MATH 341: PROBABILITY: FALL 2009
COMMENTS ON HW PROBLEMS

STEVEN J. MILLER (SIM1@WILLIAMS.EDU)

ABSTRACT. A key part of any math course is doing the homework. This earfgpm
reading the material in the book so that you can do the prabterthinking about the
problem statement, how you might go about solving it, and 8dme approaches work
and others don't. Another important part, which is oftergfutten, is how the problem
fits into math. Is this a cookbook problem with made up numiagics functions to
test whether or not you've mastered the basic material, es itdhave important appli-
cations throughout math and industry? Below I'll try andypde some comments to
place the problems and their solutions in context.

1. HW #1

The first assignment was: Due Thursday, 9/17 (but as thieifidt assignment, no
late penalty if you put it in my mailbox by 10am on Friday theHl)8 Section 1.3: #2,
#3, #5; Combinatorics: (1) There are 2n people who enter asra pf two. The people
are then randomly matched in pairs. What is the probabiigryone is matched with
their initial partner? There are two ways to interpret thisljpemn; either is fine so long
as you state which interpretation. In one interpretati@y, there are n people from
Williams and n from Amherst, matched in n pairs with each pawing someone from
Williams and someone from Amherst. In the new matching, yoistrmatch someone
from Williams with someone from Amherst. In the other intetation, anyone can be
matched with anyone. You may solve either problem, justrjiestate which one you
are doing (not surprisingly, the answers differ). (2) Cdesin people ordered 1, 2, ...,
n. We randomly assign another ordering to these people — iwhhe probability at
least one person is assigned the same number twice? Segtio#2] #4. Section 1.8:
#2, #4, #6, #12.

Section 1.3: Problem 2: This problem on Murphy’s law is quite important, and will
be used later for the elementary analysis of the symmetndam walk (also known
as the Gambler’s ruin). If we consider a sequenck tafsses, then the probability it is
observed when we toss a fair cdirtimes is justp = 1/2%, or the probability it does
not happen id — p = 1 — 1/2*. If we toss a fair coirk N times, then the probability it
does not happen in one of these blockélis- p)", which tends to 0 a8 — oco. Note
that the sequence could still occur even if it doesn’t ocauirely in one block. For
example, say our sequence is TTHT. Imagine we toss the cdim28, and get

THHT THTH THHT TTTH HHTH.
Date December 8, 2009.
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Note none of the blocks of four have the sequence TTHT, butesdccur in the se-
guence of 20 (part in the first and part in the second blocks).

Section 1.3: Problem 3: For this problem, the trick is to just enumerate so that you
cover all possibilities. This problem is more to test untlerding of the material in-
stead of applications for later. | find it is easiest to givehteaup a label (so red cup 1,
red cup 2). We might as well place the six saucers in ordersaeater 1, red saucer
2, ..., star saucer 2. There are 6! ways to arrange the 6 cuffe@aucers (we ARE
distinguishing between which red cup is place on a givenesaudo count how many
ways to place the cups so that nothing is placed on the saroe ttwdre are three pos-
sibilities: the two reds are placed on the two whites, thereas are placed on the two
stars, or one red on a white and one red on a star. The probymigleted by counting
all configurations like this.

Section 1.3: Problem 5: This problem can be interpreted as saying that if we have
a countable collection of events and each event happengvatiability 1, then their
intersection happens with probability 1. The simplest wagrove this is by induction.
If X andY happen with probability one, théh( X NY) = P(X)+P(Y) -P(X UY).
Note every probability on the right hand side equals 1 (noxegan have probability
greater than 1, and € X UY soP(AUY) = 1). This impliesP(X NY) = 1.
Proceed by induction, setting = U"_, A, andY = A, to getP(N"%; A,) = 1 for
all n. The proof is completed by invoking Lemma 5 on page 7. We cbald argued
slightly differently above. The key is provirg(X NY) = 1; another approach is to
use partitions, and obser#@ X ) =P(XNY)+P(X NY°). AsP(Y)=1,P(Y°) =0
and thuP(X NY°) =0(asXNY°C Y®). ThusP(X) =P(XNY),andaP(X) =1
we finally deducé?(X N'Y’) = 1. Note how important in this problem the = 2 case
is in the inductive proof. Frequently in induction proofs wist need to use the result
with n to proven + 1; however, a sizable number of times the general proof ballica
just reduces to understanding the = 2 case.

Combinatorics Problem (1): If anyone can be matched with anyone, there(are—
1)!!' ways to do this, where the double factorial means we takertigugt of every other
term @!' =6-4-2and5!! =5-3-1). One way to see this is to note this is just

G000 &

we divide byn! as we have attached labels to each pair of people, and them& ar
supposed to be labels. We could also proceed by inductiore fifét person must
be matched with someone; there &e — 1 ways to do this. We now pair off the
remaining2n — 2 people, which by induction happei®n — 3)!! ways, so there are
(2n —1) - (2n — 3)!! = (2n — 1)!! ways. If you must be matched with someone from
the opposite side, there are onmlyways.

Combinatorics Problem (2): We solve this by inclusion-exclusion. Ldt be the event
thati is in thei™ place,A,; be thati and;j are in their respective places (with# 7),
and so on. Not®(A;3,) = P(A459) and so on. Then the probability that at least one
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person is in the right spot is

k=1

i<n 1<j<n i<j<k<n
n n n
= (1)19)(141) - (2)19)(1412) + <3)P(A123) -
~ o nl namr-1nnh-1)n(m-1)n-2) 1 B
 1ln 2! + 3! n(n —1)(n —2)
1 1 1 g1 1
= ﬁ_§+§_...+(_1) ﬁ

Asn — oo, this tends td — 1/e; this follows from algebra applied to the Taylor series
expansion ot* with z = —1.

Section 1.4: Problem 2: This is another good problem to use induction, where again
the key step is when = 2. By the definition, we havB(X NY) = P(X|Y)P(Y). The
base case is takin§ = A, andY = A;. Ingeneral, wesek = A,,;N---N A, and

Y = Ay, and the result follows by induction.

Section 1.4: Problem 4: No one asked me about this, so assuming all is good.

Section 1.8: Problem 2: To have exactly two kings and one ace in 13 cards means
we choose 2 of 4 kings, 1 of 4 aces, and then 10 of 44 non-kinghanehces. Thus
the number of possible hands(i§) ({) (i3); as there ar¢"2) ways to choose 13 cards
for the hand, the probability is just the ratio. As no one dskkout this problem, Ill
assume the second part is firk@r problems like this, it is very easy to double count.
The danger is getting a third king or a second ace. | find it is®ast to break it up

like this, where we first go through the kings, then the acdsenh the remaining. note

the numbers in then chooser’s up top add to 52 and the bottom adds to 13.

Section 1.8: Problem 4: For (a),? = {HHH,HHT,HTH,THH, HTT, THT,
TTH, TTT} (there are2® possibilities; it is important to enumerate in such as way
that none are missed). There are many choices fortfield. The simplest is to take
F = {p,Q}; while this satisfies all the requirements obdield, it is a very poor
choice. It allows us to only talk about probabilities of niath happening or some-
thing happening. The larger thefield, the better. IfQ2 is finite or countable, we
can and should take thefield to be2?, the set of all subsets ¢i. As (2 has 8 el-
ements, here there would B8 = 256 elements in ther-field. Some of these are
o, Q{HHH,TTT}, {HHT, THT, TTT} and so on. Finally we must define a mea-
sure. If we can define a probability on each element (2 then we can define the
probability of anA in the o-field by P(A) = > _,P(w). This is very important, as
we would hate to have to define the probability of each of the @assible subsets of
Q2 directly; defining the probabilities of the singletonsfefinduces the probabilities
elsewhere. As we are told the coin is biasedpléte the probability of a head, and
thenP(w) = p#H© (1 — p)'=#H ) where# H (w) is the number of heads in (thus



4 STEVEN J. MILLER (SIM1@WILLIAMS.EDU)

P(HTH) = p*(1 — p)). If we had an uncountable, we couldn't do this. For us, if
we havel0, 1], [0, 1]™, R or R™ (or anything like that), we take for thefield the set of
subsets of? generated by open intervals.

Section 1.8: Problem 6: As no one asked about this, I'll assume all is good.

Section 1.8: Problem 12: Not surprisingly, this is another induction problem where
the key observation is using the= 2 claim. We haveP(X NY) = P(X) + P(Y) —
P(XUY). NowtakeX = A, n---N A, andY = A,,,. The algebra becomes a bit
tedious, but we have

n+1 n

P (ﬂ Ak> =P (ﬂ Ak> +P(Apsy) —P (AN NA)UA).
k=1 k=1

In the expansion above, the difficult part is the last pietis.d mix of intersections and

unions, and our desired formula only has unions on the rigjie. solutions is to note

(AiN--NAHUA L = (AAUA )N N(A, UAL);

to see this, argue as follows: eitherc A, ., orx € A, for all £ < n. Now we have
a probability of the union of. sets, and can expanth induction after induction, we
see the advantage of grouping terms and using the resultsririnen = 2 case.

2. HW #2

Homework: Due Thursday 9/24 (though you may place in my noaillnytime up
till 10am on Friday 9/25): Section 1.5: #1, #2, #4 (also dwige if it is true if p is
not prime), #8. Section 1.7: #1, #3 (hint: you can solve thiheut using difference
equations!), #4. Section 1.8: #28 (also determine if we rhase 10% colored, or if
we can do more, and generalize to 4-dimensions if possiBkjtion 2.1: #2, #4, #5c.
Section 2.3: #3 (very important problem for simulating ramdvariables), #4, #5.

Section 1.5: Problem 1. Lots of ways to do this problem. Easiest is probably to first
show that if X andY” are independent then so too afeandY . We can now reason
and getA© and B¢ are independent as followsk, B independent impliesl and B¢ are
independent; we then také = B° andY = A to getB° and A° are independent. This
is a nice trick, marching down like so.

