus we
finally obtain

ℎ(y) =
1

2
e−y/2,

which by inspection is the density of the chi-square distribution with two degrees of
freedom.
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Given the amount of work it took to evaluate the sum of the squares of two standard
normal distributions, we are justified in being a little afraid of the calculation for the sum
of n squares. It seems like we will need to know the change of variable formula forn-
dimensional cartesian coordinates ton-dimensional spherical coordinates! Amazingly,
though there are nice formulas for this, we do not need to knowthem because we will
exploit a method known as theTheory of Normalization Constants. We know we can
representx1, . . . , xk through the radiusr andk−1 angles�1, . . . , �k. We have relations
of the form

x1 = rg1(�1, . . . , �k−1)
...

xk = rgk(�1, . . . , �k−1).

We state the Change of Variables Theorem:

Theorem 5.1 (Change of Variables). Let V andW be bounded open sets inℝk. Let
ℎ : V → W be a 1-1 and onto map, given by

ℎ(u1, . . . , uk) = (ℎ1(u1, . . . , uk), . . . , ℎk(u1, . . . , uk)) . (5.1)

Let f : W → ℝ be a continuous, bounded function. Then
∫

⋅ ⋅ ⋅
∫

W

f(x1, . . . , xk)dx1 ⋅ ⋅ ⋅ dxk

=

∫
⋅ ⋅ ⋅
∫

V

f (ℎ(u1, . . . , uk)) J(u1, . . . , uv)du1 ⋅ ⋅ ⋅ duk, (5.2)

whereJ is theJacobian

J =

∣∣∣∣∣∣∣

∂ℎ1

∂u1
⋅ ⋅ ⋅ ∂ℎ1

∂uk
...

. . .
...

∂ℎk

∂u1
⋅ ⋅ ⋅ ∂ℎk

∂uk

∣∣∣∣∣∣∣
. (5.3)

If we are to use this theorem, we would need to compute the Jacobian, which would
require us to know the change of variable functionsfi. Here is how we get around it.
We need to figure out how the volume elementdx1 ⋅ ⋅ ⋅ dxk changes; we clearly have

dx1 ⋅ ⋅ ⋅ dxk = G(r, �1, . . . , �k−1)drd�1 ⋅ ⋅ ⋅d�k−1.

We must have

G(r, �1, . . . , �k−1) = rk−1C(r, �1, . . . , �k−1).

Why? This follows from unit analysis. In two dimensions we have dx1dx2 7→ rdrd�
and in three dimensions it isdx1dx2dx3 7→ r2 sin �1drd�1d�2. Note that we have the
radius to a power one less than the number of variables. This is because the angu-
lar variables are unitless, and thus the units ofdrd�1 ⋅ ⋅ ⋅ d�k−1 are meters (say), while
dx1 ⋅ ⋅ ⋅dxk has units ofmetersk. Thus we need the factorrk−1. We have therefore
shown that there is some complicated functionC such that

dx1 ⋅ ⋅ ⋅ dxk = rk−1C(�1, . . . , �k−1)drd�1 ⋅ ⋅ ⋅ d�k−1.
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We now return to our problem. LetY = X2
1 + ⋅ ⋅ ⋅+X2

k . We again use the theory of
cumulative distribution functions and find

H(Y ) = ℙ(X2
1 + ⋅ ⋅ ⋅+X2

k ≤ y)

=

∫
⋅ ⋅ ⋅
∫

x2
1+⋅⋅⋅+x2

k≤y

1√
2�

e−x2
1/2 ⋅ ⋅ ⋅ 1√

2�
e−x2

k/2dx1 ⋅ ⋅ ⋅dxk

=

∫
⋅ ⋅ ⋅
∫

x2
1+⋅⋅⋅+x2

k≤y

1

(2�)k/2
e−(x2

1+⋅⋅⋅+x2
k)/2dx1 ⋅ ⋅ ⋅ dxk.

We now change variables. We don’t care what the angular integrations are over, so we
just denote those byℓi to ui (for lower and upper bound):

H(y) =

∫ √
y

r=0

∫ u1

�1=ℓ1

⋅ ⋅ ⋅
∫ uk−1

�k−1=ℓk−1

1

(2�)k/2
e−r2/2rk−1C(�1, . . . , �k−1)drd�1 ⋅ ⋅ ⋅ d�k−1.

We integrate over thek−1 angles; the answer is independent ofr andy, and we denote
it by Ck (it does depend on the number of angular variables). Hence

H(y) = Ck

∫ √
y

r=0

e−r2/2rk−1dr.

Let f(r) = Cke
−r2/2rk−1 andF (r) be its anti-derivative. Then

H(y) = F (
√
y)− F (0).

We take the derivative and finally (almost) obtain the density:

ℎ(y) = F ′(
√
y)

1

2
√
y

=
Ck

2
e−y/2y

k
2
−1.

Why do we say ‘almost’ above? The problem is we still have the constantCk, which
we should have determined by doing the angular integrationsbut did not. Thus we do
not have the final answer; fortunately, it is trivial to computeCk now. This seems absurd
– how can we computeCk now? Shouldn’t we have computed it earlier? And, if we are
going to compute it, shouldn’t we figure out what the change ofvariable formulas are
for going from Cartesian to spherical?

The reason we can evaluate it so easily is thatY = X2
1 + ⋅ ⋅ ⋅ + X2

k is a random
variable;therefore its density must integrate to 1! We know from above the formula
for the density of a chi-square random variable withk degrees of freedom; usingy for
the dummy variable it is just (fory ≥ 0)

1

2k/2Γ(k/2)
y

k
2
−1e−y/2.

Note this has exactly the samey-dependence as our part, and thus the normalization
constants must match up!

This is a very important problem, without a doubt the most important on this home-
work assignment. While there are other ways to compute this answer by doing more
direct computations, I prefer this approach as it illustrates the power of the Theory of
Normalization Constants. It’s incredible how it allows us to bypass certain painful com-
putations. This arises all the time in random matrix theory,one of my main research
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interests.

Remark 5.2. If we hadn’t been given the probability density function fora chi-square
with k degrees of freedom, we could still have found the value ofCk by noting thatℎ(y)
integrates to 1. We need to use the Gamma function, which is defined by

Γ(s) =

∫ ∞

0

e−xxs−1dx.

Though we don’t need it, it is worth noting for future problems that the Gamma function
is a generalization of the factorial function. It’s a nice exercise to proveΓ(n + 1) = n!
for n a positive integer – the proof is by integrating by parts.

Returning to our problem, we have

1 =

∫ ∞

0

ℎ(y)dy

=
Ck

2

∫ ∞

0

e−y/2y
k
2
−1dy.

We change variables, lettingx = y/2 sody = 2dx and find

1 =
Ck

2

∫ ∞

0

e−x2
k
2
−1x

k
2
−12dx =

Ck

2
⋅ 2 k

2Γ

(
k

2

)
,

which implies
Ck

2
=

1

2k/2Γ(k/2)
.

Remark 5.3. Whenever we see a new method, it’s worth exploring how far we can push
it. What else can we glean from the above analysis? Implicit in our computation is the
‘surface area’ of then-dimensional sphere! Remember our volume element became

rk−1C(�1, . . . , �k−1)drd�1 ⋅ ⋅ ⋅ d�k−1,

and we showed∫ u1

�1=ℓ1

⋅ ⋅ ⋅
∫ uk−1

�k−1=ℓk−1

1

(2�)k/2
C(�1, . . . , �k−1)d�1 ⋅ ⋅ ⋅ d�k−1 = Ck.

Using our value forCk above, we find
∫ u1

�1=ℓ1

⋅ ⋅ ⋅
∫ uk−1

�k−1=ℓk−1

C(�1, . . . , �k−1)d�1 ⋅ ⋅ ⋅ d�k−1 =
2(2�)k/2

2k/2Γ(k/2)
=

2 ⋅ �k/2

Γ(k/2)
.

We claim that this is the surface area of then-dimensional sphere. Why? We were inte-
grating a function that depended only on the radius; thus we may consider our change
of variables as partitioning then-dimensional sphere of radius

√
y into a collection of

shells of radii ranging from 0 to
√
y. What does this formula give for specificn? We

find

n = 2 : 2�

n = 3 : 4�

n = 4 : 2�2;
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except for the last, the previous two are well-known as the perimeter of the unit circle
and the surface area of the unit sphere.

6. HW #6

Due Thursday October 22 (though you may place in my mailbox anytime up till 10am
on Friday 10/16): Section 3.5: #2. Section 4.4: #5. Section 3.6: #2, #7. Also TeX up
two problems; you must include an answer for the first.

Section 3.5: Problem 2: We tossN coins (each of which is heads with probabilityp),
whereN ∼ Poisson(�), and letX denote the number of heads. What is the probability
mass function ofX? We compute it by calculating the probability of gettingm heads
when we tossn coins, and weight that by the probability of havingn coins to toss. Thus
the answer is

Prob(X = m) =
∞∑

n=m

Prob(X = m∣N = n) ⋅ Prob(N = n)

=
∞∑

n=m

(
n

m

)
pm(1− p)n−m ⋅ �

ne−�

n!

= pme−�
∞∑

n=m

n!

m!(n−m)!
(1− p)n−m�n

n!

=
pme−�

m!

∞∑

n=m

(1− p)n−m�n

(n−m)!
.

We need to be ‘clever’ here to simplify the algebra and get a nice, clean expression, but
note the very large hints. First off, we have a factor ofpme−�/m! outside. This looks
a bit like the mass function of a Poisson, but not quite. Second, the sum above has two
pieces that depend onn−m and one piece that depends onn. This suggests we should
add zero, and write

�n = �n−m+m = �n−m ⋅ �m.

We can then pull the�m outside of the sum and we find

Prob(X = m) =
pm�me−�

m!

∞∑

n=m

(1− p)n−m�n−m

(n−m)!
.

We now letk = n−m so the sum runs from 0 to∞. We also combine the factors, and
obtain

Prob(X = m) =
(p�)me−�

m!

∞∑

k=0

((1− p)�)k

k!

=
(p�)me−�

m!
e(1−p)�
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from the definition ofex as

ex =
∞∑

k=0

xk

k!
.

Simplifying the above expression, we finally obtain

Prob(X = m) =
(p�)me−p�

m!
,

which is the probability mass function for a Poisson random variable with parameter
p�.

It takes awhile to become proficient and fluent with such algebraic manipulations.
A good guiding principle is that we want to manipulate the expressions towards some
known end, which guides us in how to multiply by 1 or add 0. Herethe key step was
writing �n and�n−m�m.

As another example, let’s compute the average value of a random variableY with the
Poisson distribution with parameter�. We have

E[Y ] =

∞∑

n=0

n ⋅ �
ne−�

n!

=

∞∑

n=1

n ⋅ �
ne−�

n!

= e−�

∞∑

n=1

�n

(n− 1)!
.

To finish the evaluation, it is natural to write�n and�n−1�. The reason for this is that
we have a sum where the denominator involvesn− 1, and thus it is helpful to make the
numerator depend onn− 1 as well. If we letk = n− 1, then asn runs from 1 to∞ we
havek runs from 0 to∞, and we find

E[Y ] = e−�
∞∑

k=0

�k ⋅ �
k!

= �e−�
∞∑

k=0

�k

k!
= �e−�e� = �,

where again we made use of the series expansion ofex.

Using this fact, we can find the expected number of heads in theassigned problem
withoutactually proving thatX is given by the Poisson distribution with parameter�p.
To see this, we claim that if

Prob(X = m) =
∞∑

n=m

Prob(X = m∣N = n) ⋅ Prob(N = n),

then

E[X ] =
∞∑

n=0

E[X∣N = n] ⋅ Prob(N = n),
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which leads to

E[X ] =
∞∑

n=0

np ⋅ �
ne−�

n!

= p
∞∑

n=0

n ⋅ �
ne−�

n!
;

the last sum is just the expected value of the Poisson distribution with parameter�,
which we know is�. ThusE[X ] = p�.

Section 4.4: Problem 5: We want to compute the density ofY = eX , whereX ∼
N(0, 1). The latter means thatX has the standard normal distribution, namely that the
density function ofX, fX , satisfies

fX(x) =
1√
2�

e−x2/2.

One very easy way to compute the answer to problems like this is by using cumulative
distribution functions, and noting the probability density is the derivative. LetFX and
FY represent the cumulative distribution functions ofX andY , and letfX and fY
denote their densities. We have

FY (y) = Prob(Y ≤ y)

= Prob(eX ≤ y)

= Prob(X ≤ log y)

= FX(log y).

We now differentiate, using the chain rule.

fY (y) = F ′
X(log y) ⋅ (log y)′ = fX(log y) ⋅

1

y
.

Substituting forfX , we obtain

fY (y) =
1√
2�

1

y
e−

log2(y)
2 .

Section 3.6: Problem 2: We are asked to find the marginal densities for a multinomial
distribution with parametersn andp1, . . . , pt. Without loss of generality we may find
the marginal for the last variable, as the other cases are handled analogously. Note that
for a multinomial, we havep1 + ⋅ ⋅ ⋅ + pt = 1, andn = n1 + ⋅ ⋅ ⋅ + nt. Let Xt be the
random variable for the last variable. If we want to calculate the probability thatXt

equalsm say, we must sum over all the remaining variables (I prefer touse a different
letter for the variable of interest to emphasize that we do not wish to sum over it). As
the sum of allt variables isn and the last variable ism, we are simply summing over
n1 + ⋅ ⋅ ⋅+ nt−1 = n−m. We thus have

Prob(Xt = m) =

(
∑

n1+⋅⋅⋅+nt−1=n−m

n!

n1! ⋅ ⋅ ⋅nt−1!
pn1
1 ⋅ ⋅ ⋅ pnt−1

t−1

)
1

m!
pmt .
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The quantity in parentheses looks a lot like a multinomial sum withn− 1 probabilities;
it is not quite that, as the numerator is supposed to equal thesum of the numbers being
factorialed in the denominator. This is readily fixed. We need the numerator to be
(n−m)! instead ofn!, so we multiply by 1, replacingn! with (n−m)! ⋅ n!/(n−m)!.
This leads us to

Prob(Xt = m) =

(
∑

n1+⋅⋅⋅+nt−1=n−m

(n−m)!

n1! ⋅ ⋅ ⋅nt−1!
pn1
1 ⋅ ⋅ ⋅pnt−1

t−1

)
n!

m!(n−m)!
pmt

= (p1 + ⋅ ⋅ ⋅+ pt−1)
n−m ⋅

(
n

m

)
pm1 ;

however, asp1 + p2 + ⋅ ⋅ ⋅ + pt = 1, we havep1 + ⋅ ⋅ ⋅ + pt−1 = 1 − pt, and thus we
finally obtain the solution

Prob(Xt = m) =

(
n

m

)
pmt (1− pt)

n−m.