Section 1.5: Problem 2: Consider (assuming > 3) the eventsA;,, A>3 and A;s.
If the first two happen, then the first and second rolls are #meesas well as the the
second and third. Thus, the first and thindistbe the same!

Section 1.5: Problem 4. The primality ofp is very important. If the events are in-
dependent, the®(A N B) = P(A)P(B). Here,P(C) = ¢/p wherec is the number

of elements ofC, and thus is an integer between 0 gnfemember the probability
of C' is just the cardinality ofC' divided byp). If A and B are independent, then
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P(AN B) = P(A)P(B). Letting N denote the number of elementsdah this means
Nang/p = NaNp/p?*, orpNsnp = NyNp. Aspis prime, ifp divides a product it must
divide one of the two factors, and thus eithg¢r or p|B. Without loss of generality,
assumey| A; there are only two ways this can happen, namely eithes empty orA

is the entire space. What jsis not prime? Lep = 6 and set? = {1,2,3,4,5,6},
A ={1,2,3}andB = {3,4}. ThenP(A) = 3/6, P(B) = 2/6 andPAN B = 1/6.
Thus it is essential thatbe prime.In problems like this, it is a very good idea to ask
how important a condition is. Frequently the result is eithdalse if the condition
fails, or the proof is much harder.

Section 1.7: Problem 1. This is a computational problem to make sure you have un-
derstood the section. | think the final answer is somethkcg%h’:%z. Whenever you do

a problem, it is worthwhile trying to get a feel for the answiarit reasonable? What
kind of tests can we do? Well, first off we need to make sure tisgvar is between 0
and 1, as it is a probability — this is always the case, and$buar so good. (At least
one student showed me a calculation with an error; | was al#asily find the error in
one place because the resulting probability exceeded thelanswer reasonable as
approaches natural limits? jf— 1 then the probability tends to O; this is as expected,
for in this caseall roads are blocked. What abqut— 0 — is 1/2 reasonable? Yes: in
this case it is very rare for roads to be blocked, and thusmalgls that must be blocked
are. If we are told that there is no path frofrto C, then it is just as likely that there are
two blocked roads from to B as fromB to C. In problems such as this, you should
always do simple tests like this to see how reasonable an anssv Is the probability
between 0 and 1? What can you say about the answer in extrensesd limits? Try

to tell a story: ifp — 1 then all roads are blocked so....

Section 1.7: Problem 3: One solution is to use difference equations. The probgbilit
we eventually reactV is justk/N, while the probability we reachis 1 — k/N (by
symmetry); thus the probability neither of these two evérappens id — (k/N) —
(1—k/N) = 0. This solution is somewhat unsatisfying, as it requiresaisdive
difference equations to get the probability N (and the difference equation doesn't
even have distinct roots to its characteristic polynomialVe can find a more elegant
solution by using the Murphy’s Law problem from Section 1pBoplem #2). Imag-
ine we flip our fair coin/NV times and get all tails. Then no matter where we are in
{1,2,...,N — 2, N — 1}, after N tails we must hit the boundary 6f As ‘eventually’

we get/V consecutive tails, we must eventually eitherthitr have been absorbed/sit

Section 1.7 Problem 4. | agree: here’s one approach. Lé&tbe the event that we
preferz toy. Then

P(A) = PANC)+PANCY
= P(A|C)P(C) +P(A|C)P(C*)
1-P(C)+1-P(C°) = 1,

where above we useBl(A|C) = 1 andP(A|C°) = 1 as we were told that give@
(respectively,C¢) we preferx to y. This is a very important problem. When we try
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to prove results, it is often easier to break into cases thaver all possibilities, as
then we get to assume additional results in each case. Forragke, we might have
a result is true if the Riemann hypothesis holds (where we @ggtain consequences
of the Riemann hypothesis holding), as well as it is true ifeéfRiemann hypothe-
sis is false (where we use certain consequences of its fajuthus the claim must
be true, as either the Riemann hypothesis is true or it is flsThis is a power-
ful way to attack many problems, as in each case we now havetarlore at our

disposal. (For those interested, I'm thinking of the proof of Skewesimber; see
http://en.w ki pedi a. org/ wi ki / Skewes_nunber.

Section 1.8: Problem 28: Each cube has 8 vertices on the surface of the sphere. If |
try to be as obstructionist as possible, | will arrange itlsat £xactly one of the 8 ver-
tices on each cube is blue; this uses as little paint as dedsilblock you as much as
possible. Note no vertex is on two distinct cubes, so withasg of generality | might
as well assume that | always paint the vertex in the positotard blue. | thus need to
paint at least 1/8 or 12.5% of the sphere blue to ensure tkeat ik no cube where all
vertices are red, but | only have enough paint to do 10%. Thergdization to higher
dimensions is actually straightforward — all that matterghie number of vertices! In
four dimensions we hav&! = 16 vertices, so any number less than 1/16 will suffice to
ensure that we can find a hypercube with all vertices pairgédrihis is a red-herring
problem. It seems that for higher dimensions we’ll need todum things such as the
hypervolume and surface area of the spheres, but all we neelrtow is the number

of vertices on the hypercube. Whenever doing a problem, khitbout the key features
of the problem — what really matters, and what might be misi&ag. We do need to
have some of the symmetry of the sphere (it is important coigrone vertex blue
cannot block multiple cubes), but we do not need any fine pndgs of the sphere.

Section 2.1: Problem 2: P(Y < y) is the same aB(aX + b < y) or P(X < y%b) =

F (yT‘b) For problems like this, | find it is best to go slow. Start withé definition of
the (cumulative) distribution function ofY”, and then do some algebra to express this
in terms of the (cumulative) distribution function ofX'.

Section 2.1: Problem 4: This is a straightforward calculation, so long.as= [0, 1]
(if not the properties break down; for instance, it need rssign non-negative prob-
abilities to intervals). The product is a distribution ftioa (this can be seen after
some algebra)Similar to a previous problem, we should ask how importanttise
condition that A € [0, 1]. It turns out that the result is false. IfA = 4, we have
H(z) = 4F(x) — 3G(X). This satisfies the right behavior as — 400, but can
give negative probabilities. For example, i arises from the uniform distribution on
[2, 3] and G from the uniform on [0, 1], then H (1) = —3.

Section 2.1: Problem 5c: Let F'(z) = f(x). There is no problem with the limits
asxr — =oo so long as we remember thatogu — 0 asu tends to O from above.
We must show that this function is non-decreasing to coraple¢ proof that it is a



MATH 341: PROBABILITY: FALL 2009 COMMENTS ON HW PROBLEMS 7

distribution function. The simplest way to see this is tcetakderivative, which gives

—J\x
o) = fa)log(1 = Fla) + (1 = Fla); s = ~fla) og(1 — Flo))
asF(z) € [0, 1] we havelog(1 — F(x)) < 0 (it is the logarithm of a negative number),
and thus the first derivative is positive (so the functiomisréasing.l find the above
is a very useful way to prove certain types of claims. Nam#dke the first derivative
and show it is positive — this suffices to give strictly incesag.

Section 2.3: Problem 3: This is perhaps one of the most important problems in the
entire course! Ag' is continuous and strictly increasing, it has a continuowgrise
F~1. NoteP(Y < y) = P(F~1(X) < y); however,F~1(X) < y meansX < F(y).
ThenP(Y < y) equalsP(X < F(y));asF(y) € [0, 1], from the givens of the problem
P(X < F(y)) = F(y), which completes the proo¥Vhy is this problem so important?
One way of interpreting the result is to say that if we can sitate any random vari-
able that is uniformly distributed (or equidistributed) ofb, 1], then we can simulate
any random variable whose cumulative distribution functias strictly increasing.

Of course, how does one generate a random number uniformly#isTis a very hard
question. See for instanckt t p: / / ww. r andom or g/ .

Section 2.3: Problem 4: The first part is a computation. The second is false. The eas-
iest example igf is the uniform density of0, 1] andg the uniform density o2, 43].
Then f(x)g(xz) = 0 for all z. It's often a good idea to play around searching for
counterexamples, or seeing what makes examples succeest.hicausef and g are
non-negative and integrate to 1, nothing implies the sameshhe true for their prod-

uct.

Section 2.3: Problem 5: This is a calculation, and a test of Math 103/104. For (a),
note the integral diverges unlegs> 1, in which case it converges. For (b) the easiest
way to proceed is to change variables, witk= 1 + ¢ (it's more convenient to do this
thanu = e®). For problems like this, look at the integrand ag — +o0,0 and any
other special points. If the integrand is not decaying at apropriate rate....

3. HW #3

Homework: Due Thursday October 1 (though you may place in rajtiox anytime
up till 10am on Friday 10/2): Section 2.5: #2, #6. Section 2%, #4af, #7, #11, #18.
Create two homework problems and TeX them up. They may be yihiag related
to probability; the first one you must be able to solve (andlithe the solution in your
write-up); for the second, it’s fine not to be able to do it (fieee to include a problem
whose solution you'd like to know). | will share the problesursd solutions with the
class.
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Section 2.5: Problem 2: ForP(X = z,Y = y), asY = 1 — X this is impossible
unless(z,y) = (0,1) or (1,0). The answer is thatl, 0) happens with probability,
(0, 1) with probability1 — p and(0,0) and(1, 1) have probability 0. The analysis for
the second part is similar.

Section 2.5: Problem 6: Interestingly, this isiot a cumulative distribution function
(CDF)! While every square has four right angles and two pafipgarallel sides, it is not
the case that every quadrilateral with four right angles tavalpairs of parallel sides
is a square (i.e., rectangles exist). Lemma 5 on page 39listserties a CDF should
have; however, just because something has those propsrgssiot make it a CDF. To
be a CDF, it must assign non-negative probabilities to reges. We can evaluate the
probability thate < X < bandec <Y < dinterms of ' by using Problem 4 of this
section. If we use that for this problem for the regiort X < 2 andl <Y < 2, we
find that this square is assigned a negative probabilitys this F' cannot be a CDF.

Remark 3.1. This exercise is important as it illustrates a common themtiition in
one-dimension frequently does not transfer to higher dsims. On page 29 (Section
2.1) we learn that a similar lemma characterizes CDFs in gadable — such a simple
characterization does not hold in two dimensions. A verg micallenge problem is
to see what conditions do uniquely characterize which fonstare CDFs in two and
higher dimensions.

Section 2.7: Problem 1: As the probability that the first head occurs on tass
(1 —p)"'p, we have

o o 1 _ m
P(X >m) = > (1-p)"'p = (1-p)"p>_(1-p)* = % = (1-p)™.
k=0
The distribution function is just 1 minus this (by the law otal probability), orl —
(1 —p)™. Note we could have also calculatBdX > m) by evaluatingl — P(X < m)
and using thdinite geometric series formula.

n=m+1

Section 2.7: Problem 4af: Note I is continuous. For (a) we have
P(1/2< X <3/2) = F(3/2)—F(1/2) = 3/4—1/4 = 1/2.
For (f):
P(Z<z) = PWX <z) = P(X <2?) = F(z?)
as X is non-negative.

Section 2.7: Problem 7: The first airline is overbooked if all 10 seats are filled,
which happens with probability9/10)'0 ~ 0.348678. The second is overbooked
if 20 or 19 people show up, which happens with probabi(i§) (9/10)%°(1/10)° +
(20)(9/10)'*(1/10)! ~ 0.391747. Thus there is a higher probability the secondeplan
is overbooked. For problems like this, it is worthwhile trgito get a feel for the an-
swer. Imagine we have a nine trillion seats and sell 10drillickets. We expect nine
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trillion people to show up, and there should be approxinya¢ejual probability that
more or less than nine trillion show up. Thus, in the limit las size tends to infinity,
there should be about a 50% chance the plane is overbooketh istgreater than the
34.87%.

Section 2.7: Problem 11: I'll write this up later.

Section 2.7: Problem 18: For both problems, there a(%) ways to place the pawns
on the board (where we do not care about the order in which alasg are placed).
(a) There are 18 ways to have 8 pawns in a line (8 horizontas|iB vertical and two
diagonal). Thus the probability that the 8 pawns are in airzg (684) (b) There arex!
ways to place: pawns on am xn board such that each row and each column has exactly
one pawn. To see this, each pawn has coordin@tgs with 7,5 € {1,...,n}. The
solution is obtained by putting the pawns in order by thest fmoordinate; their second
coordinates are just a permutation{df,...,n}, and there are! such permutations.
This problem is useful in abstract algebra. Instead of astieerd, we consider an
n x n matrix with a 1 if there is a pawn in the square, and a 0 othewitiese matrices
are called permutation matrices, and form a group undeiixmatrtiplication. Cayley’s
theorem says any finite group is isomorphic to a subgroupesfeimatrices. (Note: for
the problem asked in the book, we take= 8 and find the probability that no two are
in the same row or column is just/(%).)

4. HW #4

Due Thursday October 8 (though you may place in my mailboxiargyup till 10am
on Friday 10/9): Section 3.1: #1ac (hint: famous sum), #3%@ction 4.1: #1b. Sec-
tion 3.2: #1, #4 and Section 4.2: #1 (also do when F is unifomnfigl] and K = .9);
obviously your solution will depend on the unknown disttibn F. Section 3.3: #1, #2,
#7 and Section 4.3: #1a, #2.

Section 3.1: Problem l1ac: For (a), the function is clearly non-negative. Its sum is

e ) 1

C =1 :
2y =0y =0t =0
n=1

n=1 2

thus to be a density we must take= 1. Here we used the geometric series formula
starting not ab, = 0 but atn = 1. For (c), we again have a non-negative function whose
sum now is

= C =1 72

nz:;nz N C;nQ N CG’

we have discussed this sum previously in class, and whiteribt apparent why that
sum isw?/6, it should be clear that it is finite. The reason is this is-series from
calculus: > | 1/n” converges ifp > 1 and diverges iy < 1. Thus there isome
choice ofC' so that the sum is 1. To see this, we use the Intermediate Valeerem
(IVT). Note the sum is clearly a continuous function@©f If C' = 0 the sum is zero,
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while if C' = 2 the sum is at least 2. Thus there is some choic€ eb that the sum is
1 by the IVT. AsC'7?/6 = 1, we see we must také = 6/7.

The reason this problem is so important is that it is an exampltheTheory of
Normalization Constants. Namely, we frequently have a non-negative function that
has a finite sum or integral, and thus there must be some wagd¢ale it so that it sums
or integrates to 1; in other words, we can make it a probghaknsity. This frequently
arises in my work in Random Matrix Theory. | have horrible egsions involving
N(N + 1)/2 variables (withN — oo and the normalization constant is given by a
horrendous formula. Instead of working with that, | can gtsidy the integrand and get
it for free. One nice application of this is a proof of Wallfermula for 7; for details,
see my paper in the Monthly:

http://www willians.edu/ go/math/sjmller/public htm/math/
paper s/ St at Proof Wal | i s_Fi nal . pdf

Section 3.1: Problem 3: A fair coin is tossed: times. Every coin that lands on heads
is tossed again. What is the probability mass function ferritbmber of heads after the
second toss?

We solve this problem two ways. The first is the ‘natural’ aygmh. It has the
advantage of being a reasonable method to try, but leadsdpyanessy formula.

Ouir first solution uses conditional probability. Let’'s sag want to compute all the
ways of havingn heads on the second toss, with cledrly¥ m < n. We can express
this probability as

Z P(m heads on second toss|k heads on first) - P(k heads on first toss).

k=m

Why? We must have tossed some number of heads on the firstioist, we denote
by k. Clearlyk > m as otherwise we can’t have heads on the second. The answer is

thus
Zn: <k) m(l o )k—m . (n) k(l o )n—k
2 \m p p k p p .
It is worth asking what would happen if we forgot about theinregon thatm < n;

for example, what itn = 4 andm = 6? We would have the binomial coeﬁicie(ﬁ)

— how is this defined? We might at first expect it to g(a—2)!; this works but you
need to know that—2)! is defined to be infinity! We'll discuss this later when we talk
about the Gamma function, which generalizes the factomiattion. There is another
way to ‘see’ what the definition should be. We expect the answéde zero, as the
combinatorial interpretation ishow many ways are there to choose 6 objects from 4
when order doesn’t matterClearly there ar@o such ways, and thus the answer should
be zero. Another way of defining) is

nn—1)---(n—(k-1))
Kk —1)---1 '
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In our case, we would have

4 _4-3-2-1-0-(—1)_0
6/  6-5-4-3-2-1

as we have a 0 in the numerator.

Remember, in mathematics we can make almost any definitiomamé — the ques-
tion is when our definition is useful. The above is a great wagdfine the choose
function when the bottom exceeds the top, and agrees witbaubinatorial intuition.

We now give an alternate solution. A much better way to lookh&t problem is
to think what must happen for a coin to end up heads after taset The only way
this can occur is if the first and second tosses are headsh\{gice the coin lands on
heads with probability) happens with probability - p = p%. Our situation turns out
to be equivalent to the followingfoss a biased coin (with probabilify of landing on
heads) a total of times; what is the probability mass functiom®e answer is just

P(m heads) = <:,L) )" (1-p*)"" = < )pQ’”(l—pz)"‘m-

The above analysis illustrates one of the most common wagsotiee combinatorial
identities. Namely, we calculate a given quantity two ddfa ways. As both count the
same object, they must be equal. Typically one is easily edetp and thus the other,
harder combinatorial expression must equal the easier Boeexample, in our case
above the second approach was fairly easy to compute. Ifkeepta- 1/2 and set the
first and second solutions equal to each other, we find

i k\ (n 1\ (3T
= \m)\k/) \2 - \m/) 22
We can verify this identity for any choices of < n; however, is there a way of proving

this directly (and not relying on us being clever and notidinis counting problem was
equivalent to another)?

n

m

Section 4.1 Problem 1b: Our proposed density is again non-negative, so the question
is just whether or not it will integrate to 1 for some choicg’afWe have

o0

/_OO Cexp(—z —exp(—x))dx = C/ exp(—z) exp(— exp(—z))dx.

We do au substitution. Let
u = exp(—exp(—x))
SO
du = exp(—x)exp(—exp(—x))dx,
andzx : —oo — oo becomes: : 0 — 1. Thus our integral is

1
C'/duzl.
0

There are other change of variables we could make, but thieisimplest. See the
comments for Section 3.1, #1 for more on problems like this.
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Section 3.2: Problem 1: Clearly all three are not independent, as if we kn¥wand

Y then we knowZ. From constructionX andY are independent, and by symmetry
it suffices to showX and Z are independent{ and Z are independent by a similar
argument). To see that they are independent we must show

PX =x,Z=2 = PX =zxPZ =z

We have four possibilitiest € {—1,1} andz € {—1,1}. A straightforward calcula-
tion shows eaclt X =z andPZ = 2z = 1/2, whilePX =z, 7 = 2 = 1/4.

Section 3.2: Problem 4. We use the idea from the basketball game in class, namely
that this is a memoryless game. For the first problem, aftéinrows a 6 we do not
care if she 4 is obviously named Alice) throws another 6 bef@tdéclearly Bob) orC
(surely Charlie) does; all we care about is thathen throws a 6 before Charlie. Let

be the probability thatl rolls the first 6. Then

6 6)

this is because she either rolls a 6 on her first try, or shefuahd C' all miss, and
then it is as if we've started the game fresh. (Note how ingrdrthe memoryless
feature is in solving these problems!) We thus finet 1 + 1222, or after some algebra
x = % We now keep rolling, and we only care about the rollgsoandC'. It suffices
to determine the probabilityg gets the next 6, as cleary will then be the last to roll
(from a previous homework problem, related to Murphy’s lex, do know eventually

C will roll a 6). Let y be the probability3 rolls a 6 before”, given thatB rolls first. A

similar analysis gives
_ 1 (5 ?
y - 6 6 yv

ory = % + %y, which givesy = % Thus the probability tha# is first, thenB and
thenC' is just

91 11 1001
For the second part, we now waatto roll the first 6, and then the nextrBustbe
rolled by B, and then the nextustbe rolled byC’; thus, we now care about’s sub-
sequent rolls. Fortunately we've already solved this probdl In the analysis above,
we may interpretr = 36/91 as the probability that the first 6 is rolled by the person
currently rolling. Thus the answer here is judt= (36/91)3; the reason is that oncé
rolls a six, it is nowB’s turn to roll.