There is a more elegant way to see this without resorting to all the computations
above. A multinomial witht probabilitiesp1, . . . , pt models outcomes witht possibil-
ities; for example, we might havet candidates and these are their support levels (or
perhaps we have a strange die and these are the probabilitiesof a face landing up).
When we sum all variables but one, we go from havingt options to two options (either
t or not t); it shouldn’t be a surprise that this collapses to a binomial, as we are now
lumping together all opposition.

Section 3.6: Problem 7: We are given that the joint mass function ofX andY is

fX,Y (x, y) = log10

(
1 +

1

10x+ y

)

for x ∈ {1, . . . , 9} andy ∈ {0, . . . , 9}. As a nice exercise, one should sum this and
make sure it is a mass function. To find the marginal ofX we sum over allY ; in other
words, we want the probabilityX = x and the value ofY is immaterial. Thus

fX(x) =

9∑

y=0

log10

(
10x+ y + 1

10x+ y

)
.

There are two natural ways to do this sum. The first is to uselog10(A/B) = log10A−
log10 B and notice that we have a telescoping sum; the second is to note that the sum of
logarithms is the logarithm of the product. In the latter approach, we find

fX(x) = log

(
9∏

y=0

10x+ y + 1

10x+ y

)
.

The product is
10x+ 1

10x
⋅ 10x+ 2

10x+ 1
⋅ ⋅ ⋅ 10x+ 10

10x+ 9
;
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the products cancel in pairs and all that remains is10x+10
10x

= x+1
x

. Thus the mass function
is

fX(x) = log10

(
1 + x

x

)

if x ∈ {1, . . . , 9} and 0 otherwise. (A similar calculation shows that the sum ofthis
overx equals 1, and thus our proposed function is indeed a probability mass function.)

The mean is just
9∑

x=1

x log10

(
x+ 1

x

)
≈ 3.44024.

Can we somehow approximate this? Our sum is just

log10 (2)− log10 (1)

2 log10 (3)− 2 log10 (2)

3 log10 (4)− 3 log10 (3)
...

9 log10 (10)− 9 log10 (9) .

Note this simplifies; instead of everything in the middle canceling we just get each once,
and the mean is

9 log10(10)−
9∑

k=1

log10 k = log10(10
9)− log10

(
9∏

k=1

k

)
= log10

109

9!
≈ 3.44024.

It is interesting to compare this answer to the average mantissa of a system satisfying
Benford’s law. Remember we may write any positive numberx asx = M10(x)10

k,
whereM10(x) is the mantissa ofx (and lives in[1, 10)) andk is an integer. For example,
1701.24601 = 1.70124601⋅103. The density function for the mantissa is frequently

1
x log 10

. Thus the expected value of the mantissa is

∫ 1

1

0x ⋅ 1

x log 10
dx =

9

log 10
≈ 3.90865,

which not surprising is a bit higher than what we calculated before. The reason it is
higher is that if we only care about the first digit, then a number like 1.9997 counts as a
first digit of 1, even though it is quite close to 2.

7. HW #7

Homework: Due Thursday October 29 (though you may place in mymailbox any-
time up till 10am on Friday 10/30): Section 4.7: #2. Section 3.11: #14. Section 4.14:
#35, #45bc.
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Section 4.7: Problem 2: We are given thatX andY are independent exponential
random variables with parameter1; thus their joint density is

fX,Y (x, y) =

{
e−xe−y if x, y ≥ 0

0 othwerwise.

We now setU = X + Y andV = X
X+Y

; note that0 ≤ V ≤ 1 as0 ≤ X, Y . To find
the joint density ofU andV , we need the Jacobian of the change of variables. We are
given

T (X, Y ) = (U(X, Y ), V (X, Y )) =

(
X + Y,

X

X + Y

)
;

we need to invert this relation and solve forX andY in terms ofU andV . As U =
X + Y , we may rewriteV = X

X+Y
asV = X/U , which meansX = UV . Now that we

knowX in terms ofU andV , we substitute intoU = X + Y to findU = UV + Y , or
Y = U − UV . Thus

T−1(U, V ) = (X(U, V ), Y (U, V )) = (UV, U − UV ).

We can now calculate the JacobianJ , which tells us how the volume element trans-

forms (explicitly,dxdy = ∣J ∣dudv). We have

J =

∣∣∣∣
∂X

∂U

∂Y

∂V
∂X

∂U

∂Y

∂V

∣∣∣∣ =

∣∣∣∣
V U

1− V −U

∣∣∣∣ = −UV − U(1− V ) = −U.

Thus the joint density ofU andV is

fU,V (u, v) =

{
fX,Y (X(U, V ), Y (U, V )) ⋅ U if U ≥ 0 and0 ≤ V ≤ 1

0 otherwise.

To find the marginal ofV we integrate outU . If v ∕∈ [0, 1] the answer is zero, and for
v ∈ [0, 1] we have

fV (v) =

∫ ∞

u=0

fU,V (u, v)du

=

∫ ∞

u=0

e−x(u,v)e−y(u,v) ⋅ udu

=

∫ ∞

u=0

e−uve−(u−uv)udu

=

∫ ∞

u=0

e−uudu = 1.

There are many ways to see the last integral is 1. We can integrate by parts, we can note
it is the mean of the standard exponential (i.e., the exponential with � = 1), or we could
observe that it isΓ(1) which is0! = 1. We have thus shown that

fV (v) =

{
1 if 0 ≤ v ≤ 1

0 otherwise,

which proves thatV is uniformly distributed on[0, 1]. One interesting application is
that if, somehow, we could generate independent values fromthe standard exponential,
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we could combine those to get a uniformly distributed randomvariable.

Section 3.11: Problem 14: Let X1, . . . , Xn be independent Bernoulli random vari-
ables, whereXk ∼ Bern(pk). By linearity of expectation, ifY = X1 + ⋅ ⋅ ⋅+Xn then
we have

E[Y ] = E[X1] + ⋅ ⋅ ⋅+ E[Xn] = p1 + ⋅ ⋅ ⋅+ pn,

asE[Xk] = pk. To see the later, recall the definitions:Xk = 1 with probabilitypk and
0 with probability1− pk, and thusE[Xk] = 1 ⋅ pk + 0 ⋅ (1− pk) = pk.

To compute the variance, we use the variance of a sum of independent random vari-
ables is the sum of the random variables. AsVar(Xk) = pk(1− pk), we find

Var(Y ) =

n∑

k=1

pk(1− pk).

For a given mean ofY , what choices ofpk correspond to the largest possible vari-
ance? We first claim that there must be at least one choice which gives a maximum
variance. To see this, we appeal to a result from real analysis: a continuous function on
a compact set (i.e., a set that is closed and bounded) attainsits maximum and minimum
values.

It turns out to be sufficient to study the special case whenn = 2; before explaining
why, we’ll analyze this case in detail. We give the ‘standard’ proof using techniques
from calculus. While the idea is simple, the algebra quicklygets involved and tedious,
though everything does work out if we’re patient enough. As this much algebra is un-
enlightening, we give an alternate, simpler proof below as well.

First proof: long algebra.We first give the standard proof that one might give after
taking a calculus class. Namely, we convert everything to a function of one variable,
and just plow ahead with the differentiation, finding the critical points and comparing
the values at the critical points to the end-points. While this is exactly what we’ve been
taught to do in calculus, we’ll quickly see the algebra becomes involved and unenlight-
ening, and thus we will givemanyalternate proofs afterwards!

Our situation is that we havep1 + p2 = � and we want to maximizep1(1 − p1) +
p2(1− p2). As p2 = �− p1, we must maximize

g(p1) = p1(1− p1) + (�− p1)(1− �+ p1)

= p1 − p21 + �(1− �)− p1(1− �) + p1�− p21
= 2p1�− 2p21 + �(1− �).

To find the maximum, calculus tells us to find the critical points (the values ofp1 where
g′(p1) = 0) and compare that value to the endpoints (which for this problem would
be p1 = max(0, � − 1) andp1 = min(�, 1)). We haveg′(p1) = 2� − 4p1, so the
critical point isp1 = �/2 which givesg(�/2) = � − �2

2
. Straightforward algebra now

shows that this is larger than the boundary values. Asg(p1) = g(1 − p1), it suffices
to check the lower bounds. Ifp1 = 0 that means0 ≤ � ≤ 1, and in this casep2 = �

so g(0) = �(1 − �) = � − �2, which is clearly smaller thang(�/2) = � − �2

2
.

Similarly if p1 = � − 1 (which implies1 ≤ � ≤ 2) thenp2 = 1 and thusg(� − 1) =
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(�− 1)(2−�) + 0 = −�2 +3�− 2. If this were larger thang(�/2, we would have the
following chain:

−�2 + 3�− 2 > �− �2

2

0 >
�2

2
− 2�+ 2

0 > �2 − 4�+ 4

0 > (�− 2)2,

which is impossible. Thus, after tedious but straightforward algebra, we see the max-
imum value occurs not at a boundary point but at the critical point p1 = �/2, which
impliesp2 = �/2 as well.

We now consider the case of generaln. Imagine we are at the maximum variance
with valuesp1, ⋅ ⋅ ⋅ , pn. If any two of thepk’s were unequal (say thei andj values), by
the argument above (in the case of just two values) we could increase the variance by
replacingpi andpj with pi+pj

2
. Thus the maximum value of the variance occurs when

all are equal.

Second proof: cleaner algebra.As the algebra is a bit tedious, we give another
approach. Imagine (back in then = 2 case) thatp1 ∕= p2. Let’s writep1 = �

2
+ x and

p2 = �
2
− x. We need to show the variance is maximized whenx = 0. If x = 0 the

variance is just�− �2

2
, while for generalx it is

(�
2
+ x
)(

1− �

2
− x
)
+
(�
2
− x
)(

1− �

2
+ x
)

= �− �2

2
− 2x2,

where the last step follows from multiplying everything out. Thus the variance is max-
imized in this case whenx = 0. Note how much faster this approach is. We included
the first approach as this is what we’re taught in calculus, namely find the critical points
and check the boundary points; however, especially in instances where we have some
intuition as to what the answer should be, there are frequently better ways of arranging
the algebra.

Third proof: Lagrange multipliers.We give one more proof, though here the pre-
requisites are more. We use Lagrange multipliers: we want tomaximizef(p1, p2) =
p1(1− p1) + p2(1− p2) subject tog(p1, p2) = p1 + p2 −� = 0. We need∇f = ∇g, so

f(p1, p2) = p1 − p21 + p2 − p22
g(p1, p2) = p1 + p2 − �

∇f(p1, p2) = (1− 2p1, 1− 2p2)

∇g(p1, p2) = (1, 1).

As∇f = �g and∇g(p1, p2) = (1, 1), we find1−2p1 = 1−2p2 or p1 = p2 as claimed.
Note how readily this generalizes ton variables, as in this case we would have

∇f(p1, . . . , pn) = (1− 2p1, . . . , 1− 2pn)

∇g(p1, . . . , pn) = (1, . . . , 1),
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which implies all thepi’s are equal.

Fourth proof: geometry.We give yet another proof in the casen = 2 andp1+p2 = �.
We are trying to maximize

p1(1− p1) + p2(1− p2) = p1 − p21 + p2 − p22 = �− (p21 + p22).

As we are subtractingp21 + p22, we want that to be as small as possible. We may inter-
pret this as the distance of the point(p1, p2) from the origin, given thatp1 + p2 = �.
Geometrically it should be clear that the closest point to the origin is the midpoint of
the line from(0, �) to (�, 0); if not and if we need to resort to calculus, this is at least
an easier problem. Namely, letp2 = �− p1 so we are trying to minimize

�− (p21 + (�− p1)
2) = �− �2 − (2p21 − 2�p1) = �− �2 − 2p1(p1 − �).

We thus need to minimize the value of the quadraticp1(p1 − �); as the roots of this
are 0 and�, the minimum is at the vertex which is at the midpoint of the roots, namely
p1 = �/2. In general, we are trying to minimize the function�− (p21+ ⋅ ⋅ ⋅+p2n) subject
to 0 ≤ p1, . . . , pn ≤ 1 andp1 + ⋅ ⋅ ⋅+ pn = �. This is equivalent to finding the point on
the hyperplane closest to the origin inn-dimensional space, which is given by the point
where they are all equal.

Finally, is this result surprising? If ever apk = 0 or 1, then there would be no vari-
ation in the contribution fromXk. Thus the variance will be smallest when all thepk’s
are in{0, 1}.

Section 4.14: Problem 35: The marriage or secretary problems is one of the more
famous probability exercises. Though the terminology changes based on who is pre-
senting it, the basic idea is as follows. We have a known number, sayn, of objects
(which are frequently candidates for a job, suitors, or preferences). We can always rank
and order any collection of these, and there are no ties. For example, if the candidates
are Alice, Bob, Charlie, Ethelbert and Daneel, our ranking may be Bob, Ethelbert, Da-
neel, Alice and Daneel; this means we prefer Bob over all, butwe do not say by how
much we prefer Bob to Ethelbert.

We are now shown the objects one at a time. The goal is to designa strategy so that
we stop at the best alternative. Unfortunately for us, we areforced to make an accept
/ reject decision on each candidate the moment we see them. Thus, if the first person
we see is Ethelbert, we must then and there choose whether or not to keep Ethelbert,
or take some future unspecified candidate. This is why this isoften called the marriage
problem (once you reject a suitor, it is unlikely they will look favorably on you again).

We desire a strategy that maximizes the chance of ending up with the best candidate.
It would be so easy if we could just see all the candidates and then decide; sadly, we
must make our decision on each candidate immediately upon seeing them. One strategy
is to just always take the first person (or always take the fifth, or eighteenth, et cetera).
This will give us the best candidate with probability1/n, which is not too impressive
for n large. Can we do better?