36 6 1 216

Section 4.2: Problem 1. This is another example of the geometric series / waiting for
a success. The probabilipythat we have an acceptable offerlis- F'(K), while the
probability we have an offer that is too lowis— p = F'(K). Thus the probability that
the first acceptable offer is thé" is just

(1—p)"'p = F(K)" (1 - F(K)),
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and hence the expected value is

S on(—p)lp = Y F(K) L - FK).

n=1 n=1
From class we know that this sum is juistp (we proved this by differentiating the
geometric series), and sinpe= 1 — F'(K) thus the expected value is

1 1

1-F(K) F(K)
If we take our density to be the uniform distributionj@n1] and K’ = .9, thenF'(K) =
.9 and the answer is just 10. Note that we really don’t need toviihe density andy’;
all we need to know is the value &f(K).

It is worth reflecting on whether or not an answer gp is reasonable. If = 1 then
the expected value is 1 — this is eminently reasonable, ade@ely}c win on the first
offer. If p = 0 then we never win, and this is seen by the expected humbentiego
infinite. It is always worth checking answers at extreme sdee in limits as we ap-
proach extreme cases, sucltpas: 0) to get some feel for what is going on.

Section 3.3: Problem 1: UsuallyE[1/X]is notl/E[X]. Almost anything is a counter-
example. A trivial one is to tak& = +1 with probability 1/2 for each. Another
example is to tak& = 2 or 4 with probability 1/2 for each, as

1 1 1 1 3
E[1/X] = =-=+--= = =
1/X] = 5-5+73 3
while
1 1 1

E[X]  2-1+4-1 3
It is possible for them to be equal — this is always the casé # x with probability 1
for some non-zera. Assume we hav& = z; with probabilityp; for i € {1,2} and
we want these two to be equal. ps= 1 — py, lettingp = p; that requires

p 1l—p 1
= 4 —
T T x1p+$2(1 —p)
or
x1(1 —p) + pxo _ 1
T1T2 1p+ x2(1 —p)’

which simplifies to

(1(1 = p) + pxa) (x1p + 22(1 = p)) — x122 = 0.
Are there any non-trivial solutions to this? We have threenamvns and only one equa-

tion, so this should be solvable. Of course, we do have ofistns: 0 < p < 1 and
xr1 # xo. (We takep # 0, 1 as otherwise this reduces to the trivial solution.)

Section 3.3: Problem 2: This is a beautiful problem illustrating the power of expec-
tation. Not surprisingly, it starts off as another geonueseries problem (i.e., waiting
for the first success). Lét; be the random variable which denotes how much time
we need to wait to get the next new coupon given that we halistinct coupons (of
the c coupons). For each pick, the probability we get one ofjteeupons we already
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have isZ, and thus the probability we get a new coupon js =1 — < = <. Thus,
lettingp = % we find the probability that we get the next new coupon on pickjust
(1 — p)"~'p, so the expected value is

oo 0 .\ n—1 o
Soneoprr= 3 (1)

n=1

asp = % and the expected value I1gp, we haveE[Y;| = -5 Note the answer is
reasonable. Whej = 0 the expected wait is just one pick (which makes sense, as we
have no coupons so anything is new). Whea ¢ — 1 we are missing only one coupon,
and the answer is an expected wait@also reasonable!).
For the second part, ¥ is the random variable which denotes how long we must
wait to get all the coupons, thén= Y, + - -- + Y._;. As expectation is linear,
C C
ElY] = E[Yo|+---+EY, 4] = —+ -+ ————.
Y] = B+ +EYen] = ——5 4+ o
If we read the sum in reverse order and factor outwee notice it is

1 1 1
ElY] = l+=-4+=-+---+-) = cl
Y] C<+2+3+ +C) clogec,
as the sum is thé" harmonic numbe#., which is aboutog ¢ (a better approximation
is log ¢ + 7, wherev is the Euler-Mascheroni constant and is about .5772156&£3)

http://en.w ki pedi a. org/ wi ki / Har noni ¢c_nunber
for more information.

Section 3.3: Problem 7. First off, an A+ in the course to anyone who can find a
real world example of this in time for us to make bets (notse thay fail if there are
administrative fees for placing bets). The problem meaasiftwe place $1 on horse

i and that horse wins then we wit{i) dollars and get to keep our initial wager; if that
horse loses then we have lost our wager. Let ug;lmllars on horseé. Our total wager
iSby + - -+ + b,. If horsei wins then we winr(:)b; dollars and get to keep our wager of
b;; however, we have lost our wager everywhere else. The anaeing lost is clearly

at mosth; + - - - + b, (we shouldn’t include thé; here, but it is easier to do so). Thus,
as long as

then we end with more money than we started, and thus we win.aMyeold that

n 1 . 1 . .
D it o7 < L. Ifweletd; = —=— then the sum of our bets is less than $1, but if

horse; wins we end with(7 (i) + 1) - ﬁ = 1. Thus, no matter which horse wins, we
end up with more money than we started! What is truly amazbuytthis problem is
that wedo notneed to know the probabilities of the horses winning! Anothteresting
point to note is that the amount we win is independent of whiatse triumphs!

What if we knew that horse 3 had a 99.9% chance of winning, &edything else
was as before. How should we place our bets? If we want to db,regactly as before!

The odds of a horse winning are immaterial for this analy$isie knew that horse 3
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would always win, yes, place all of our money on horse 3. lfyéeer, we deviate from
the derived betting distribution, we are no longer doinghnatt actually gambling.

A few years ago my brother and some of his colleagues had tlesvfog odds on
the Patriots going undefeated in the regular season: Ed gotl5Bozo (aka, Jason)
gave 8 to 1; Mike got 6 to 1, Bozo gave 8 to 1; Wilhelm got 5 to 1 Bodo gave 7 to
1. Was my brother happy, and if so, why? How should he have bet?

Section 4.3;: Problem 1a: We need

o0
/ % *dx
0

to be finite. As the exponential function decays much fagtan tpolynomials grow
(x> < e*/? for x large), there is no trouble at infinity. We just need the iraktp be
well-defined near 0. Near @, * looks like 1, so we need* to be integrable near the
origin. This forcesy > —1. To see this, note far # —1 we have

1 1+«

} .
lim z%dr = lim
e—~0 [, e—0 1+ «

1 ] 1— 61—i—oc

)

= 11m
€ e—0 14+ «

and this forcesy > —1. If a = —1 then [ dz/x is justln z, which blows up.

Section 4.3: Problem 2: This is one of my favorite problems. At first the answer
seems too good to be true, as it is independent of the distiibof the X;'s! All
that matters is that they are identically distributed arat the sum is non-zero (so the
division makes sense). Lat have the same distribution as thg's. The key technique
here is to multiply by 1. We start with

] -

this trivial observation is the key to the proof. We now wrlid in a clever way, and
use linearity of expectation:

Xi+---+ X,

and so

o] -2l - 2
X1+ + X, X1+ + X, n

The key step above is that as thg’s are identically distributed, the expected value of
any one of them over the sum is the same as that of any othetlowsum. We now
calculate the quantity of interest:

E[X1+---+Xm] _Em:E{ X; } _m
X +---+ X, P X +--+ X, n’
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5. HW #5

Due Thursday October 15 (though you may place in my mailbogtice up till
10am on Friday 10/16): (1) Calculate the second and thirteced moments of Bino-
mial(n,p); (2) Calculate the kth centered moment of theddash normal. Section 3.4:
#1. Section 3.11: #9, #13 (can do after Tuesday’s lectueti@ 4.14: #12.

First Problem: Calculate the second and the third momentXoihenX ~ Bin(n, p)
(this meansX is a random variable with the binomial distribution with @anetersn
andp.

One natural way to compute this is from the definition. To esteé the second mo-
ment, we either need to comp®g X — 11)?] or E[X?] — E[X]%. In the latter, this leads

us to finding
n n ~
> K (k)p’“(l —p)" "
k=0

While we can do this through differentiating identitiesjstfaster to use linearity of
expectation. LetXy,..., X, be ii.d.r.v. (independent identically distributed rando
variables) with the Bernoulli distribution with parameteNote these are independent,
and we have the probabilit); is 1 is p and the probabilityX; is 0 is1 — p. Let
X = X;+---+ X,,. As they are independent, the variance of the sum is the stine of
variances:

Var(X; +---+ X,) = Var(X;) +---+ Var(X,,) = np(l —p),
as the variance of eackj, is justp(1 — p). To see this, note
E[(X; — )’ = E[(X; =p)*] = (1=p)*p+(0-p)’p = p(1—p).
We redo the calculations in a way that will help with the as&yf the third moment.
We have
E[X? = E[(X1 +o X))
= E[X? -+ X2 +2X1 X5 +2X0 X5 + - 4+ 2X, 1 X,)]
- YEx+$ 3w
= i=1 j=i+1

As the X’s are independenE [ X; X,] = E[X;]E[X,] = p* (so long as # j); note there
are(}) pairs(i, j) with 1 < i < j < n. What abouf®[X?]? That is readily seen to be
just1?-p+02- (1 —p) = p. Substituting gives

ZerQZ Z P’ = np+ (2)

=1 j=i+1
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Thus the variance is

E[X?] -E[X]? = np+2n(n+1)pQ—(np)2 = np —np® = np(l —p).

We thus recover our result from above.
How should we handle the third moment? BsY| = np andE[X?] = p, we have

E[(X —p)’] = E[X®—3X?u+3Xp*— p’]
E[X°] — 3npE[X?] + 3(np)°E[X] — (np)®
= E[X?] - 3n%p*(1 — p) + 3n°p® — n’p>.

We can complete the analysis in a similar manner as aboveglgaxpanding out
X3 = (Xi4+---+X,)3

and then using linearity of expectation. At this point, eiffntiating identities isn’t
looking so bad!
To solve this with differentiating identities, we must avale a sum such as

; - (Z)pk(l —p)

We start with the identity

n n -
(z+y)" = <k) atyn .
k=0

We apply the operatcw% three times to each side, and find (after some tedious but
straightforward algebra and calculus) that the left hadd siguals

na(z +y)" % (n’a® + 3nzy — y(z — y)) .
Settingy = 1 — x andx = p yields
np(1+3(n—1)p+ (n*—3n+2)p°) = Z K- <Z)pk(1 —p)" k.
k=0
The above is quite messy, and there is a very good chance wetede an algebra
mistake. Thus, let’s see if we can find another approach wiitlhHead to cleaner

algebra. Instead of applyingZ three times, let's apply®-L. Applying this to(z +y)"
is very easy, giving® - n(n — 1)(n — 2)(z + y)"3; applying it to the combinatorial
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expansion gives nat® andk(k — 1)(k — 2). Collecting, we find

nin—1)(n—-2)2*@x +y)"* = 2° Z k(k—1)(k—2) (Z) gk =3yn=k
= Y k* — 3k + 2k T
2 ) (k) oY

- B age )
+2zn:k(k)xky" k

k=0
Settingr = p andy = 1 — p yields
nin—1)(n—2)p* = E[X? —3E[X?] +2E[X].

We have made a lot of progress, as we already KBpW andE[X %] and can thus solve
for E[X3]. The point is that it is easiarotto try and findE[X| directly, but rather to
find a related quantity. Note, of course, that this methodireg us to knowE[ X ] and
E[X?] before we can deduce the valueRjfX ®]; this is not an unreasonable request, as
typically we want to know all the moments up to a certain point

The general principle here is that algebra can be hard,yant tedious, but if you
look at a problem the right way, you can minimize how much latgeyou need to do.
It's worthwhile to spend a few minutes thinking about how vea ¢ry and approach a
problem, as often this leads to a way with significantly legssy computations.

Second Problem: Calculate thek™ moment of the standard normdalhe density func-
tion of the standard normal {&7) /2 exp(—22/2). We are thus reduced to calculating

o 1
M(k) :/ xk-me_ﬁ/?dx.

The integral is clearly zero fok odd, as we are integrating an odd function over a
symmetric region. (Note the normal decays so rapidly tHahalintegrals exist). There
are at least two natural ways to handle eken

The standard approach is through induction and integratygrarts. Consider

& 1 2
2 —z%/2
‘- ——e dx.
/_OO V2T

To integrate by parts, we need to choose values.fanddv. While at first we might
think the natural choices are either= z? or dv = 22, if we try either we run into
problems. The reason is that there is no nice anti-derigdtive—="/2. Fortunately, all

is not lost. The functiom—="/2 is screamingo us that it wants to be considered with a
factor ofx, as then iwill have a nice anti-derivative. Thus we try

1
u=ux dv = e .
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This leads talu = dz andv = —(27)~"/2e~**/2. Thus we find

oo S 1 5
—xz?/2 o .
+ — dr = I(0) = 1.
—0o0 /_OO\/Qﬂ‘e v (>

We have thus shown that the second moment is 1!

More generally, assume we knaW (2k) = (2k — 1)!!. Then we proceed as above,
and to computel/ (2k + 2) when we integrate by parts we set= z?**!, sodu =
(2k + 1)z?*dx. The boundary term vanishes when evaluateti&t, and we find

M2k+2) = (2k+1) /OO xzk\/%e_:”Q/?dx
= (2k+ 1)M(o20k:) = (2k+1)(2k -1 = 2k + 1)L,

Similar to the previous problem, we show how it may also beedbinough differen-
tiating identities. It seems strange to talk about difféismg identities here, as

o 1
I1(2k) :/ x%ﬁe_ﬁ/zdx

has no free parameter! We begin with the fact that

M(2) = wv

° ]_ 2 2
1 = / e %2 du;
o V2102
this is just the statement that the above is the probabiétysdty for a normal distribu-
tion with mean 0 and variane€. Moving o to the other side gives

1 270 2
- —z%/2 d
g = e Z.
/_oo V2T

We keep applyingﬁ"% to both sides/ Why do we multiply by3? The reason is that
the differentiation hits-22c~2/2, and thus brings down a factor ofc 3. Hence if we
multiply by o3, we keep everything nice. Differentiating once gives

od-1 = I(2).

Applying 03% again gives
o3 (3-10%) = I(4),
or 3!lo® = I(4). Differentiating again gives!!c” = 1(6), and by induction we can
show(2k — 1)!lo?+! = [(2k). Settingo = 1 completes the analysis.
Note for this problem that while differentiating identsiés quite useful, it was not
immediately apparent what identity we needed to use!

Section 3.4: Problem 1: We toss a coin that lands hegapercent of the time a total
of n times, and want to know the expected number and variancesafitmber of runs.
Remember a run is a set of consecutive heads or tails, and wéeet a coin of the
opposite value then we start a new run. For examplé BN T TT HT HT we have 6
runs; we start with a run of two heads, then have a run of fdlg, then a run of one
head followed by a run of one tail followed by a run of one healtbived by a run of
one tail.

We solve the problem using binary indicator random varsialed expectation. For
i€{2,...,n}, letX; = 1iftossi is different than toss— 1, and0 if the two tosses are
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the same. Note th&;’s are all identically distributed Bernoulli random varieb with
probability2p(1 — p). (To see this is the probability, note we just have to figurehaw
likely itis to get HT or T H.) We let

X =14+Xo+--+ X,
we start with a 1 as the first toss always starts a run. Usimgtity of expectation,
EX] = 1+ E[Xs]+---+E[X,] = 1+ (n—1)2p(1 — p).

Whenever we prove a formula, it is always worthwhile to sédsfreasonable. Ip =
0 or p = 1 then there is only one run, as expected. Further, note thectegh number
of runs is largest whep = 1/2 (this is a nice calculus problem, namely showing that
the maximum value of(1 — p) happens whep = 1/2). In this case we geﬂj—l runs,
which is the average of (the most runs we could have) andthe fewest number of
runs we could have).

How do we compute the variance? Note that we may ignoretthéerm and just
study X5 + - - - + X,,. We have the formula

n n—1 n
Var(Xo + -+ X,,) = ZVar(Xi) +2 Z Z CoVar(X;, X;).
i=2

i=2 j=i+1

For notational convenience, set= 2p(1 — p), and note that eacl(; is a Bernoulli
random variable with parameter The variance of eacly; is therefore just(1 — ¢).
What about the covariance terms? We have

CoVar(X;, X;) = E[X,X;] — E[X;JE[X]].

If j > i+ 2thenX, andX, are independent (and thus there covariance is zero), while
if j =i+ 1they are dependent. In this latter case, we HEVE]E[X;] = ¢?, while

E[X;X;] = 1-(p*(1 = p) + p(1 —p)*)+0-(1 = (p°(1 = p) + p(1 = p)*)) = p(1—p);

the reason this is the answer is that the only way¥oK; = 1 whenj =i+ 1is for us
to haveHTH or THT. Therefore

Var(Xp +---+ X)) = (n—1)g(1 —q) + (n = 1) (p(1 —p) — ¢*),

with ¢ = 2p(1 — p). Simple algebra showsg1 — p) = %; asq < 1/2, p(1 — p) > ¢°.
Thus our variance is hon-negative, and is a constant timegich implies our answer
IS ‘reasonable’.

Section 3.11: Problem 9: We let X represent the number of headsrinosses of a
biased coin that is heads with probabilitgnote we are changing notation slightly from
the book). Thus

O A

We wish to compute the probability that is even; thus we need to evaluate

n/2

> (;)p%(l —p)"

=0
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An elegant way to solve this is to consider

1 n 1 n

§(x+y) +§(y—x) :

When we expand this out, only the terms involvingp an even power survive. Setting
x =pandy =1 — pyields

n/2

1 1 n , ,
Z1n (1 =29)" = 21 1— n—21
S o(l-2p)t =) <2i)p (1—=p)"",

1=0

and thus the probability that is even is% + %

As always, our first thought should be: is our answer readeflabs—1 < 1 —2p <
1, we see our probability is always between 0 and 1. For our tsstt it is good to
consider extreme cases. What happens=f 0? Then there are never any heads and,
as zero is an even number, we should (and do!) have an evenenwhheads with
probability 1. If insteag = 1 then there are an even number of headsid even else
there is an odd number of heads; both of these observatiersatsfied by our answer.
Finally, if p = 1/2 then there is precisely a 50% chance of having an even nunfiber o
heads. Is this reasonabl¥ES!To see why this is reasonable, note that it doesn’t matter
what the firsth — 1 tosses are; given any outcomes there, we have a 50% chaimce tha
we have an even number of heads after the last toss (if thafeesdy an even number
of heads we need a tail, while if there is an odd number of h#eswe need a head,
with each of these events happening with probability oné-ha

While this is an interesting problem, to me the really impattaspect is seeing
whether or not our answer at the end of the day is reasonab&arring how to do
these quick tests / checks is a very important skill.

Section 3.11: Problem 13: | have discussed this with a few of you. In the interest of
time, I'm hoping to modify someone’s TeX code here. The kegavtation is that we
need to use a generalization of the cookie problem.