The following strategy, calledSk, is frequently used. Let us look at the firstk people,
and then we’ll choose the first person we see from this point onward who is better than
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the best we’ve seen in the firstk. How good is this strategy? Clearly it is bad when
the best person is one of the firstk, as then we’ll never take them. This happens with
probabilityk/n, and sok/n of the time we always lose.

If the best person is in positionk + 1, however, we always win. In general, the best
person will be in positionm. We have already analyzed how good our strategy is when
m happens to be in{1, 2, . . . , k, k + 1}; what about otherm? Assumem ≥ k + 1 is
the location of the best person. Our strategySk results in our selecting the best person
if and only if there is no one among peoplek+1, . . . , m− 1 who is better than the best
person in the firstk. For example, imagine there are 100 candidates and we interview
the first ten. Let’s say Julia was the best we saw in the first 10.The best candidate
overall happens to be Zeke, who is in position 27. Thus we willonly end up choosing
Zeke if Julia is better than all the candidates from the 11th to the 26th position, as right
now we are searching for the first person better than Julia. What is the probability that
the best person among the first 26 candidates happens to lie inthe first 10? The answer
is just 10/26.

In general, if the best person is at positionm then we select the best person precisely
when the best person among the firstm− 1 is in the firstk people. The probability the
best of the firstm− 1 is in the firstk is just k

m−1
. We therefore find that the probability

strategySk wins is

Prob(Sk wins) =
n∑

m=k+1

Prob(win∣best at m) ⋅ Prob(best at m)

=
n∑

m=k+1

k

m− 1
⋅ 1
n

=
k

n

n∑

m=k+1

1

m− 1

=
k

n

(
n−1∑

m=1

1

m
−

k−1∑

m=1

1

m

)

=
k

n
(Hn−1 −Hk−1) ,

where

Hℓ =
ℓ∑

m=1

1

m

is theℓth harmonic number, which is approximatelylog ℓ for ℓ large. Thus

Prob(Sk wins) ≈ k

n
log

(
n− 1

k − 1

)
=

log
(
n−1
k−1

)

n
k

.

Forn andk large, we may replacen − 1 with n andk − 1 with k. Thus we are trying
to optimizeg(x) = log x

x
, where1 ≤ x = n

k
≤ n. To find where a function is largest,

we check the critical and endpoints. Lettingg(x) = log x
x

, we see the endpoints give
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g(1) = 0, g(n) = logn
n

. As

g′(x) =
1
x
⋅ x− log x ⋅ 1

x2
,

g′(x) = 0 implies log x = 1 or x = e. Thus the optimalk is aboutn/e, and the
probability we end up with the best is approximately

log
(

n
n/e

)

n
n/e

=
log e

e
=

1

e
≈ 36.8%.

This is amazing. The naive strategy of always taking a fixed position (such as always
take the first candidate) gets the best1/n of the time. If we look at the first1/e percent
and then take the first one better than the best here, we end with the best approximately
1/e percent of the time!

Advanced note.We have to be a little careful, ask must be an integer. Though we
have made some approximations, we see the derivative of the probability of winning is
(1 − log x)/x2, with x = n/k. We see the derivative is positive forx < e and negative
for x > e. Thus the plot looks like an invertedu, and thus the integer maximum is either
the integer immediately to the right or left of the critical point.

There are lots of generalizations. We discuss in detail one below, and leave the others
for the reader to explore.

Getting one of the top two.The next question would be: what strategy gives the
largest probability that we end up with either the best or second best candidate? The
answer turns out to be over 50%! We assume again we have a simple strategy of inter-
viewing the firstk candidates, and afterwards discuss some variants. We’ll denote the
location of the best and second best candidates asm1 andm2. We analyze the problem
in greater detail then needed to get a sense of the answer.

∙ If bothm1, m2 ≤ k we always lose, and this happens with probability
(
k
2

)
/
(
n
2

)
=

k(k−1)
n(n−1)

. We can see this in two ways. The first is there are
(
n
2

)
ways to choose

where to put two people, and
(
k
2

)
ways to put two people in two of the firstk

positions. Alternatively, the probability the first personis in the firstk is k
n
, and

then the probability that the second person is also in the first k is k−1
n−1

(as one
slot has been filled. Ifk again is of the same order of magnitude asn, then this
is a significant probability of failure.

∙ If the best is in the firstk and the second is not, we lose unless the second best
happens to be in the final position. Thus the probability we win in this case is
k
n

1
n
.

∙ If the second best candidate is in the firstk and the best is not, we automatically
win with this strategy! The probability of this happening isk

n
n−k
n

= k
n

(
1− k

n

)
.

If k is of the same order of magnitude asn, then this will be a significant prob-
ability of success.
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∙ Finally, we are reduced to analyzing the case when the top twocandidates are
not in the firstk. The probability of success in this case is

n−1∑

m1=k+1

n∑

m2=m1+1

Prob(win∣{best, second} ={m1, m2})

⋅ Prob({best, second} ={m1, m2})
The probability that the best and second best are in positions {m1, m} is just
2
n

1
n−1

(there are two positions where we may place the best candidate among
the n people, and then one position remaining for the second best candidate;
alternatively, we could view this as1/

(
n
2

)
). What is the probability we win,

given that the best two candidates are at positions{m1, m2}? The argument is
the same as before – we need the best person among the firstm1 − 1 candidates
to be in the firstk candidates. Thus, the probability we win in this case is just

k
m1−1

, and so summing overm1 andm2 we find

n−1∑

m1=k+1

n∑

m2=m1+1

k

m1 − 1

2

n(n− 1)
=

2k

n(n− 1)

n−1∑

m1=k+1

1

m1 − 1

n∑

m2=m1+1

1

=
2k

n(n− 1)

n−1∑

m1=k+1

1

m1 − 1
(n−m1).

We do one of the most common, useful tricks to evaluate the sum– we write
n −m1 asn− 1 − (m1 − 1). The reason we do this is that the denominator is
m1 − 1, and this will lead to nice simplifications. We thus find the probability
of winning, in this case, is

2k

n(n− 1)

[
(n− 1)

n−1∑

m1=k+1

1

m1 − 1
−

n−1∑

m1=k+1

1

]

=
2k

n(n− 1)
[(n− 1)(Hn−2 −Hk−1)− (n− 1− k)]

≈ 2k

n

[
log

n− 2

k − 1
−
(
1− k

n− 1

)]

≈ 2k

n

[
log

n

k
− 1 +

k

n

]
.

Combining all the different probabilities, we see the probability of winning is

Prob(win) ≈ k

n2
+

k

n

(
1− k

n

)
+

2k

n

[
log

n

k
− 1 +

k

n

]
.

Ask will be of the same size asn, thek/n2 term is negligible and may safely be ignored.
If we let x = n/k as before, we see we must optimize the function

g(x) =
1

x

(
1− 1

x

)
+

2

x

(
log x− 1 +

1

x

)
, 1 ≤ x ≤ n.
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The algebra and calculus is easier if instead we lety = k/n = 1/x, as this gives

ℎ(y) = y(1− y) + 2y (− log y − 1 + y) ,
1

n
≤ y ≤ 1.

After some algebra, we see the derivatives are

ℎ′(y) = −3 + 2y − 2 log y, ℎ′′(y) = 2− 2

y
.

Numerically solving givesy ≈ 0.30171, and we easily see this is a maximum. Further,
this is clearly better than the endpoint strategies ofy = 1/n or y = 1, and thus the
maximum probability is wheny ≈ 0.30171. Substituting this into our formula, we find
the probability of winning with this strategy is about 0.51239, or in other words we have
greater than a 50% chance of getting one of the top two candidates!

Let’s summarize our results:

Goal k/n (i.e, percent look at) Probability of winning
Best candidate About1/e ≈ 36.8% About 36.8%
One of top two About 30.2% About 51.2%

What if we applied our original strategy of looking at the first k ≈ n/e people –
what would be the probability that we end up with one of the twobest? Substituting in
y = 1/e gives a probability of1+e

e2
= 1

e
+ 1

e2
. As in this strategy we have a probability of

1/e of ending up with the best person, we must therefore have a probability of 1/e2 of
ending up with the second best. A natural question is what do you expect the probability
to be of ending up with one of the bestℓ people given that we look at the firstn/e
people?

It is also interesting to note that the difference in the probability of getting one of
the top two if we look atn/e ≈ .368n versus looking at.302n is small, namely about
50.3% to 51.2%.

In general, if we want to get one of theℓ best, about how many people should we
interview? If we want one of theℓ best, would it perhaps be better to interviewk people
and then take thesecond(or maybe even the third, the fourth, ...) person better thanthe
best we’ve seen?

Another generalization is in determining the probability that we end with a candidate
in the top� percent. How many people would we interview in this case? What would
our probability of success be?

Finally, we can consider the generalization where we have a quantifiable rankingand
knowledge that the candidates are drawn from a fixed distribution, for example the uni-
form distribution on[a, b], though we do not knowa or b. We then interview the firstk
people and try to estimate the values ofa andb. This method involves order statistics,
which appear in problems ranging from the distribution of sample medians to inferences
in statistics.
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Section 4.14: Problem 45bc: The kurtosis of a random variableX is defined by
kur(X) := E[(X − �)4]/�4, where� is the mean and� is the standard deviation. The
kurtosis measures how much probability we have in the tails.

Let X ∼ Poiss(�), so the mass function isf(n) = �ne−�/n! for n ≥ 0 and 0
otherwise. For a Poisson random variable with parameter�, the mean is� and the
standard deviation is

√
� (or equivalently the variance is�), and thus

kur(X) =

∑∞
n=0(n− �)4�ne−�/n!

�2
.

There are several ways to try and analyze this. One way is to expand out(n − �)4.
Whenever we have ann, we can cancel that with then in n!, and we are left with terms
such asnk�j/(n−1)!. We could then writen as(n−1)+1, expand and do some more
canceling. While this will work, the algebra becomes tedious. The point of this exer-
cise is to see that, while there are numerous ways to solve a problem, it is important to
weigh their advantages and disadvantages. For instance, wecan either make the linear
combinations easy at the cost of more involved differentiation, or we can have easier
combinations at the expense of more tedious differentiation. For this problem, it seems
as if the easiest algebra is when we make the differentiationhard but the combinations
easy. It takes awhile to develop a feel for which approach will be most tractable for a
given problem. This is one reason why we provide so many different solutions.

First solution. One of the best ways to compute the moments of Poisson (and other
discrete) random variables is through differentiating identities. Consider the identity

ex =
∞∑

n=0

xn

n!
.

We could keep applying the operatorx d
dx

to this and obtain the moments, and then by
expanding(n − �)4 piece everything together. A faster way is to apply the operator
−� + x d

dx
four times and then setx = �. If we do that we obtain

(
−�+ x

d

dx

)(
−� + x

d

dx

)(
−� + x

d

dx

)(
−�+ x

d

dx

)
ex
∣∣∣
x=�

=
∞∑

n=0

(n−�)4⋅�
n

n!
.

After some long but standard differentiation, we find the derivative above equals

ex
(
�4 − 4�3x+ 6�2x(1 + x)− 4�x(1 + 3x+ x2) + x(1 + 7x+ 6x2 + x3)

)
;

settingx = � gives

�e� + 3�2e� =

∞∑

n=0

(n− �)4 ⋅ �
n

n!
,

which means the kurtosis is

kur(X) =
e−�

�2

(
�e� + 3�2e�

)
= 3 +

1

�
.
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Second solution.In terms of keeping the algebra simple, it might be easier to expand
(n− �)4 and apply the operatorx d

dx
four times.

Third solution.Another possibility is to applyd/dx four times and then build back.
For example, we start with

ex =
∞∑

n=0

xn

n!
.

Differentiating with respect tox once gives

ex =
∞∑

n=0

n ⋅ x
n−1

n!
.

Takingx = � and multiplying both sides by�e−� gives

�e−� ⋅ e� =

∞∑

n=0

n ⋅ �
ne−�

n!
= E[X ],

which implies the mean is�. If we differentiateex twice with respect tox, we find

ex =

∞∑

n=0

n(n− 1) ⋅ x
n−2

n!
=

∞∑

n=0

n2 ⋅ x
n−2

n!
−

∞∑

n=0

n ⋅ x
n−2

n!
.

Takingx = � again and multiplying both sides by�e−� gives

�2e−�e� =
∞∑

n=0

n2 ⋅ �
ne−�

n!
−

∞∑

n=0

n ⋅ �
ne−�

n!
;

as the last sum is�, we find

E[X2] =
∞∑

n=0

n2 ⋅ �
ne−�

n!
= �2 + �.

Continuing in this way we can getE[X3] andE[X4], and then substitute into

E[(X − �)4] = E[X4]− 4�E[X3] + 6�2
E[X2]− 4�3

E[X ] + �4.
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Fourth solution.For our fourth solution, we use some ideas from linear algebra. We
start, as always, with the identityex =

∑∞
n=0 x

n/n!, and we differentiate this 4 times:

ex =

∞∑

n=0

xn

n!

ex =

∞∑

n=0

n ⋅ x
n−1

n!

ex =

∞∑

n=0

n(n− 1) ⋅ x
n−2

n!

ex =

∞∑

n=0

n(n− 1)(n− 2) ⋅ x
n−3

n!

ex =

∞∑

n=0

n(n− 1)(n− 2)(n− 3) ⋅ x
n−4

n!
.

We takex = � and multiply thekth equation above by�k, and find

e� =

∞∑

n=0

�n

n!

�e� =

∞∑

n=0

n ⋅ �
n

n!

�2e� =

∞∑

n=0

(n2 − n) ⋅ �
n

n!

�3e� =

∞∑

n=0

(n3 − 3n2 + 2n) ⋅ �
n

n!

�4e� =

∞∑

n=0

(n4 − 6n3 + 11n2 − 6n) ⋅ �
n

n!
.

We want to evaluate

e−�

�2

∞∑

n=0

(n− �)4 ⋅ �
n

n!
=

e−�

�2

∞∑

n=0

(n4 − 4n3�+ 6n2�2 − 4n�3 + �4) ⋅ �
n

n!
.