Section 4.14: Problem 12: A random variable has a chi-square distribution with
degrees of freedom if it has density

1 d_1 _—x/2
fiw) = e =0
0 otherwise,

wherel is the Gamma function (the generalization of the factomalction), which is
given by

I'(s) :/ e dx.
0

We first show that ifX; ~ N(0,1) (which meansX; is normally distributed with
mean 0 and variance 1) théf? is a chi-square distribution with 1 degree of freedom.
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LetY = X?7. Then
P(Y <y) = PX*<y)
= P(-/y<X <)
= F(Vy) - F(=vy),

whereF is the anti-derivative of the standard normal’s dengity) = (2r)~'/2e~"/2,
At first it looks like we have made no progress, as there is e, rtlosed form ex-
pression for the anti-derivative of the standard normall. ig\hot lost, however. The
reasons this is progress is that the derivative of the cumaaldistribution function is
the density. Thus, the density Bf, which we denote b¥i(y), is given by the derivative
of P(Y < y) with respect tgy. Using the chain rule, we find

hy) = %[F(@—F(—m
, 1 , ~1
F(\/@m _F(_\/@ﬁ
—-1/2 _ Le—yQ 1
=f(\/§)y/—\/% e

which is the density of a chi-square distribution with 1 degof freedom (we need the
fact thatl'(1/2) = /7).

What about the sum of the squares of two independent standarthl distributions?
We again calculate the cumulative distribution functiod #men differentiate. We find

H(y) = P(X7+X3 <y)
1 2
= —x1/2 6 x2/2dl’1dl’2
//m +m2<y \/ \/

= // _6—(1’1—1—1’2 /zdl'ldl'g.
m%+m§§y 2m

We now switch to polar coordinates, setting= r cos ; andxz, = rsin 6,. The change
of variables formula givegx,dx, = rdrdf, and we obtain

H(y) = / / —e " Prdrds
0 r
= / e Prdy
r=0

= 11— V2

(the integration is up tq/y and noty as the radius-squaredy$. Now that we know
the cumulative distribution functioH (y), the density is simply the derivative. Thus we
finally obtain
1
h(y> = §e_y/27
which by inspection is the density of the chi-square distidn with two degrees of
freedom.
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Given the amount of work it took to evaluate the sum of the segiaf two standard
normal distributions, we are justified in being a little adraf the calculation for the sum
of n squares. It seems like we will need to know the change of biari@rmula forn-
dimensional cartesian coordinates:talimensional spherical coordinates! Amazingly,
though there are nice formulas for this, we do not need to kim@m because we will
exploit a method known as theneory of Nor malization Constants. We know we can

represent, ..., x; through the radius andk — 1 angle9, . . ., 8. We have relations
of the form

T = rgl(ﬁl,...,ek_l)

xp = rgp(f1,...,0k1).

We state the Change of Variables Theorem:

Theorem 5.1 (Change of Variables)Let V and W be bounded open sets Rf. Let
h:V — W be a 1-1 and onto map, given by

h(uy,...;uk) = (ho(ug,.ooug), oo he(ug, .o, ug)) - (5.1)

Let f : W — R be a continuous, bounded function. Then

/.-./Wf(xl,...,mk)dx1~-~d$k
_ /.../Vf(h(ul,...,uk))J(ul,...,uv)dul---duk, (5.2)

whereJ is theJacobian

Bul 8uk

Jo=1 1 (5.3)
Ohy ... Ol
Bul 8uk

If we are to use this theorem, we would need to compute thebimtowvhich would
require us to know the change of variable functighsHere is how we get around it.
We need to figure out how the volume elemént - - - dz;, changes; we clearly have

dl’l .. de'k; — g(ﬁ 91, . ,Hk_l)drdel s ‘dek—l-

We must have
g(T, 917 R ek—l) = Tk_1C<,r7 917 s 76k—1)-

Why? This follows from unit analysis. In two dimensions we/@dx dxy +— rdrdf
and in three dimensions it iz dxodrs — r?sin 0,drdf,df,. Note that we have the
radius to a power one less than the number of variables. $hie¢ause the angu-
lar variables are unitless, and thus the unitgaf6, - - - df,_, are meters (say), while
dzy - - - dzy has units ofmeters®. Thus we need the factef—!. We have therefore
shown that there is some complicated functibsuch that

dl’l Ce d!li'k; = Tk—lc(el’ .. ,Hk_l)dmwl tr dek—l'
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We now return to our problem. L&t = X? + - - - + X?2. We again use the theory of
cumulative distribution functions and find

HY) = P(X?4+..-+X2< y)
1

= x%/2...—€_x%/2dx ...dx

/ / 2—i— +mi<y \/ V 2w ! y

_ e ¢ U ) )
= / /1’2+~~~+5L‘2<y (27T)k/26 1 k d.Tl d;(;k
1 <

We now change variables. We don't care what the angularratiegs are over, so we
just denote those b# to u; (for lower and upper bound):

v e 1 —r2/2 k-1
:/ . /; , A , (27T)k/26 r C(@l,...,Qk_l)drdél---dek_l.
r= 1=41 k—1=tk—1

We integrate over the — 1 angles; the answer is independent @indy, and we denote
it by C} (it does depend on the number of angular variables). Hence

Vi
H(y) = C’k/ e T2k gy
r=0
Let f(r) = Cre™""/2rk~1 and F(r) be its anti-derivative. Then

H(y) = F(Vy) = F(0).

We take the derivative and finally (almost) obtain the dgnsit

_ / 1 C y/2 k1
hy) = P = 5"

Why do we say ‘almost’ above? The problem is we still have threstantC},, which
we should have determined by doing the angular integratiabslid not. Thus we do
not have the final answer; fortunately, it is trivial to cong@’;, now. This seems absurd
— how can we comput€), now? Shouldn’t we have computed it earlier? And, if we are
going to compute it, shouldn’t we figure out what the changeaniable formulas are
for going from Cartesian to spherical?

The reason we can evaluate it so easily is tHat X7 + --- + X? is a random
variable;therefore its density must integrate to 1! We know from above the formula
for the density of a chi-square random variable wittlegrees of freedom; usingfor
the dummy variable it is just (fay > 0)

1
9%/20 (k/2)”

Note this has exactly the samyedependence as our part, and thus the normalization
constants must match up!

This is a very important problem, without a doubt the mostartgnt on this home-
work assignment. While there are other ways to compute tigsvar by doing more
direct computations, | prefer this approach as it illuseatthe power of the Theory of
Normalization Constants. It's incredible how it allows odypass certain painful com-
putations. This arises all the time in random matrix theanye of my main research

5—lemv/2,
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interests.

Remark 5.2. If we hadn’t been given the probability density functiondochi-square
with & degrees of freedom, we could still have found the valu@, dfy noting that:(y)
integrates to 1. We need to use the Gamma function, whictireedeby

I'(s) :/ e "2* tdu.
0

Though we don't need it, it is worth noting for future probkethat the Gamma function
is a generalization of the factorial function. It's a nicesegise to provd'(n + 1) = n!
for n a positive integer — the proof is by integrating by parts.

Returning to our problem, we have

1 = /0 Ooh(y)dy

_ % e8] e_y/zyg—ldy.
2 Jo
We change variables, letting= y/2 sody = 2dx and find
1= G [T embnhogge — & gt (E) ,
2 Jo 2 2
which implies
Ck 1

2 2R2D(k/2)
Remark 5.3. Whenever we see a new method, it's worth exploring how farweush
it. What else can we glean from the above analysis? Imphadir computation is the
‘surface area’ of the:-dimensional sphere! Remember our volume element became

rk_1C(91, e ,Hk_l)d’f’del cee d@k_l,

and we showed
1

/ / Wc(ela"'uek—l)del“'dek_l = Ck
01=01 Op—1=Lr—1

Using our value foiC;, above, we find

u1 Uk—1 2(27T)k/2 9. 7.(.16/2
COr, .. O0pr)dOy - Oy = - .
/ / O )by by = Zp 73y = T/2)

We claim that this is the surface area of thelimensional sphere. Why? We were inte-
grating a function that depended only on the radius; thus vag oonsider our change
of variables as partitioning the-dimensional sphere of radiugy into a collection of
shells of radii ranging from 0 tq/y. What does this formula give for specifie We
find

n=2 : 27
n=3 : 4rx
n=4 : 27%
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except for the last, the previous two are well-known as therer of the unit circle
and the surface area of the unit sphere.

6. HW #6

Due Thursday October 22 (though you may place in my mailbgx@e up till 10am
on Friday 10/16): Section 3.5: #2. Section 4.4: #5. Sectién 82, #7. Also TeX up
two problems; you must include an answer for the first.

Section 3.5: Problem 2: We toss/V coins (each of which is heads with probability
whereN ~ Poisson(A), and letX denote the number of heads. What is the probability
mass function ofX? We compute it by calculating the probability of gettimgheads
when we tos® coins, and weight that by the probability of havingoins to toss. Thus
the answer is

Prob(X =m) = Z Prob(X = m|N = n) - Prob(N = n)
= [(n\ ,, o ATETA
= (o 2

o m_—\ - ’fl' n—m)\n

- e Zm!(n—m)!(l_p) n!
m,—\ X n—myn

_ple Z (I—=p)" ™A

m! (n —m)!

n=m

We need to be ‘clever’ here to simplify the algebra and geta,rdlean expression, but
note the very large hints. First off, we have a factop®t— /m! outside. This looks
a bit like the mass function of a Poisson, but not quite. Séctire sum above has two
pieces that depend on— m and one piece that dependsnThis suggests we should
add zero, and write

)\n — )\n—m—i-m — )\n—m ) )\m

We can then pull tha™ outside of the sum and we find
pm)\me—)\ e (1 o p)n—m)\n—m
m! (n—m)!

n=m

We now letk = n — m so the sum runs from O teo. We also combine the factors, and
obtain

Prob(X =m) =

m€—>\ o o k
Prob(X =m) = (p)\q)n! Z<(1 kf))M

(pA)"™e™ L0-P)A
m!
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from the definition ok* as
e = Z F
k=0
Simplifying the above expression, we finally obtain

(pA)me P
m)!