We writen4 − 4n3�+ 6n2�2 − 4n�3 + �4 as a linear combination of the terms above.
This is just solving a system of equations (for example, we may regardn4 − 4n3� +
6n2�2 − 4n�3 + �4 as the vector(1,−4, 6,−4, 1, 0), with the last component 0 as there
is no constant term). Solving the associated system of equations gives

n4 − 4n3�+ 6n2�2 − 4n�3 + �4
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equals

1 ⋅ (n4 − 6n3 + 11n2 − 6n)

+ (6− 4�) ⋅ (n3 − 3n2 + 2n)

+ (7− 12�+ 6�2) ⋅ (n2 − n)

+ (1− 4�+ 6�2 − 4�3) ⋅ n
+ a4 ⋅ 1

and thus the kurtosis is

e−�

�2

[
1 ⋅ �4e� + (6− 4�)�3e� + (7− 12�+ 6�2)�2e� +

(1− 4�+ 6�2 − 4�3)�e� + 1e�
]

=
1

�2

[
3�2 + �

]
= 3 +

1

�
.

ConsiderX ∼ Exp(�), which has mean and standard deviation both equal to1/�.
The density ofX is fX(x) = �e−�x for x ≥ 0 and 0 otherwise, and thus we have

kur(X) =

∫∞
0

(
x− 1

�

)4
�e−x�dx

1
�4

=

∫ ∞

0

(�x− 1)4e−�x�dx

=

∫ ∞

0

(u− 1)4e−udu.

There are several ways to proceed at this point. We can integrate by parts or we can
expand out. We choose to expand out, as we will recognize the answer. We find

kur(X) =

∫ 1

0

(u4 − 4u3 + 6u2 − 4u+ 1)e−udu

=

∫ 1

0

u4e−udu− 4

∫ 1

0

u3e−udu+ 6

∫ 1

0

u2e−udu− 4

∫ 1

0

ue−udu+

∫ 1

0

e−udu

= Γ(5)− 4Γ(4) + 6Γ(3)− 4Γ(2) + Γ(1),

where we are using

Γ(s) =

∫ ∞

0

e−uus−1du, ℜe(s) > 0.

As Γ(n+ 1) = n! for n a positive integer, we have

kur(X) = 4!− 4 ⋅ 3! + 6 ⋅ 2!− 4 ⋅ 1! + 0! = 9.
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8. HW #8

Due Thursday November 5: Section 5.1: #1c. Section 1.8: #23 (can you say any-
thing about this sum whenn is large?). Section 4.9: #6. Additional Problems: (1) Let
X1, . . . , Xn be independent random variables having the standard exponential distribu-
tion. Using convolutions, find the density forX1 +X2; more generally, find the density
for X1 + ⋅ ⋅ ⋅ +Xn. (2) Find the Fourier transforms off andg, wheref is the density
of the uniform distribution on[0, 1] andg is the density of the uniform distribution on
[−1/2, 1/2]. (3) LetX1, . . . , Xn ben independent standard normals. Using convolu-
tions, showX2

1 +X2
2 has a chi-square distribution with 2 degrees of freedom, andmore

generally thatX2
1 + ⋅ ⋅ ⋅+X2

n has a chi-square distribution withn degrees of freedom.

Section 5.1: Problem 1c: We want to find the generating function forf(m) = (1 −
p)p∣m∣/(1 + p) for m ∈ {. . . ,−1, 0, 1, . . . }. The generating function is defined by
G(s) = E[sX ], so in our case we have

G(x) = E
[
sX
]

=

∞∑

m=−∞
sm ⋅ (1− p)p∣m∣

1 + p

=
1− p

1 + p

∞∑

m=−∞
smp∣m∣

=
1− p

1 + p

[ ∞∑

m=0

(sp)m +

∞∑

m=0

(p/s)m − 1

]

=
1− p

1 + p

[
1

1− sp
+

1

1− (p/s)
− 1

]
.

So long as∣sp∣ < 1 then the first sum converges, while the second sum converges if
∣p/s∣ < 1. Combining these, we see the generating functionG(s) is well-defined so
long asp < ∣s∣ < 1/p. Unlike previous problems, instead of having convergence in a
ball about the origin we now have convergence in an annular (or donut) region.

To calculate the mean and the variance, we use the following formulas:

E[X ] = G′
X(1), Var(X) = G′′

X(1) +G′
X(1)−G′

X(1)
2.

We now see the power of generating functions; we can differentiateGX(s) easily, and
this is much better than evaluating sums. FortunatelyGX(s) is defined ats = 1 (which,
providedp < 1, is always inside the annular region). We have

E[X ] = G′
X(1) = 0.

While we could perform the algebra to computeG′
X(1), there is no need if we only care

about the mean. The reason is the probability distribution is symmetric aboutm = 0. It
is worth recording that

GX(s) =
1− p

1 + p

[
p

(1− sp)2
− p

(1− (p/s))2s2

]
.
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To calculate the variance, the only additional informationwe need isG′′
X(1), which

is

G′′(1) =
1− p

1 + p

[
2p2

(1− ps)3
+

2p2

(1− (p/s))3s4
+

2p

(1− (p/s))2s3

]

=
1− p

1 + p
⋅ 2p(1 + p)

(1− p)3

=
2p

(1− p)2
.

Additional problem (1). We are given thatX1, . . . , Xn are independent standard ex-
ponential random variables. Thus the density function for each isf(x) = e−x for x ≥ 0
and0 otherwise. The density forX1 +X2 is simply the convolution off with itself, or

fX1+X2(x) = (f ∗ f)(x)

=

∫ ∞

−∞
f(t)f(x− t)dt.

As f vanishes whenever it is evaluated at a negative number, the factorf(t) restricts the
integration to be from0 to ∞. The second factor,f(x− t), is zero unlesst ≤ x. Thus
for x ≥ 0 we have

fX1+X2(x) =

∫ x

0

e−te−(x−t)dt

=

∫ x

0

e−xdt

= xe−x.

As a quick check, we test to make surexe−x is a probability distribution. It is non-
negative on[0,∞), and it does integrate to 1 (it is justΓ(2) = 1!, or alternatively we
could just integrate by parts).

One of the most common mistakes made by probability studentsis to forget that the
densityfXi

(x) is e−xi only whenxi ≥ 0; in other words, it is common to mistakenly use
this as the definition for allx. This cannot be right; note that asxi → −∞ the factor
e−xi tends to infinity, and is not integrable. In summary, a commonpitfall is to say that

fX1+X2(x) =

∫ ∞

0

e−t ⋅ e−(x−t)dt =

∫ ∞

0

e−xdt = e−x

∫ ∞

0

dt,

and clearly there is no way this integral will be finite!
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Let’s calculate the density forX1 + X2 + X3. As convolution is associative, the
density is just(f ∗ f) ∗ f , so arguing as above we find

fX1+X2+X3(x) =

∫ ∞

−∞
fX1+X2(t)f(x− t)dt

=

∫ x

0

te−te−(x−t)dt

=

∫ x

0

te−xdt

= e−xx
2

2
.

Let’s do one more to make the pattern clear, and then we’ll generalize our observa-
tions and prove them by induction. ForX1+⋅ ⋅ ⋅+X4 we have the density is(f∗f∗f)∗f ,
and thus

fX1+⋅⋅⋅+X4(x) =

∫ ∞

−∞
fX1+X2+X3(t)f(x− t)dt

=

∫ x

0

t2

2
e−te−(x−t)dt

= e−x

∫ x

0

t2

2

= e−xx
3

3!
.

Based on the above calculations, we conjecture that the sum of n independent stan-
dard exponentials has density functione−xxn/n!. We now prove this by induction. We
have done the basis case above. Assuming it holds forn, we must show it holds for
n + 1. But

fX1+⋅⋅⋅+Xn+1(x) =

∫ ∞

−∞
fX1+⋅⋅⋅+Xn(t)f(x− t)dt

=

∫ x

0

tn

n!
e−te−(x−t)dt

= e−x

∫ x

0

tn

n!

= e−xx
n+1

n!
.

This is the Gamma distribution, and is a famous, important density.

Additional problem (2). We calculate the Fourier transform of the uniform density on
[0, 1]. We have

f̂(�) =

∫ ∞

−∞
f(x)e−2�ix�dx =

∫ 1

0

e−2�ix�dx.
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If � = 0 then the answer is clearly just 1. For other�, we use the fact thate−i� = cos �
− i sin �. For us, we have

e−2�ix� = cos(2�x�)− i sin(2�x�),

and hence

f̂(�) =

∫ 1

0

[cos(2�x�)− i sin(2�x�)] dx

=

∫ 1

0

cos(2�x�)dx− i

∫ 1

0

sin(2�x�)dx

=
sin(2�x�)

2��

∣∣∣∣∣

1

0

+ i
cos(2�x�)

2��

∣∣∣∣∣

1

0

=
sin(2��)

2��
+ i

(
cos(2��)

2��
− 1

2��

)
.

Consider now the uniform distribution on[−1/2, 1/2]. The only thing that changes
in the above analysis is the last step, where now instead of evaluating the integrals at0
and1 we evaluate at−1/2 and1/2. We thus find

ĝ(�) =
sin(2�x�)

2��

∣∣∣∣∣

1/2

−1/2

+ i
cos(2�x�)

2��

∣∣∣∣∣

1/2

−1/2

=
sin(��)

��
;

note how much cleaner the answer is in this case.

Additional problem (3). Recall a random variable has a chi-square distribution withd
degrees of freedom if it has density

fd(x) =

{
1

2d/2Γ(d/2)
x

d
2
−1e−x/2 if x ≥ 0

0 otherwise,

whereΓ is the Gamma function (the generalization of the factorial function), which is
given by

Γ(s) =

∫ ∞

0

xs−1e−xdx.

We know that ifXi has the standard normal distribution, thenX2
i has the chi-square

distribution with 1 degree of freedom. We writecd for the normalization constant of the
chi-square distribution withd degrees of freedom.

We first consider the case of the sum of two chi-square distributions, each with 1
degree of freedom. The density is

(f1 ∗ f1)(x) =

∫ ∞

−∞
f1(t)f1(x− t)dt

=

∫ x

0

c1t
−1/2e−t/2 ⋅ c1(x− t)−1/2e−(x−t)/2dt.
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The range of integration stops atx asf1(x − t) is zero if the argument is negative.
Simplifying yields

(f1 ∗ f1)(x) = c21e
−x/2

∫ x

0

t−1/2(x− t)−1/2dt.

There are two ways to proceed. The first is to try and evaluate this integral directly. It
may be possible to do this through brute force, but it won’t bepleasant. Note that the
final answermustbe a probability distribution. Thus,we do not need to figure out the
integral exactly; it suffices to determine thex dependence!The reason is that if we know
thex-dependence, then we get the normalization constant by integrating(f1 ∗ f1)(x)
with respect tox and setting the result equal to 1.

Thus let us make the following clever change of variables: set t = ux anddt = xdu;
ast runs from 0 tox we haveu runs from 0 to 1. This yields

(f1 ∗ f1)(x) = c21e
−x/2

∫ 1

0

(xu)−1/2(x− xu)−1/2xdu

= c21e
−x/2 x

x1/2x1/2

∫ 1

0

u−1/2(1− u)−1/2du.

Theu-integral can be done in closed form, as it is proportional tointegrating the Beta
density (with parameters� = � = 1/2); however, there is no need! LettingC1 denote
the value of theu-integral, we see

(f1 ∗ f1)(x) =

{
C1c21e−x/2 if x ≥ 0

0 otherwise.

For this to be a probability distribution, the integral mustbe 1, which impliesC1c21 =
1/2. Again, we emphasize that while we could have computedC1 by brute force, there
was no need. To show that we have a chi-square distribution with 2 degrees of freedom,
it suffices to show that we have the correctx-dependence, as then the normalization
constants must match.

We now turn to the general case. We proceed by induction. We have already handled
the base case; now we must showX2

1 + ⋅ ⋅ ⋅ + X2
n+1 is a chi-square distribution with

n+1 degrees of freedom. By inductionX2
1 + ⋅ ⋅ ⋅+X2

n is a chi-square distribution with
n degrees of freedom. Calling the normalization constantscn andc1 again, we see that

(f1 ∗ ⋅ ⋅ ⋅ ∗ f1)(x) =

∫ ∞

−∞
fn(t)f1(x− t)dt

=

∫ x

0

cnt
n
2
−1e−t/2 ⋅ c1(x− t)−

1
2 e−(x−t)/2dt.
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The exponential factors combine to givee−x/2, and we again sett = ux anddt = xdu,
and find

(f1 ∗ ⋅ ⋅ ⋅ ∗ f1)(x) = cnc1e
−x/2

∫ 1

0

(xu)
n
2
−1(x− xu)−

1
2xdu

= cnc1e
−x/2x

n
2
−1x− 1

2x

∫ 1

0

u
n
2
−1(1− u)−

1
2du

= cnc1x
n+1
2

−1e−x/2

∫ 1

0

u
n
2
−1(1− u)−

1
2du. (8.1)

Again, it is possible to evaluate theu-integral in closed form (it is essentially the integral
of a Beta density with parametersn/2 and1/2); however, all that matters is that it has
nox-dependence. Calling this integralCn, we find

(f1 ∗ ⋅ ⋅ ⋅ ∗ f1)(x) =

{
Cncnc1x

n+1
2

−1e−x/2 if x ≥ 0

0 otherwise.

Note thex-dependence is exactly that of the chi-square distributionwith n + 1 degrees
of freedom, and thus the normalization constantCncnc1 must equal the normalization
constant of the chi-square withn + 1 degrees of freedom. We emphasize again that we
could have computed this constant by brute force, but that there was again no need!

For completeness, we state what the Beta density is. Letu ∈ [0, 1] and�, � > 0.
Then the Beta distribution with parameters� and� is given by the density

g�,�(u) =
Γ(� + �)

Γ(�)Γ(�)
u�−1(1− u)�−1

for u ∈ [0, 1] and0 otherwise. As this is a probability distribution, it integrates to 1 and
thus ∫ 1

0

u�−1(1− u)�−1du =
Γ(�)Γ(�)

Γ(� + �)
.

This is the integral we need if we want to do the integrals above.