Prob(X =m) = ,
which is the probability mass function for a Poisson rand@mable with parameter
DA

It takes awhile to become proficient and fluent with such aigiebmanipulations.
A good guiding principle is that we want to manipulate theresgions towards some
known end, which guides us in how to multiply by 1 or add 0. Hbxekey step was
writing A" and A" ™A™,

As another example, let's compute the average value of amanariableY” with the
Poisson distribution with parametg&r We have

By = Son o

n!
e A" -2

= 2 ;!
I

To finish the evaluation, it is natural to writ¢ and A"~ \. The reason for this is that
we have a sum where the denominator involwes1, and thus it is helpful to make the
numerator depend an— 1 as well. If we letk = n — 1, then as: runs from 1 toco we
havek runs from 0 tooco, and we find

AN A oM A
ElY] = e Z I = e ZH:)\ee:)\,
k=0 k=0

where again we made use of the series expansief. of

Using this fact, we can find the expected number of heads imsbgned problem
withoutactually proving thafX is given by the Poisson distribution with parameXer
To see this, we claim that if

Prob(X =m) = » Prob(X =m|N =n) - Prob(N = n),

n=m

then

E[X] = iE[XUV = n| - Prob(N = n),

n=0
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which leads to

o0

Ate™?
E[X] = an- oy
n=0 ’

[
Z Ate=A

= p n : n' 7
n=0 ’

the last sum is just the expected value of the Poisson disiib with parameten,
which we know is\. ThusE[X] = pA.

Section 4.4: Problem 5. We want to compute the density &f = ¢*, whereX ~
N(0,1). The latter means that has the standard normal distribution, namely that the
density function ofX, fy, satisfies

fx(@) = ——= e

One very easy way to compute the answer to problems likeshig using cumulative
distribution functions, and noting the probability degs# the derivative. LefF'y and
Fy represent the cumulative distribution functionsXfandY’, and letfx and fy
denote their densities. We have

Fy(y) = Prob(Y <y)
= Prob(e® <y)
= Prob(X <logy)
= Fx(logy).
We now differentiate, using the chain rule.
/ / 1
fry) = Fx(logy)-(logy) = fx(logy)g
Substituting forfx, we obtain
1 1 _dw
frly) = ——=—ce

Section 3.6: Problem 2: We are asked to find the marginal densities for a multinomial
distribution with parameters andp,, ..., p;. Without loss of generality we may find
the marginal for the last variable, as the other cases amiddhanalogously. Note that
for a multinomial, we have, + --- +p, = 1, andn = ny + --- + n;. Let X, be the
random variable for the last variable. If we want to caloeiltte probability thatX,
equalsm say, we must sum over all the remaining variables (I prefersma different
letter for the variable of interest to emphasize that we dowish to sum over it). As
the sum of allt variables isn and the last variable is, we are simply summing over
ny +---+n—1 = n—m. We thus have

n! n Tt 1 m
Prob(Xt — m) = ( Z m}%l .. -ptﬁ11> mpt .

ni+-Fng_1=n—m
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The quantity in parentheses looks a lot like a multinomiahsuth n — 1 probabilities;
it is not quite that, as the numerator is supposed to equaltiteof the numbers being
factorialed in the denominator. This is readily fixed. We chélee numerator to be
(n —m)! instead ofn!, so we multiply by 1, replacing! with (n — m)! - n!/(n —m)!.
This leads us to

_ _ (n_m>' ni ne—1 n! m
Pl"Ob(Xt _m) - ( Z nl!"'n_l!pl P m’(ﬂ_m>‘pt

nit-+ng—1=n—m
B n
= (4 +pa) m( )p{”;
m

however, a®; +p> +---+p, = 1, we havep; + --- + p,—1 = 1 — p;, and thus we
finally obtain the solution

Prob(X, = m) = (Z) (L= )

There is a more elegant way to see this without resorting ltthal computations
above. A multinomial witht probabilitiesp, . . ., p, models outcomes with possibil-
ities; for example, we might havecandidates and these are their support levels (or
perhaps we have a strange die and these are the probalufite$ace landing up).
When we sum all variables but one, we go from havigtions to two options (either
t or nott); it shouldn’t be a surprise that this collapses to a bindnais. we are now
lumping together all opposition.

Section 3.6: Problem 7. We are given that the joint mass functionXfandY is

10x+y>

forz € {1,...,9} andy € {0,...,9}. As a nice exercise, one should sum this and
make sure it is a mass function. To find the marginakofve sum over alt’; in other
words, we want the probabilityf = = and the value ot is immaterial. Thus

S0\ " 10r +y y )
There are two natural ways to do this sum. The first is tolugg (A/B) = log,, A —

log,, B and notice that we have a telescoping sum; the second isedimaitthe sum of
logarithms is the logarithm of the product. In the latter m@eh, we find

9
10z +y+1
fx(z) = log <H W) .

y=0

Ifxy(x,y) = logy (1 +

The productis
10x+1 10x + 2 10z + 10
10z 10z +1 10z +9°
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the products cancel in pairs and all that remain§{s® = . Thus the mass function

is
fele) = togy ()

if x € {1,...,9} and O otherwise. (A similar calculation shows that the surthisf
overz equals 1, and thus our proposed function is indeed a pratyaibiass function.)
The mean is just

9
1
Y zlogy (xi ) ~ 3.44024.

r=1

Can we somehow approximate this? Our sum is just

logy (2) — logy (1)
2 10g10 (3) -2 lOglo (2)
3logy, (4) — 3logg (3)

9logyg (10) — 9logy, (9) -

Note this simplifies; instead of everything in the middle@aimg we just get each once,
and the mean is

10°
k=1 ’

It is interesting to compare this answer to the average semtf a system satisfying
Benford’s law. Remember we may write any positive numbesz = M;y(z)10F,
wherelM(z) is the mantissa of (and livesin[1, 10)) andk is an integer. For example,
1701 24601 = 1.701246010°. The density function for the mantissa is frequently
Thus the expected value of the mantissa is

/1 0 L d ) 3.90865
x - r = ~ 3.
1 xlog 10 log 10 ’

which not surprising is a bit higher than what we calculatetbke. The reason it is
higher is that if we only care about the first digit, then a nenlike 1.9997 counts as a
first digit of 1, even though it is quite close to 2.

T log 10°

7. HW #7

Homework: Due Thursday October 29 (though you may place immaitbox any-
time up till 10am on Friday 10/30): Section 4.7: #2. Sectiohl3 #14. Section 4.14:
#35, #45bc.
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Section 4.7: Problem 2. We are given thafX andY are independent exponential
random variables with parameterthus their joint density is

fX,Y(ZB y) = {

We now set/ = X +Y andV = 5 note that) < V < 1as0 < X,Y. To find
the joint density ofU andV/, we need the Jacobian of the change of variables. We are
given

e eV ifx,y>0
0 othwerwise.

"X +Y
we need to invert this relation and solve f&randY in terms ofU andV. AsU =
X +Y, we may rewrited/ = XLJFY asV = X/U, which meansX = UV. Now that we
know X in terms ofU andV/, we substitute intd/ = X + Y tofindU = UV + Y, or
Y =U-UV. Thus

THUV) = (X(U,V),Y(U,V)) = (UV,U-UV).
We can now calculate the Jacobianwhich tells us how the volume element trans-
forms (explicitly,dxdy = |J|dudv). We have
0X oY

T(X,Y) = (U(X,Y),V(X,Y)) = (X+YL);

57 5V V U
J =9 | = = UV-UQ1-V) = -U.
Al 1-V —U
Thus the joint density o/ andV is
fxy(X(U V), Y(U,V)-U ifU>0and0 <V <1
Jov(u.v) = 4 ,
otherwise.

To find the marginal of” we integrate oul/. If v ¢ [0, 1] the answer is zero, and for
v € [0,1] we have

o0

fvv) = fov(u,v)du

u=0

— / 6_50(“71))6_3/(“71)) . udu
u=0

(o]
= / e~ e (W ydy,
u=0

= / e “udu = 1.
u=0

There are many ways to see the last integral is 1. We can atgehy parts, we can note
it is the mean of the standard exponential (i.e., the expadenith A = 1), or we could
observe that it i'(1) which is0! = 1. We have thus shown that

f() = {1 ifo<ov<l1

0 otherwise,

which proves thal” is uniformly distributed or{0, 1]. One interesting application is
that if, somehow, we could generate independent valuestinerstandard exponential,
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we could combine those to get a uniformly distributed randanmable.

Section 3.11: Problem 14: Let X;,..., X, be independent Bernoulli random vari-
ables, whereX;, ~ Bern(py). By linearity of expectation, it = X; + - - - + X, then
we have

EY] = E[Xy] +- +E[X,] = p1+-++pa,

asE[X] = px. To see the later, recall the definitions;, = 1 with probability p, and
0 with probabilityl — pg, and thu€E[ X = 1-pr +0- (1 — px) = ps.-

To compute the variance, we use the variance of a sum of imdepé random vari-
ables is the sum of the random variables.\As(X) = px(1 — px), we find

Var(Y) = > pr(l — ).
k=1

For a given mean oY, what choices o, correspond to the largest possible vari-
ance? We first claim that there must be at least one choicehvgives a maximum
variance. To see this, we appeal to a result from real arsalgsiontinuous function on
a compact set (i.e., a set that is closed and bounded) atamaximum and minimum
values.

It turns out to be sufficient to study the special case when 2; before explaining
why, we’ll analyze this case in detail. We give the ‘standg@mof using techniques
from calculus. While the idea is simple, the algebra quigéys involved and tedious,
though everything does work out if we're patient enough. s tnhuch algebra is un-
enlightening, we give an alternate, simpler proof below alf.w

First proof: long algebra.We first give the standard proof that one might give after
taking a calculus class. Namely, we convert everything toretion of one variable,
and just plow ahead with the differentiation, finding theical points and comparing
the values at the critical points to the end-points. While thexactly what we've been
taught to do in calculus, we’ll quickly see the algebra beesinvolved and unenlight-
ening, and thus we will givenanyalternate proofs afterwards!