9. HW #9

Due Thursday November 12 (though you may place in my mailbox anytime up till
10am on Friday 11/13): (1) LetX1, . . . , Xn be iidrv random variables with the geo-
metric distribution with parameterp, soProb(Xi = k) = (1 − p)k−1p for k a positive
integer and 0 otherwise. LetX = (X1 + ⋅ ⋅ ⋅ + Xn)/n. FindE[X ], Var(X), and the
moment generating function ofY = (X−E[X ])/StDev(X). (2) Calculate the Laplace
transforms of the following densities (a) an exponential distribution with parameter�;
(b) uniform distribution on[a, b] with a ≥ 0. (3) For each function compute the com-
plex derivative atz = 0 or prove the function is not differentiable there: (a)f(z) = z;
(b) f(z) = z2; (c) f(z) = z, where ifz = x + iy thenz = x − iy. Recall that the
derivative is defined by

f ′(z) = lim
ℎ→0

f(z + ℎ)− f(z)

ℎ
,
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whereℎ = ℎ1 + iℎ2 tends to0 + 0i along any path but isnever0 in any calculation.
(4) Prove the product rule of differentiation, namely that if f andg are differentiable
then the derivative off(x)g(x) is f ′(x)g(x) + f(x)g′(x). Using this, induction and the
fact that the derivative ofx is 1, compute the derivative ofxn for any positive integern.
Note that this proofbypasseshaving to use the binomial theorem to expand(x + ℎ)n!
(5) Calculate the limits as(x, y) → (0, 0), or prove the limit does not exist: (a)

lim
(x,y)→(0,0)

x3 + 1701x2y2 + 24601y4

x2 + y2
;

(b)

lim
(x,y)→(0,0)

[
x8 + y8

x2 + y8
− x10 + y10

x4 + y10

]
.

(Extra Credit) Prove or disprove: notation as in the first problem, the MGF ofY con-
verges to the MGF of the standard normal asn tends to infinity.

Problem 1. To compute the expected value, we use the expected value of a sum is the
sum of the expected values. Thus

E[X ] = E[(X1 + ⋅ ⋅ ⋅+Xn)/n]

=
1

n
E[X1 + ⋅ ⋅ ⋅+Xn]

=
1

n

n∑

i=1

E[Xi]

=
1

n
⋅ n1

p
=

1

p
,

as the mean of a geometric random variable with parameterp is just 1/p. While we
have seen this result before, it is easily proved using moment generating functions; as
we will need to work with these functions anyway for the rest of the problem, let’s take
a moment and rederive this result.
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Let X be a random variable with the geometric distribution with parameterp. Then
its moment generating function is

MX(t) = E[etX ]

=
∞∑

k=1

etkProb(X = k)

=

∞∑

k=1

etk(1− p)k−1p

=
p

1− p

∞∑

k=1

(et(1− p))k

=
p

1− p

∞∑

k=0

(et(1− p))k − p

1− p

=
p

1− p

1

1− (et(1− p))
− p

1− p
.

One of the most useful properties of moment generating functions is thatE[Xℓ] =

dℓMX(t)/dt
ℓ
∣∣∣
t=0

; in particular, the mean is simplyE[X ] = M ′
X(0), so

M ′
X(t) =

p

1− p

et(1− p)

(1− et(1− p))2
, M ′

X(0) =
1

p
.

There are several ways of doing the algebra; we could use the formula for a geometric
series starting atn = 1 and not starting atn = 0 which required us to subtract off the
n = 0 term. Why do we prefer this? The reason is that the resulting expression only
hast dependence in the denominator; if we started the sum atn = 1 we would havet
dependence in both the numerator and denominator, which means we have to use the
quotient rule to findM ′

X(t).
Knowing the moment generating function ofX whenX ∼ Geom(p) simplifies the

remaining parts of the problem. For the variance, we have

Var(X) = Var((X1 + ⋅ ⋅ ⋅+Xn)/n)

=
1

n2

n∑

i=1

Var(Xi)

=
1

n2
⋅ nVar(X)

=
1

n2
⋅ n1− p

p2
=

1− p

np2
,

where we usedVar(X) = (1 − p)/p2. We can easily derive this from the moment
generating function. AsE[X2] = M ′′

X(0), we have

Var(X) = E[X2]− E[X ]2 = M ′′
X(0)−M ′

X(0)
2.
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We’ve already computedM ′
X(0), and thus only need to findM ′′

X(0). We have

M ′′
X(t) =

d

dt

(
p

1− p

et(1− p)

(1− et(1− p))2

)

=
p

1− p

(
et(1− p)

(1− et(1− p))2
+

2e2t(1− p)2

(1− et(1− p))3

)

M ′′
X(1) =

p

1− p

(
1− p

p2
+

2(1− p)2

p3

)

=
1

p
+

2(1− p)

p2

=
p+ 2− 2p

p2
=

2− p

p2
.

Therefore the variance is

Var(X) = M ′′
X(0)−M ′

X(0)
2 =

2− p

p2
− 1

p2
=

1− p

p2
.

The last part of the problem asks us to compute the moment generating function of
Y = (X − E[X ])/StDev(X). Let

b = E[X ] =
1

p

a = StDev(X) =

√
1− p

np2
=

√
1− p

p
√
n

.

In the arguments below, we constantly useM�W+�(t) = e�tMW (�t). We have

MY (t) = M(X−b)/a(t)

= MX/a−b/a(t)

= e−bt/aMX(t/a)

= e−bt/aM(X1+⋅⋅⋅+Xn)/n(t/a)

= e−bt/aMX1+⋅⋅⋅+Xn

(
t

an

)

= e−bt/aMX1

(
t

an

)
⋅ ⋅ ⋅MXn

(
t

an

)

= e−bt/aMX

(
t

an

)n

.

Earlier, however, we showed that

MX(t) =
p

1− p

1

1− (et(1− p))
− p

1− p
.

Substituting yields

MY (t) = e−bt/a

(
p

1− p

)n(
1

1− (et/an(1− p))
− 1

)n

,
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with

b = E[X ] =
1

p

a = StDev(X) =

√
1− p

np2
=

√
1− p

p
√
n

.

Problem 2. We first compute the Laplace transform of the standard exponential, which
has density functionf(x) = e−x for x ≥ 0 and 0 otherwise. We have

(ℒf)(s) =

∫ ∞

0

f(t)e−stdt

=

∫ ∞

0

e−te−stdt

=

∫ ∞

0

e−(1+s)tdt

=
1

1 + s

∫ ∞

0

e−(1+s)t(1 + s)dt

=
1

1 + s
,

so long ass > −1 (we need this in order to ensure that the argument of the exponential
is negative, as otherwise the integral diverges).

We now compute the Laplace transform of the uniform distribution on [a, b] with
a ≥ 0. The density function isf(x) = 1

b−a
if a ≤ x ≤ b and 0 otherwise. Thus

(ℒf)(s) =

∫ ∞

0

f(t)e−stdt

=

∫ b

a

1

b− a
e−tsdt

=
1

b− a

∫ b

a

e−tsdt

=
1

(b− a)s

∫ b

a

e−tssdt

=
−1

(b− a)s

(
e−bs − e−as

)

=
e−as − e−bs

(b− a)s
.

Problem 3. While the problem only asks whether or not the functions are differentiable
at z = 0 (and if so what the derivative is), we consider the more general case as the
argument is essentially the same. We letℎ = ℎ1 + iℎ2 below, withℎ → 0 + 0i. For (a),
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we havef(z) = z so

lim
ℎ→0

f(z + ℎ)− f(z)

ℎ
= lim

ℎ→0

z + ℎ− z

ℎ
= lim

ℎ→0
1 = 1;

thus the function is complex differentiable and the derivative is 1.
For (b), we havef(z) = z2 and

lim
ℎ→0

f(z + ℎ)− f(z)

ℎ
= lim

ℎ→0

(z + ℎ)2 − z2

ℎ

= lim
ℎ→0

z2 + 2zℎ + ℎ2 − z2

ℎ

= lim
ℎ→0

2zℎ + ℎ2

ℎ
= lim

ℎ→0
(2z + ℎ)

= lim
ℎ→0

2z + lim
ℎ→0

ℎ

= 2z + 0 = 2z.

We are using the following properties of complex numbers:ℎ/ℎ = 1 and2zℎ + ℎ2 =
(2z + ℎ)ℎ.

For (c), we havef(z) = z, and thus

lim
ℎ→0

f(z + ℎ)− f(z)

ℎ
= lim

ℎ→0

z + ℎ− z

ℎ
.

Unlike the other limits, this one is not immediately clear. Let us writez = x + iy,
ℎ = ℎ1 + iℎ2 (and of coursez = x− iy, ℎ = ℎ1 − iℎ2). We therefore find the limit is

lim
ℎ→0

x− iy + ℎ− iℎ2 − (x− iy)

ℎ1 + iℎ2

= lim
ℎ→0

ℎ1 − iℎ2

ℎ1 + iℎ2

.

This limit does not exist; depending on howℎ → 0 we obtain different answer. For
example, ifℎ2 = 0 (traveling along thex-axis) the limit is justlimℎ→0 ℎ1/ℎ1 = 1, while
if ℎ1 = 0 (traveling along they-axis) the limit is justlimℎ→0−iℎ2/iℎ2 = −1. Thus this
function is not complex differentiable anywhere.

If we continue to argue along these lines, we find that a function is complex differ-
entiable if thex andy dependence is in a very special form, namely everything is a
function of z = x + iy. In other words, we do not allow our function to depend on
z = x − iy. If we could depend on both, we could isolate outx (which isz + z) and
y (which is (z − z)/i). We can begin to see why being complex differentiable once
implies that we are complex differentiable infinitely often, namely because of the very
special dependence onx andy.
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Problem 4. Let A(x) = f(x)g(x). Then

A′(x) = lim
ℎ→0

A(x+ ℎ)− A(x)

ℎ

= lim
ℎ→0

f(x+ ℎ)g(x+ ℎ)− f(x)g(x)

ℎ

= lim
ℎ→0

f(x+ ℎ)g(x+ ℎ)-f(x)g(x+h)+f(x)g(x+h) − f(x)g(x)

ℎ

= lim
ℎ→0

[
f(x+ ℎ)− f(x)

ℎ
g(x+ ℎ) + f(x)

g(x+ ℎ)− g(x)

ℎ

]

= lim
ℎ→0

f(x+ ℎ)− f(x)

ℎ
lim
ℎ→0

g(x+ ℎ) + lim
ℎ→0

f(x) lim
ℎ→0

g(x+ ℎ)− g(x)

ℎ
= f ′(x)g(x) + f(x)g′(x).

We proceed by induction to prove the derivative ofxn is nxn−1 for n a positive
integer. The base case is clear (and we are in fact told we may assume this). Thus we
are left with proving the inductive step, namely given that the derivative ofxn is nxn−1

we must prove the derivative ofxn+1 is (n+1)xn. Letf(x) = xn andg(x) = x. We use
the product rule; by inductionf ′(x) = nxn−1 (and of courseg′(x) = 1). The product
rule tells us that

(xn+1)′ = f ′(x)g(x) + f(x)g′(x) = nxn−1 ⋅ x+ xn ⋅ 1 = (n+ 1)xn.

Thus, although initially it appears that we need the binomial theorem to compute the
derivative ofxn, we can actually bypass it by using induction and the productrule!

As an aside, the derivative ofxr for generalr ∈ ℝ cannot be obtained by arguments
such as those above. We can find the derivative ofℎ(x) = xp/q by using the power rule
applied toA(x) = ℎ(x)q = xp, and then solving forℎ′(x). The algebra starts with

A′(x) = qℎ(x)q−1ℎ′(x) = pxp−1, ℎ(x) = xp/q.

We now isolateℎ′(x), and find

ℎ′(x) =
pxp−1

qℎ(x)q−1
=

p

q

xp−1

x(p/q)(q−1)
=

p

q
xp−1− p(q−1)

q =
p

q
x

p
q
−1.

For generalr, we need to writexr = exp(r ln x) and use the chain rule. Why do we
need to do this? We can interpret(x+ ℎ)n whenn is an integer, but what does it mean
to have(x+ ℎ)

√
2?

Problem 5. For (a), the limit is zero. The easiest way to see this is to convert to polar
coordinates, withx = r cos � andy = r sin �. As (x, y) → (0, 0), we haver → 0. The
numerator is bounded byr3+1701r4+24601r4, while the denominator isr2. Thus the
ratio of the numerator over the denominator is at mostr+26302r2, which tends to zero
asr → 0. For (b), we must consider the following limit:

lim
(x,y)→(0,0)

[
x8 + y8

x2 + y8
− x10 + y10

x4 + y10

]
.



MATH 341: PROBABILITY: FALL 2009 COMMENTS ON HW PROBLEMS 55

Let’s check some special paths(f(ℎ), g(ℎ)) with ℎ → 0 to build intuition. We always

assumea ∕= 0 below.

x y Difference of Ratios Limit asℎ → 0

ℎ 0 ℎ6 − ℎ6 0

0 ℎ 1− 1 0

ℎ aℎ (1+a
8)

1+a8ℎ6ℎ
6 − (1+a

10)
1+a10ℎ6ℎ

6 0

ℎ2 0 ℎ12 − ℎ12 0

0 ℎ2 1− 1 0

ℎ aℎ2 1+a8ℎ8

1+a8ℎ12ℎ
6 − 1+a10ℎ10

1+a10ℎ12ℎ
6 0

aℎ2 ℎ a16ℎ8+1
a4+ℎ4 ℎ4 − a20ℎ10+1

a8+ℎ8 ℎ12 0

The evidence sure seems to suggest that the limit is zero. It is zero if we approach
the origin along any line containing the origin, or on any pure parabolay = mx2 or
x = my2, as well as quadratically decaying along thex or y-axes. Unfortunately, we
cannot prove a limit exists by checking a fixed number of paths; we can only prove the
limit exists by checkingall possible paths, or by finding a path where the limit does not
exist. For example, we must also consider the path in Figure 1.

It turns out that, if we investigate cubic paths, we see the limit does not exist. Specif-
ically, consider the pathx = y3, or more specifically,(x, y) = (ℎ3, ℎ). This leads
to

lim
ℎ→0

[
ℎ24 + ℎ8

ℎ6 + ℎ8
− ℎ30 + ℎ10

ℎ12 + ℎ10

]
;

the first term looks likeℎ8/ℎ6 = ℎ2 for smallℎ, while the second looks likeℎ10/ℎ10 =
1. Thus the limit along this path is 1, which does not equal the previous limits of zero;
thus this function does not have a limit as(x, y) → (0, 0).

We leave it as a fun exercise to the reader to think about how this strange example
was generated, and to come up with a related example that has alimit among cubics but
not among quartics.

Remember that for∣ℎ∣ < 1, ∣ℎn∣ > ∣ℎm∣ if n < m (for example,∣ℎ4∣ > ∣ℎ8∣). Thus
for smallℎ the numerators and denominators are controlled by the smaller powers ofℎ.
One way we can analyze these quantities is factoring:

lim
ℎ→0

ℎ24 + ℎ8

ℎ6 + ℎ8
= lim

ℎ→0

ℎ8

ℎ6

ℎ16 + 1

1 + ℎ2
= lim

ℎ→0
ℎ2 1 + ℎ16

1 + ℎ2
= lim

ℎ→0
ℎ2 lim

ℎ→0

1 + ℎ16

1 + ℎ2
= 0 ⋅ 1,
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FIGURE 1. Path(r cos(1/r), r sin(1/r)) as r → 0. If the limit ex-
ists, then we must get the same limit along this path as along the more
standard paths such as straight lines, quadratics, et cetera.

where we use the limit of a product is the product of the limits(provided at least one
exists).

The behavior in this problem is strange – the limit exists andis zero along any straight
line or the standard parabolas, but not along a cubic. How canwe reconcile this? The
explanation is as follows: while the limit is zero along eachstraight line, the rate of
convergence depends on the steepness of the line. In particular, if we go along the path
x = y3, we cut through these lines so quickly that we see a differentbehavior. A plot
helps; see Figure 2.

To try and get a sense, we look at how the limit exists along various lines in Figure 3.
Looking at these plots, we can see the difference in behavior, and if we choose a certain
path(x, g(x)) we won’t have a limit of zero.

Extra Credit Problem. The moment generating function of the standard normal iset
2
,

so the logarithm of the standard normal’s moment generatingfunction ist2. Knowing
this, it is natural to try and show thatlogMY (t) → t2 asn → ∞. Another reason why
it is natural to look at logarithms is thatMY (t) involves factors to thenth power, and
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-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

FIGURE 2. Contour plot ofx
8+y8

x2+y8
− x10+y10

x4+y10
.
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-0.1

FIGURE 3. Plots ofg(x, y) = x8+y8

x2+y8
− x10+y10

x4+y10
along the lines(ℎ, 2ℎ),

(ℎ, 3ℎ) and(ℎ, 4ℎ). Thex-axis isℎ and they-axis is the value ofg. We
can see that while these paths all have the same limit, they approach that
limit differently.

taking logarithms brings down then. We have

logMY (t) = log

[
e−bt/a

(
p

1− p

)n(
1

1− (et/an(1− p))
− 1

)n]

= −bt

a
+ n log

p

1− p
+ n log

[
1

1− (et/an(1− p))
− 1

]

= −bt

a
+ n log

p

1− p
+ n log

[
et/an(1− p)

1− (et/an(1− p))

]

= −bt

a
+ n log

p

1− p
+ n

t

an
+ n log(1− p)− n log

[
1− (et/an(1− p))

]

= −bt

a
+ n log p+

t

a
− n log

[
1− (et/an(1− p))

]

= − t

ap
+

t

a
+ n log p− n log

[
1− (et/an(1− p))

]

= −1− p

p

t

a
+ n log p− n log

[
1− (et/an(1− p))

]
.
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Notean =
√
1−p
p

√
n, so forn largeet/an is approximately 1; in fact, we have

et/an = 1 +
t

an
+

t2

2(an)2
+O

(
t3

n3

)
,

whereO(z) means there is a universal constantC such that the error is at mostCz. The
reason we stop the expansion here is that we multiply the logarithm byn; once we have
an error of sizeO(1/n3/2) or smaller it will be dwarfed in the limit.

Usinglog(1− u) = −u− u2/2 + O(u3) we have

n log
[
1− (et/an(1− p))

]
= n log

[
1− (1− p)

(
1 +

t

an
+

t2

2(an)2
+O

(
t3

n3/2

))]

= n log

[
p− (1− p)

(
t

an
+

t2

2(an)2
+O

(
t3

n3/2

))]

= n log p+ n log

[
1− 1− p

p

(
t

an
+

t2

2(an)2
+O

(
t3

n3/2

))]

= n log p− n
1− p

p

(
t

an
+

t2

2(an)2

)
− n

2

(
1− p

p

t

an

)2

+O

(
t3

n1/2

)

= n log p− 1− p

p

t

a
+

1− p

p

(
1 +

1− p

p

)
t2

2a2n
+O

(
t3

n1/2

)

= n log p− 1− p

p

t

a
+

1− p

p2
t2

2a2n
+O

(
t3

n1/2

)

= n log p− 1− p

p

t

a
+

t2

2
+O

(
t3

n1/2

)
,

where we used the definition ofa in the final step. Substituting this intologMY (y) we
see most of the terms cancel, yielding

logMY (t) =
t2

2
+

(
t3

n1/2

)
.

Asn → ∞ for any fixedt this converges tot2/2. Thus asn → ∞we havelogMY (t) →
t2/2, implying thatMY (t) → et

2/2 as claimed.
It is worth noting that while we were able to prove the claim, the above algebra is

quite long and tedious and not at all enlightening. While this is essentially a proof of the
Central Limit Theorem in this special case, the final result seems almost miraculous.
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10. HW #10

Due Thursday November 19 (though you may place in my mailbox up till 10am on
Friday 11/20):

(1) LetX1, . . . , XN be iidrv with mean 0 and variance 1, and letX = (X1 + ⋅ ⋅ ⋅+
XN )/N . For any fixed� > 0, prove that asN → ∞ we have

lim
N→∞

Prob(∣X − 0∣ > �) = 0.

Hint: try using Chebyshev’s theorem.

(2) Let

f(x) =

{
1√
2�x2

e−(log x)2/2 if x > 0

0 if x = 0.

(a) Provef is continuous.
(b) Letm be any fixed positive integer. Prove thatlimx→∞ xmf(x) = 0.

(3) Assume you have a table of probabilities of the standard normal random vari-
ableX; in other words, you can easily look up probabilities of the following
form: Φ(x) = Prob(X ≤ a). (The cumulative distribution function of the stan-
dard normal is used so often it gets a symbol reserved for it, namelyΦ.)
(a) ShowProb(X ≤ 0) = 1/2.
(b) Let Y ∼ N(�, �) be a normal random variable with mean� and variance
�2. ExpressProb(Y ≤ a) in terms ofΦ, �, � and of coursea.

(4) DO EXACTLY ONE OF THE FOLLOWING:

(a) Find any math research paper or expository paper which uses probabil-
ity and write an at most one page summary (preferably in TeX).As you continue
in your careers, you are going to need to read technical papers and summarize
them to your superiors / colleagues / clients; this is thus potentially a very useful
exercise. Make sure you describe clearly what the point of the paper is, what
techniques are used to study the problem, what applicationsthere are (if any).
Below is a sample review from MathSciNet; if you would like tosee more, you
can go to their homepage or ask me and I’ll pass along many of the ones I’ve
written. I’ve chosen this one as it’s related to a paper on randomly shuffling
cards (this paper is linked in the additional comments from October 27): Bayer,
Dave and Diaconis, Persi,Trailing the dovetail shuffle to its lair, Ann. Appl.
Probab.2 (1992), no. 2, 294–313.

Rarely does a new mathematical result make both the New York Times and
the front page of my local paper, and even more rarely is your reviewer asked
to speak on commercial radio about a result, but such activity was caused by
the preprint of this paper. In layman’s terms, it says you should shuffle a deck
of cards seven times before playing. More technically, the usual way people
shuffle is called a riffle shuffle, and a natural mathematical model of a random
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shuffle is to assume all possible riffle shuffles are equally likely. With this model
one can ask how close isk shuffles of an n-card deck to the uniform distribution
on all n! permutations, where ‘close’ is measured by variation distance. It was
previously known that, asn → ∞, one needsk(n) ∼ 32 log2 n shuffles to get
close to uniform. This paper gives an elegant and careful treatment based on
an explicit formula for the exact distanced(k, n) to uniformity. To quote the
abstract: ‘Key ingredients are the analysis of a card trick and the determination
of the idempotents of a natural commutative subalgebra in the symmetric group
algebra.’ – Reviewed by David J. Aldous

(b) The following three problems: Problem #10 in Section 3.11 and Prob-
lem #17 in Section 3.11and Problem #1 in Section 1.8.

(5) Extra Credit: Prove which of the following from lecture converges slowestto
the standard normal: uniform, Laplace or Millered Cauchy.

(6) Extra Credit: Define

fk(x) =
Ck(a)

1 + (ax)2k

whereCk(a) is chosen so that the above is a probability density.
(a) Finda andC3(a) so that the density above has variance 1.
(b) More generally, for any integerk ≥ 3 find a andCk(a) so that the density
above has variance 1.

Problem 1. Chebyshev’s theorem states that if a random variableY has finite mean
�Y and finite variance�2

Y , thenProb(∣Y − �Y ∣ > k�) ≤ 1/k2. Let’s takeY =
X = (X1 + ⋅ ⋅ ⋅ + XN)/N . ThenE[Y ] = 0 (as eachXi has mean 0) andVar(Y ) =
1
N2

∑N
i=1Var(Xi) = 1/N , so�Y = 1/

√
N .

We must determine how many standard deviations� is. As one standard deviation is
1/
√
N , it takesk = �

√
N standard deviations to be at least� away from the mean. As

� is fixed andN → ∞, eventually this number is arbitrarily large. Thus by Chebyshev
we find

Prob(∣X − 0∣ > �) = Prob
(
∣X − 0∣ > �

√
N�Y

)
≤ 1

�2N
,

which clearly tends to zero for any fixed� asN → ∞.
It is worth remarking that Problem 1 is actually a very famousand very important

theorem, namely theWeak Law of Large Numbers. The Central Limit Theorem is a
strengthening of this, where in addition to knowingXN → � we know how it converges
as well.

Problem 2. We first note that this is not a randomly chosen function. Thisis one of the
two densities we saw earlier that have the same integral moments but are different.
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(a) To prove thatf is continuous, it clearly suffices to check the behavior off as
x → 0. We thus need to showlimx→0 f(x) = 0. To evaluate this limit, it is natural to
try and use L’Hopital’s rule. I prefer to move theexp(−(log x)2/2) to the denominator
and lety = 1/x; this gives a nice ratio of∞/∞ with the variable tending to infinity.
Thus we must evaluate

lim
y→∞

y√
2� exp((log y)2/2)

.

If we try and use L’Hopital’s rule, we run into some difficulties as the derivative of the
exponential factor isexp((log y)) ⋅ log y ⋅ 1

y
, which gives

lim
y→∞

y√
2� exp((log y)2/2)

= lim
y→∞

y√
2� exp((log y)2/2) ⋅ log y

.

We can surmount this by changing variables yet again, setting y = ew or w = log y.
Thus we must study

lim
w→∞

ew√
2�ew2/2

.

There is actually no need to apply L’Hopital’s rule, as we cancompute the limit directly.
It is

lim
w→∞

1√
2� exp(w(w

2
− 1))

= 0.

For another approach, we again change variables withy = 1/x → ∞ and find our
limit equals

lim
y→∞

y√
2�

1

e(log y)2/2
=

1√
2�

lim
y→∞

y

e(log y)2/2

=
1√
2�

lim
y→∞

y

(elog y)(log y)/2

=
1√
2�

lim
y→∞

y

y(log y)/2
= 0.

As log y → ∞, for y large the denominator is clearly greater thany341, which suffices to
prove our claim. It is very natural to approach the problem this way. The reason is that
we are happy when an exponential hits a logarithm, as the two functions are inverses
and cancel. Thus we want to exploit the fact that we are exponentiating a polynomial in
the logarithm ofx.

Another way to attack this problem is to study the limit asx → 0 of the logarithm of
our quantity; if this limit tends to negative infinity then the limit of the original quantity
tends to the exponential of negative infinity, or zero. What is the limit of the logarithm?
It is just

lim
x→0

log

[
1√
2�x2

e−(log x)2/2

]
= lim

x→0

[
log x+

log 2�

2
− (log x)2

2

]

=
log 2�

2
− lim

x→0
log x ⋅

(
log x

2
− 1

)
.

As x → 0, both factors involving logarithms tend to minus infinity, and thus their prod-
uct tends to infinity; as we multiply by negative one, the limit above is minus infinity,
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and hence the original limit is just zero.

For (b), we want to prove thatlimx→∞ xmf(x) = 0. Let’s analyze the factore(log x)
2/2.

Arguing as in the alternative proof for the previous part, wefind

e(log x)
2/2 =

(
elog x

) log x
2 = (x)

log x
2 =

√
x
log x

.

Thus

xmf(x) =
xm

√
2�x2

√
x
log x

.

If we takex so large thatlog x > 4m, then
√
x
log x

> x2m, and thus the denominator
grows faster than the numerator, so the limit is zero. Specifically,

xmf(x) =
xm

√
2�x2

√
x
log x

>
xm

√
2�x2x2m

=
1√

2�x2xm
,

which clearly tends to zero asx → ∞.

Problem 3. (a) The density of the standard normal is symmetric aboutx = 0 (in other
words, it is an even function), as it is just

f(x) =
1√
2�

e−x2/2.

As the density is symmetric about 0, we have

Φ(0) =

∫ 0

−∞
f(x)dx =

∫ ∞

0

f(x)dx;

as the sum of these two integrals must equal 1, each one is therefore equal to 1/2.
The reason this problem is so important is that there are three different tables of prob-

abilities for the standard normal, and noting the symmetry is useful in converting from
one to another. Specifically, we could be given the probability from−∞ to x (which is
Φ(x)), the probability from−x to x (which isΦ(x) − Φ(−x)), or the probability from
0 tox (which isΦ(x)− Φ(0) = Φ(x)).

(b) As Y ∼ N(�, �), we haveZ = (Y − �)/� ∼ N(0, 1). To see this, note that
clearlyZ is normally distributed, and we’ve adjusted everything so thatZ has mean 0
and variance 1, implyingZ is the standard normal. We can solve forY in terms ofZ,
and findY = �Z + �. We therefore have

Prob(Y ≤ a) = Prob (�Z + � ≤ a)

= Prob(�Z ≤ a− �)

= Prob

(
Z ≤ a− �

�

)

= Φ

(
a− �

�

)
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11. HW #11

Due Thursday November 19.DO ANY FIVE OF THE PROBLEMS BELOW. If
you choose to do either problem 6 or 7 (you of course may elect to do both), you must
email me your .tex file and .pdf, and note on the homework you submit to the grader
which of these problems you elected to do.

(1) LetX,X1, . . . , XN be independent exponential random variables with parame-
ter�. Find the moment generating function forXi. Directly using the moment
generating function, prove the central limit theorem forX1 + ⋅ ⋅ ⋅ + XN (i.e.,
mimic what we did for the Poisson).

(2) Letf(x) be a Schwartz function on(−∞,∞). In particular, this means thatf is
ak times continuously differentiable probability density for any positive integer
j. In other words, the firstk derivatives off exist and each of these derivatives
is continuous. Prove there is some constantC (depending onf , f ′, . . . , f (k)

such that as∣y∣ → ∞, ∣f̂(y)∣ ≤ C/∣y∣k.

(3) We sayf is a continuous probability density supported on[−B,B] if f(x) = 0
if ∣x∣ > B; equivalently ifX is a random variable with densityf we say
X is supported on[−B,B] if f is supported on[−B,B]. For example, if
X ∼ Unif(2, 5) thenX is supported on[−5, 5], while if X ∼ Exp(1) then
there is noB such thatX is supported on[−B,B].

⋄ Prove or disprove: iff is supported on[−B,B] then the2kth moment
of f is at mostB2k.

⋄ Prove or disprove: Let�′
2k denote the2kth moment off . Assume that

lim
k→∞

�
′1/2k
2k ≤ B.

Thenf is supported on[−B,B]. (In other words, the probability off
taking on a valuex with ∣x∣ > B is zero.)

⋄ Prove or disprove: Assume�′
2k, the2kth moment off , satisfies

(2k)!! ≤ �′
2k ≤ (2k)!.

Then there is some finiteB such thatf is supported on[−B,B].

(4) Is the following argument correct: Consider

lim
N→∞

[(
1 +

x

N

)N2

⋅
(
1− x

N

)N2
]
.

For largeN the first factor looks likeexN since

(
1 +

x

N

)N2

=

((
1 +

x

N

)N)N

−→ (ex)N = exN .
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Similarly we see that the second factor looks likee−xN , and thus the product
tends to 1 asN → ∞. If this argument is wrong, what should the limit be? In
other words, find

lim
N→∞

[(
1 +

x

N

)N2

⋅
(
1− x

N

)N2
]

if the argument above is incorrect.

(5) LetA be an arithmetic progression ofn integers with common differenced; this
means there is somen0 such that

A = {n0, n0 + d, n0 + 2d, . . . , n0 + nd}.

Prove∣A+ A∣ = ∣A−A∣, where

∣A+ A∣ = {a1 + a2 : a1, a2 ∈ A}
∣A− A∣ = {a1 − a2 : a1, a2 ∈ A}.

This implies that arithmetic progressions are ‘balanced’ (their sumsetA + A is
as large as their difference setA − A). Hint: show without loss of generality
that we may taken0 = 0 andd = 1 when we count the number of differences or
sums.

(6) Write up a problem of your choosing and a solution. You must have someone
from the class check it. If the problem is unclear or the solution is wrong, unlike
previous homework assignments this time you will lose points.

(7) Read a paper involving probability and give a one page summary.

Problem 1. We first compute the moment generating function of exponential random
variables with parameter�. It is

MX(t) = E[etX ]

=

∫ ∞

0

etxe−�x�dx

=
�

�− t

∫ ∞

0

e−(�−t)x(�− t)dx

=

(
1− t

�

)−1

.

There are many ways to do algebra; we chose to multiply by 1 in the form of�−t
�−t

as the
exponential’s argument is−(�−t)x. In other words, we essentially have an exponential
with parameter�− t, and thus we just need to do some algebra to get the right density,
which integrates to 1. Multiplying by�−t

�−t
leads to integratingexp(−(� − t)x)(� − t),

which is an exponential with parameter�− t.



MATH 341: PROBABILITY: FALL 2009 COMMENTS ON HW PROBLEMS 65

The Central Limit Theorem involves studying the limiting distribution of

ZN =
X − �

�/
√
N

=

N∑

n=1

Xi − �

�
√
N

.

As the moment generating function of a sum of independent random variables is the
product of the moment generating functions, we have

MZN
(t) =

N∏

n=1

e
−�t

�
√

N MX

(
t

�
√
N

)
= e

−�t
√

N
� MX

(
t

�
√
N

)N

.

Taking logarithms we find

logMZN
(t) = −�t

√
N

�
+N logMX

(
t

�
√
N

)
.

We now stop arguing in full generality and instead use the fact that we have a sum of
exponential random variables with parameter�. The mean and the standard deviation
are both1/�, so

logMZN
(t) = −t

√
N +N logMX

(
�t√
N

)
.

Substituting for the moment generating function yields

logMZN
(t) = −t

√
N −N log

(
1− t√

N

)
.

We Taylor expand, using

log(1− u) = −
(
u+

u2

2
+ ⋅ ⋅ ⋅

)

and find

logMZN
(t) = −t

√
N +N

(
t√
N

+
1

2

t2

N
+O

(
1

N3/2

))

=
t2

2
+O

(
1

N1/2

)
,

which implies

MZN
(t) = et

2/2eO(N−1/2),

which converges to the moment generating function of the standard normal asN → ∞.
Using our results from complex analysis, the fact that the moment generating functions
exist in a neighborhood of the origin and that they converge to the moment generat-
ing function of the standard normal, we now obtain that the corresponding densities
converge to the density of the standard normal.

The proof is algebraically much nicer than the general case involving moment gen-
erating functions because we have such a nice closed form expression for the moment
generating function of exponential random variables.
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Problem 2. We have

f̂(y) =

∫ ∞

−∞
f(x)e−2�ixydx.

Recall that a functionf is Schwartz if for any non-negative integersm andn there is a
constantCm,n such that∣f (n)(x)∣ ≤ Cm,n/(1+x2)m. In other words,f and all its deriva-
tives decay faster than the reciprocal of any polynomial. Wewrite the denominator as
1 + x2 and notx2 or x so that our bounds are well-defined whenx = 0 too.

We ‘evaluate’ the integral by integrating by parts. There are no convergence issues,
as f and all its derivatives are of rapid decay. We setu = f(x), dv = e−2�ixydx
so du = f ′(x)dx andv = (−2�iy)−1e−2�ixy. If you are uncomfortable integrating
functions such ase−2�ixy, break it up intocos(2�xy) + i sin(2�xy). As f is Schwartz,
the boundary terms (evaluatingu(x)v(x) at±∞) vanish because of the rapid decay of
f , and thus

f̂(y) =
1

2�iy

∫ ∞

−∞
f ′(x)e−2�ixydx,

where there is no minus sign as the minus sign from the derivative of the exponential
factor cancels the minus sign from integrating by parts. Repeating thisk − 1 times
yields

f̂(y) =
1

(2�iy)k

∫ ∞

−∞
f (k)(x)e−2�ixydx,

wheref (k) represents thekth derivative off . As f is Schwartz,f (k)(x) decays faster
than any polynomial inx, and hence the integral above exists. It is therefore bounded
independent ofy (so long asy ∕= 0, but we may assumey ∕= 0 as we care about the
behavior for largey), say byCk for someCk depending onf (k).

Explicitly, we use the fact that the absolute value of an integral is at most the integral
of the absolute value, and then use∣ei�∣ = 1 for real�. Again, if you are not comfortable
with working with complex valued functions, write it as a cosine piece plus a sign piece,
and work with each piece individually.We have

∣∣∣f̂(y)
∣∣∣ ≤ 1

∣2�y∣k
∫ ∞

−∞
∣f (k)(x)∣dx.

As ∣f (k)(x)∣ ≤ Ck,1/(1 + x2), the integral converges and is finite (it actually equals�).
LettingCk = �Ck,1/(2�)

k, we find
∣∣∣f̂(y)

∣∣∣ ≤ Ck

∣y∣k ,

which gives the desired decay.

The purpose of this problem is to give the beginning of a proofof an important fact,
namely that the Fourier transform of a Schwartz function is aSchwartz function. This is
an ingredient in the proof of the Fourier Inversion Theorem.This is the first, and most
important, step in proving this claim. We now need to show allthe derivatives of̂f have
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the appropriate decay. We sketch the proof. It all starts with the relation

f̂(y) =

∫ ∞

−∞
f(x)e−2�ixydx.

We differentiate with respect toy a total ofn times. Asf is Schwartz, we may inter-
change the differentiation with respect toy and the integration, and we find

f̂ (n)(y) =

∫ ∞

−∞
f(x) ⋅ (−2�ix)ne−2�ixydx = (−2�i)n

∫ ∞

−∞
g(x)e−2�ixydx,

where
g(x) = f(x)xn.

The proof is completed by noting thatg(x) is a Schwartz function and then using the
bounds from the first part of the problem. The arguments here illustrate another im-
portant property of the Fourier transform: there is a relation between multiplying our
original function byxn and takingn derivatives of the Fourier transform. This inter-
play is one reason why the Fourier Transform is extremely useful in solving differential
equations.

Problem 3. For (a), note

�′
2k =

∫ B

−B

x2kf(x)dx ≤ B2k

∫ B

−B

f(x)dx = B2k;

this is becausex2k is largest whenx = ±B, and thus the2kth moment is at most equal to
what we obtain when we replacex2k with B2k. In attacking problems like this, it helps
to think about what we should aim for. It is very good if we end up integratingf(x), as
we know this integrates to 1. How large can the factor ofx2k be? As−B ≤ x ≤ B,
x2k ≤ B2k, and we do not decrease (and almost surely increase) the value of the integral
if we replacex2k with B2k.

For (b), the claim is true. This problem seems like a converseto (a). In part (a) we
showed that if the function is supported in[−B,B] then the2kth moment is at most
B2k; here we are saying we know the limit of the1/2k root of �′

2k is at mostB – we
want to show that this impliesf lives in [−B,B].

We give a proof by contradiction. Assume not. Then there is a positive probability
of our random variableX with densityf taking on a valuex with ∣x∣ > B. We thus
find that for some� > 0 there is ap > 0 such thatProb(∣X∣ ≥ B + �) > p. We need
to pass from this to a lower bound for�′

2k which is so large that the1/2k power tends
to infinity, as this will imply that there is no finiteB such that all of the probability
lives in [−B,B]. We need to think of how to incorporate this into a lower bound. A
little thought tells us that if we want a lower bound, and we know there is a positive
probability of ∣X∣ ≥ C > B, it might be worth restricting the integral defining�′

2k to
∣x∣ ≥ C. If we do this, we’ll be able to replace allx2k in this region withC2k and get a
lower bound.

In particular, this implies

�′
2k =

∫ ∞

−∞
x2kf(x)dx > (B + �)2kProb(∣X∣ ≥ B + �) = p ⋅ (B + �)2k.
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Taking the1/2k root yields

�
′1/2k
2k > p1/2k(B + �).

As p > 0, ask → ∞ we havep1/2k → 1, and thus

lim
k→∞

�
′1/2k
2k ≥ B + �

(note the greater than becomes a greater than or equal to in the limit). This contradicts
our assumption, and thusX is supported in[−B,B]. The importance of this problem
is that an understanding of the even moments gives enormous amounts of information
about the probability density; in particular, if the moments don’t grow too rapidly than
the density is supported in some finite interval, while if they grow very rapidly then the
density is not supported in any finite interval. Why are we looking at the even moments
to the exclusion of the odd moments? The problem with the odd moments is that they
can be small even if the function is of unbounded support (just think of the standard
normal).

For (c), our random variable is not supported in any finite interval[−B,B]. To prove
this, it suffices to study the lower bound, as this will imply the moments grow so rapidly
that the density is not finitely supported. Clearly(2k)!! > k!; both have the same num-
ber of terms, but each factor of(2k)!! = 2k⋅(2k−2) ⋅ ⋅ ⋅2 is twice the corresponding fac-
tor of k! = k ⋅(k−1) ⋅ ⋅ ⋅ 1. By Stirling’s formula, for largek we havek! ∼ kke−k

√
2�k.

Thus

�
′1/2k
2k ≥ k!1/2k ∼ (k/e)1/2(2�k)1/2k ≥

√
k/2.

From the first part of the problem, iff is supported in[−B,B] then�′1/2k
2k ≤ B; as

k → ∞ we see there is no fixedB that can work, and thus our function has unbounded
support.

There are lots of other relations we could have used, such as(2k)!! ≥
√
(2k)! and

(2k)!! = 2kk!.

These three problems are meant to give a bit of the flavor of thetheory of moments.
In particular, knowing a little bit about how large (or small) the moments are in the limit
allows us to deduce some things about the distribution, suchas whether or not it lives
in some finite interval.

Problem 4. The argument given is wrong. The problem is that while the main terms
are correct in each case, the secondary terms are ignored. Weare in a situation where
the two main terms cancel, and thus it is essential that we understand these secondary
terms as well. One way to do this problem is to take the exponential of the logarithm.
This is a generalization of multiplying by 1, as we do nothingbut in a useful way.

Let

PN =
(
1 +

x

N

)N2

⋅
(
1− x

N

)N2

.
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Taking such an approach, we find we must study, asN → ∞,

logPN = N2 log
(
1 +

x

N

)
+N2 log

(
1− x

N

)
.

Taylor expanding, using

log(1 + u) = u− u2

2
+

u3

3
− ⋅ ⋅ ⋅

log(1− u) = −u− u2

2
− u3

3
− ⋅ ⋅ ⋅

we find

logPN = N2

(
x

N
− x2

2N2
+O(N−3)

)
+N2

(
− x

N
− x2

2N2
+O(N−3)

)

= −x2 +O(N−1),

which implies
PN = e−x2

e−O(1/N),

and thus
lim

N→∞
PN = e−x2

.

There is a simpler way to see this. Note

lim
N→∞

PN = lim
N→∞

[(
1 +

x

N

)N2

⋅
(
1− x

N

)N2
]

= lim
N→∞

[(
1 +

x

N

)
⋅
(
1− x

N

)]N2

= lim
N→∞

(
1− x2

N2

)N2

;

note, however, that this limit is just the definition ofe−x2
. The only difference between

the above and the standard definition is that we are usingN2 instead ofN ; however, if
N → ∞ thenN2 → ∞ as well.

For this problem, it is much easier to use the second approach. The idea is that the
algebra is nicer here because we have1 + u times1 − u, which is just1 − u2 (for
u = x/N). This factorization and reinforcement occurs in many problems. We present
both proofs as, for general questions, we don’t have the luxury of exploiting such a
nice factorization. Pattern recognition is extremely important; we can easily stare for
hours at something that we know without realizing we know it because it is presented
in a different light. After thinking to combine the two factors, we then have to see that
N → ∞ is the same asN2 → ∞, and what we have is just the definition ofexp(−x2).

It’s worth emphasizing that this technique of combining factors surfaces all the time
in advanced number theory courses.

It’s worth spending a few moments thinking about the false argument given above.
There, we have a limit of a product We’d like to say that this equals the product of the
limit, but we must be careful. Those two limits are∞ and0, and0 times∞ is not
defined. It is clearly illegal to do what we did, namely to say the limit of the product is
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the product of the limits, but we don’t take the limits, instead lettingN → ∞ in some
parts but not in other places so as to end up withexN ande−xN .

In general, depending on how things tend to infinity and zero,we can make∞ ⋅ 0
equal almost anything. Consider

lim
N→∞

N2 ⋅ 1

N
= ∞

lim
N→∞

N2 ⋅ �

N2
= �

lim
N→∞

N ⋅ 1

N3
= 0.

If we were to say the limit of a product is the product of the limits, in each case we get
∞ ⋅ 0, and yet each case has a different answer.

Perhaps my favorite problem involving∞ ⋅ 0 argues that (at least in this case!) it
should be -1. Here’s the example: consider the product of theslopes of any two per-
pendicular lines not parallel to the coordinate axes. It’s avery nice exercise to prove
this product is -1. As it equals -1 so long as the lines are not parallel to the coordinate
exes, it is natural to define the product of the slopes here (0 for thex-axis and∞ for the
y-axis) to be -1.

Problem 5. We first note that∣A + A∣ and∣A − A∣ are not changed by mapping each
x ∈ A to �x + � for any fixed� and�. The effect of this transformation is to take all
the sums and multiply by� and then add2�, while for the differences it multiplies by
�. For definiteness, imagine we have the mappingx 7→ 3x+5 and takea1 = 4, a2 = 7.
Then originally the sum is 11 and the difference is−3. Our elements map to 17 and 26,
and now the sum is43 = 3 ⋅ 11 + 2 ⋅ 5 and the difference is−9 = 3 ⋅ (−3).

As we have an arithmetic progression, we use the following map: x 7→ (x − n0)/d.
This maps our initial arithmetic progression to the new progression{0, 1, 2, . . . , n}. It
is very easy to compute the sumset and difference set here. The set of sums is just
{0, 1, . . . , 2n} and the set of differences is just{−n, . . . , n}. As both of these sets have
2n + 1 elements, the sumset and difference set are the same size.

Perhaps an easier way to view the problem is the following. ClearlyA = {0, 1, . . . , n}
lead toA+A = {0, 1, . . . , 2n} andA−A = {−n . . . , n}. To see this, note the smallest
element ofA + A is clearly obtained from0 + 0, while the largest comes fromn + n.
A little inspection shows we can get everything in between. Instead of going from our
original arithmetic progression to this, we go the other way(start here and end up with
the original progression).This is an example of the very useful method of reverse en-
gineering.We first change variables by mapping{0, 1, . . . , n} to {0, d, . . . , nd}. This
mapping changes all sums and all differences by a factor ofd, but does not alter how
many such factors there are. Similarly, if we include the translationn0, then all sums
increase by the same amount (namely2n0) while the differences are unchanged.
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Learning what change of variables to do and when to do it is a terrific skill that fre-
quently takes a lot of practice, but it is important. For example, frequently difficult
integrals are in integral table books, but in an equivalent manner that can be missed
unless we see the ‘clever’ change of variables problems.

This is a very important problem in additive number theory. The reason is that such
sets are balanced (i.e., they have as many sums as differences). These sets are often
used as a starting point in the construction of sum-dominated sets in the following way:
if we start with an arithmetic progression, the hope is that by tweaking it slightly we
can add one more sum than difference, and thus end up with a sum-dominated (or more
sum than difference) set.

12. HW #12

Due Thursday December 10 (though you may place in my mailbox up till 10am on
Friday 12/11):

DO ANY THREE OF THE PROBLEMS BELOW, BUT ONE OF THE THREE PROBLEMS
MUST BE PROBLEM #1. If you choose to do either problem 5 or 6 (you of course
may elect to do both), you must email me your .tex file and .pdf,and note on the home-
work you submit to the grader which of these problems you elected to do.

(1) Everyone must do this one: Take two homework or exam problems where you
lost points this semester because your logic was incorrect (i.e., what you wrote
was wrong and not just you left the problem blank). Write a short TeX doc-
ument where you state the problem and explain your reasoningas to why you
made the mistake you did, and email me the TeX file. Make sure you give the
file a name which begins with your lastname (this makes it easyfor me to keep
track of who’s work I’m viewing).

(2) Come to my office and give a 5 to 10 minute presentation on some topic on
probability that we have not covered in class. This could be the solution to a
problem we haven’t done from a section we’ve studied, summarizing a section
we haven’t studied, summarizing a paper, .... The point of this exercise is to
get practice orally presenting information (in addition tobeing good in its own
right, it helps if you ever need a letter of recommendation, as I can then talk
about your presentation skills).

(3) Consider a random variableX with the standard Laplace distribution, so the
density isf(x) = exp(−∣x∣)/2. According to Chebyshev’s inequality or the-
orem, what is the probabilityX is more thank standard deviations from the
mean? Do you think this a good estimate? What is the actual probability?

(4) Consider a Cauchy random variableX, sof(x) = 1
�(1+x2)

. What does Cheby-
shev’s theorem or inequality say about the probability∣X∣ > 2009? Estimate
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this probability.

(5) Write up a problem of your choosing and a solution.

(6) Read a paper involving probability and give a one page summary.

(7) Work on one of the research projects mentioned in class. If you elect to do this,
contact me.

Problem 3. For the Laplace distribution, the density isf(x) = exp(−∣x∣)/2. The mean
is clearly zero, and thus the variance is

E[X2] =

∫ ∞

−∞
x2e−∣x∣dx

2
=

∫ ∞

0

x2e−xdx.

One way to do this would be to integrate by parts twice. For thefirst we setu = x2

anddv = e−x, and we seedu = 2xdx andv = −e−x. Continuing in this manner
yieldsE[X2] = 2, or the variance is 2. A faster approach is to recall the definition and
properties of the Gamma function:

Γ(s) =

∫ ∞

0

e−sxs−1dx (if ℜe(s) > 0), Γ(n + 1) = n! (if n is a positive integer).

Our integral expression forE[X2] is justΓ(3) = Γ(2 + 1), and thus the answer is just
2! = 2.

The first part of the problem asks for the estimate from Chebyshev’s theorem for be-
ing more thank standard deviations from the mean. Chebyshev’s theorem (also known
as Chebyshev’s inequality) states

Prob(∣X − �∣ ≥ k�) ≤ 1

k2

for any random variableX with finite mean� and finite variance�2. Thus Chebyshev
estimates this probability as1/k2 (which of course is useless fork ≤ 1).

Chebyshev’s theorem holds for all densities with finite second moment; it thus uses
very little information about the distribution itself. It must hold for both uniform ran-
dom variables and exponential and Gaussians. It is thus quite likely that this greatly
overestimates the true probability. What is the true probability? As the variance is2,
the standard deviation is

√
2 and we are reduced to computing

Prob(∣X∣ ≥ k
√
2) =

∫

∣x∣≥k
√
2

e−∣x∣dx

2
=

∫ ∞

k
√
2

e−xdx = e−k
√
2 =

(
1

e
√
2

)k

.

Thus the true answer issignificantlysmaller than Chebyshev. For example, whenk = 2
Chebyshev gives .25 while the true answer is about .06; fork = 10 Chebyshev gives .01
versus about7 ⋅ 10−7, which is magnitudes smaller! To really drive home the point, if
k = 100 then Chebyshev gives .0001 while in fact the probability is less than4 ⋅ 10−62!

Problem 4. As this problem is similar to the previous, see Problem #3 fora statement
of Chebyshev’s theorem. As the Cauchy distribution has infinite variance, Chebyshev’s
theorem hasnothingto say about the probability of∣X∣ ≥ 2009. The density function
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of the standard Cauchy distribution isf(x) = 1
�(1+x2)

, with cumulative distribution

functionF (x) = arctan(x)
�

. Thus

Prob(∣X∣ ≥ 2009) =

∫

∣x∣≥2009

dx

�(1 + x2)

=
2

�

∫ ∞

2009

dx

1 + x2

=
2

�
(arctan(∞)− arctan(2009))

=
2

�

(�
2
− arctan(2009)

)
.

How should we approximatearctan(2009)? Plugging into Mathematica gives

arctan(2009) ≈ 1.5702985667563642558,
�

2
≈ 1.5707963267948966192.

This is fine if we have a computer at our disposal; however, what if we don’t?
All is not lost, as we know the power of Taylor series, so let’ssimple expandarctan(x)

and then evaluate it atx = 2009. The problem with this is that we would need a Taylor
series expansion about infinity, not 0, as we want to see what happens when we evaluate
the probability for largex. We can rectify this by recalling

arctan(x) =
�

2
− arctan

(
1

x

)
if x > 0.

The Taylor series expansion forarctan is

arctan(u) =
∞∑

n=0

(−1)nu2n+1

2n+ 1
= u− u3

3
+

u5

5
− u7

7
+ ⋅ ⋅ ⋅ .

Thus

arctan

(
1

2009

)
≈ 1

2009
,

with an error on the order of1/20093. Substituting gives

arctan(2009) =
�

2
− 1

2009
,

so

Prob(∣X∣ ≥ 2009) =
2

�

(�
2
− arctan(2009)

)
≈ 2

2009�
;

this gives a predicted value of 0.000316884, the actual answer of 0.000316883882. . .
is quite close (and we could obtain better approximations with more terms).

Another way to approximate the answer is to say that, sincex ≥ 2009, 1/(1 + x2) ≈
1/x2; the error in such an approximation is1/x2(1 + x2), which when integrated over
[2009,∞) is of size1/20093. Using this approximation, we get

Prob(∣X∣ ≥ 2009) ≈ 2

�

∫ ∞

2009

dx

x2
=

2

2009�
,
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the same answer we found with Taylor series and arctan identities (but significantly less
work!).

For comparison’s sake, the probability that∣X∣ ≥ 2009 for the standard normal is
less than10−876423, while for the Laplace distribution it is about1.265 ⋅ 10−1234.

In the original proof we used an identity forarctan(x), namelyarctan(1/x) = �/2−
arctan(x) for x > 0. There are many ways to prove this. One way is to use the fact that
arctan(x) is the anti-derivative of1/(1+x2). Asarctan(0) = 1 andarctan(∞) = �/2,
we have

arctan

(
1

x

)
=

1

�

∫ 1/x

0

dt

1 + t2
.

We change variables, settingu = 1/t sodu = −dt/t2 or dt = −du/u2. The region
of integration is now from∞ to x, which becomesx to ∞ as we have a negative sign.
Thus

arctan

(
1

x

)
=

∫ x

∞

1

1 + (1/u2)

−du

u2

=

∫ ∞

x

du

1 + u2

= arctan(∞)− arctan(x)

=
�

2
− arctan(x)

as claimed. A faster proof is to note that for any angle� ∈ (0, �/2), tan(�) and
tan(�

2
− �) have reciprocal tangents; thusarctan(x) + arctan(1/x) = �/2.

We end with one more way to solve the problem. Either changingvariables or using
our arctan identity, we see the problem is equivalent to evaluating

∫ 1/2009

0

dt

1 + t2
.

We use the geometric series to expand(1+x2)−1, interchange the integral and the sum,
and then evaluate term by term. Thus we have

arctan(x) =

∫ x

0

dt

1 + t2

=

∫ x

0

dt

1− (−t2)

=

∫ x

0

∞∑

n=0

(−t2)ndt

=
∞∑

n=0

(−1)nt2n+1

2n + 1
,

which is the claimed Taylor series expansion for arctan; while some work is needed to
justify the arguments above, this is much faster than computing the Taylor expansion of
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arctan from first principles.

Finally, since d
dx

arctan(x) = 1/(1 + x2) is so essential for this problem, we quickly
review it’s proof. Using the quotient rule, we knowd

dx
tan(x) = 1/ cos2(x). We use a

very useful identity: iff andg are inverse, differentiable functions such thatf(g(x)) =
x, thenf ′(g(x))g′(x) = 1 or g′(x) = 1/f ′(g(x)). Lettingf denote the tangent function
andg the arctangent function, we have

d arctan(x)

dx
=

1

tan′(arctan(x))
= cos2(arctan(x)).

While this is a solution, as writtencos(arctan(x)) is not that illuminating. We now
show thatcos(arctan(x)) = 1/

√
1 + x2. To see this, let� = arctan(x), sotan(�) = x.

We construct a right triangle with side adjacent to the angle� equal to 1 and side
opposite the angle� equal tox. Clearly this will havetan(�) = x/1 = x as de-
sired. Further, by Pythagoras the hypotenuse’s length is

√
12 + x2 =

√
1 + x2. Then

cos(�) = 1/
√
1 + x2; however,� = arctan(x), so cos(arctan(x)) = 1/

√
1 + x2 as

claimed.

In summary, this problem reviews many of the key properties of the Cauchy distribu-
tion. Even though this density has infinite second moments, there is a nice, closed form
expression for the cumulative distribution function, and thus it is easy to integrate. We
have simple series expansions for the cumulative distribution function, and can com-
pute the relevant probabilities without too much difficulty. The hardest part is knowing
which identities to use to simplify the algebra or to approximate the answer.