Our situation is that we have + p, = © and we want to maximizg,; (1 — p;) +
p2(1 — pa). AS py = ju — p1, We must maximize

gp) = m(l—p)+(p—p)1—p+p)
= pr—pi+p(l—p) = pi(l = p) +pip—pi
= 2pip—2pi + (1 — p).
To find the maximum, calculus tells us to find the critical gsifthe values of;, where
¢'(p1) = 0) and compare that value to the endpoints (which for this lerabvould
bep, = max(0,u — 1) andp, = min(p,1)). We haveg'(p;) = 2u — 4p;, So the
critical point isp; = 1/2 which givesg(u/2) = p — “72 Straightforward algebra now

shows that this is larger than the boundary values.g@s) = g(1 — p1), it suffices
to check the lower bounds. th = 0 that mean$ < p < 1, and in this case; = u

sog(0) = u(l — u) = p — p?, which is clearly smaller thag(u/2) = nu — “72
Similarly if p; = u — 1 (which impliesl < p < 2) thenp, = 1 and thusg(p — 1) =
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(p—1)(2 —p) +0 = —p®+ 3u — 2. If this were larger thag(p./2, we would have the
following chain:
2

—124+3p—-2 > u—%
2
0 > f%—2u+2
0 > pu?>—4pu+4
0 > (:u_2)27

which is impossible. Thus, after tedious but straightfoxhalgebra, we see the max-
imum value occurs not at a boundary point but at the criticahtpp; = 1/2, which
impliesp, = 11/2 as well.

We now consider the case of general Imagine we are at the maximum variance
with valuespy, - - - , p,,. If any two of thep,’s were unequal (say thieand; values), by
the argument above (in the case of just two values) we coualeéase the variance by
replacingp, andp; with ”Tp] Thus the maximum value of the variance occurs when
all are equal.

Second proof: cleaner algebraAs the algebra is a bit tedious, we give another
approach. Imagine (back in the= 2 case) thap, # p,. Let's writep, = 4 + x and
p2 = 5 — z. We need to show the variance is maximized whes 0. If z = 0 the

. .. 2 . .-
variance is justi — £-, while for generak it is

2

) (1-5-0) s (3-0) (15 0n) - a2
<2+x12x+2x12+x u22x,

where the last step follows from multiplying everything otihus the variance is max-
imized in this case whem = 0. Note how much faster this approach is. We included
the first approach as this is what we're taught in calculusieig find the critical points
and check the boundary points; however, especially in mt&ts where we have some
intuition as to what the answer should be, there are fretybatter ways of arranging
the algebra.

Third proof: Lagrange multipliers.We give one more proof, though here the pre-
requisites are more. We use Lagrange multipliers: we wandgimize f(py, ps) =
p1(1—p1) + p2(1 — po) subject tog(pr, p2) = p1 +p2 — = 0. We needvV f = Vg, so

fpi,p2) = pr—pi+p2—p3

g(p1,p2) = pitpa—p
Vfpi,p2) = (1—-2p1,1—2ps)
Vg(pi,p2) = (1,1).

AsVf =\ gandVg(py,p2) = (1,1), we findl —2p; = 1—2p, orp; = p, as claimed.
Note how readily this generalizes tovariables, as in this case we would have
Vipy,...opn) = (1=2p1,...,1—2p,)
Vapi,.-.spn) = (1,...,1),
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which implies all thep,’s are equal.

Fourth proof: geometryWe give yet another proof in the case= 2 andp; +p; = p.
We are trying to maximize

pi(1=p1) +p2(1—p2) = pr —pi+p2—p3 = pu— (p} +p3).

As we are subtracting? + p2, we want that to be as small as possible. We may inter-
pret this as the distance of the poipt, p2) from the origin, given thap;, + p; = p.
Geometrically it should be clear that the closest point odhigin is the midpoint of
the line from(0, 1) to (u, 0); if not and if we need to resort to calculus, this is at least
an easier problem. Namely, lgt = 1 — p; SO we are trying to minimize

p— i+ (p—p)?) = p—p>—2p7 —2up1) = p—p®—2pi(p1 — p).

We thus need to minimize the value of the quadratip, — u); as the roots of this
are 0 andu, the minimum is at the vertex which is at the midpoint of thetsp namely
p1 = u/2. In general, we are trying to minimize the functipr- (p? + - - - +p?) subject
to0 <pq,...,p, < landp, +---+ p, = p. Thisis equivalent to finding the point on
the hyperplane closest to the originrirdimensional space, which is given by the point
where they are all equal.

Finally, is this result surprising? If everia = 0 or 1, then there would be no vari-
ation in the contribution fronX,. Thus the variance will be smallest when all thés
are in{0, 1}.

Section 4.14: Problem 35: The marriage or secretary problems is one of the more
famous probability exercises. Though the terminology gearbased on who is pre-
senting it, the basic idea is as follows. We have a known nudag/ n, of objects
(which are frequently candidates for a job, suitors, orgnafices). We can always rank
and order any collection of these, and there are no ties. Xamnple, if the candidates
are Alice, Bob, Charlie, Ethelbert and Daneel, our rankirayime Bob, Ethelbert, Da-
neel, Alice and Daneel; this means we prefer Bob over allwaitio not say by how
much we prefer Bob to Ethelbert.

We are now shown the objects one at a time. The goal is to dass¢rategy so that
we stop at the best alternative. Unfortunately for us, wefareed to make an accept
/ reject decision on each candidate the moment we see theuns, iftihe first person
we see is Ethelbert, we must then and there choose whethet tw keep Ethelbert,
or take some future unspecified candidate. This is why thofié called the marriage
problem (once you reject a suitor, it is unlikely they wilblofavorably on you again).

We desire a strategy that maximizes the chance of ending i best candidate.
It would be so easy if we could just see all the candidates laed tecide; sadly, we
must make our decision on each candidate immediately umangthem. One strategy
is to just always take the first person (or always take the, fiftteighteenth, et cetera).
This will give us the best candidate with probabilityn, which is not too impressive
for n large. Can we do better?

The following strategy, called,, is frequently used. Let us look at the fikspeople,
and then we’ll choose the first person we see from this poinand who is better than
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the best we've seen in the firt How good is this strategy? Clearly it is bad when
the best person is one of the filsstas then we’ll never take them. This happens with
probability k£ /n, and sdk/n of the time we always lose.

If the best person is in positidn+ 1, however, we always win. In general, the best
person will be in positiomn. We have already analyzed how good our strategy is when
m happens to be i§1,2,... k, k& + 1}; what about other? Assumen > k + 11is
the location of the best person. Our stratégyresults in our selecting the best person
if and only if there is no one among people- 1, ..., m — 1 who is better than the best
person in the first. For example, imagine there are 100 candidates and we iexterv
the first ten. Let’s say Julia was the best we saw in the first e best candidate
overall happens to be Zeke, who is in position 27. Thus weanly end up choosing
Zeke if Julia is better than all the candidates from the 1dtié 26th position, as right
now we are searching for the first person better than Juliaat\i¢ithe probability that
the best person among the first 26 candidates happens tdlie finst 10? The answer
is just 10/26.

In general, if the best person is at positiarthen we select the best person precisely
when the best person among the first- 1 is in the firstk people. The probability the
best of the firstn — 1 is in the firstk is just%. We therefore find that the probability
strategyS; wins is

Prob(Sk wins) = Z Prob(win|best at m) - Prob(best at m)

m=k+1

. k

where

is the/™ harmonic number, which is approximatéby ¢ for ¢ large. Thus

— log (2=
Prob(Sy wins) ~ Elog (Z_i) = M

k

Forn andk large, we may replace — 1 with n andk — 1 with k. Thus we are trying
to optimizeg(x) = %, wherel < z = 7 < n. To find where a function is largest,

xT

we check the critical and endpoints. Lettinfr) = 222, we see the endpoints give

T
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g(1) =0,g(n) = 10%. As

1

xT

xr—logx-1

g'(x) =

x2 ’
¢'(z) = 0 implieslogz = 1 orx = e. Thus the optimak is aboutn/e, and the
probability we end up with the best is approximately

log (%) 1 1
e 80 2 X 36.8%.

n/e ¢

™

This is amazing. The naive strategy of always taking a fixegitjpm (such as always
take the first candidate) gets the best of the time. If we look at the first /e percent
and then take the first one better than the best here, we ehdheibest approximately
1/e percent of the time!

Advanced noteWe have to be a little careful, dsmust be an integer. Though we
have made some approximations, we see the derivative ofttalpility of winning is
(1 —logz)/«?, with z = n/k. We see the derivative is positive for< ¢ and negative
for x > e. Thus the plot looks like an inverted and thus the integer maximum is either
the integer immediately to the right or left of the criticalipt.

There are lots of generalizations. We discuss in detail et@\p and leave the others
for the reader to explore.

Getting one of the top twoThe next question would be: what strategy gives the
largest probability that we end up with either the best oosddest candidate? The
answer turns out to be over 50%! We assume again we have aesstnglegy of inter-
viewing the firstk candidates, and afterwards discuss some variants. Weadtdehe
location of the best and second best candidates,aandm,. We analyze the problem
in greater detail then needed to get a sense of the answer.

e Ifbothm,, m, < k we always lose, and this happens with probab(lity/ (7) =

’;E’:;P) We can see this in two ways. The first is there @f)sways to choose

where to put two people, an@) ways to put two people in two of the firét
positions. Alternatively, the probability the first persenn the firstk is % and

then the probability that the second person is also in thekfirs % (as one

slot has been filled. I£ again is of the same order of magnitude:ashen this

is a significant probability of failure.

e If the best is in the first and the second is not, we lose unless the second best
r;appens to be in the final position. Thus the probability we Withis case is
1

° ﬁ‘?ﬁe second best candidate is in the firsind the best is not, we automatically
win with this strategy! The probability of this happeningiig=* = £ (1 — ).

n

If k& is of the same order of magnitudenasthen this will be a significant prob-
ability of success.
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¢ Finally, we are reduced to analyzing the case when the toamdidates are
not in the firstk. The probability of success in this case is

n—1 n
Z Z Prob(win|{best, second} ={my, my})

mi=k+1mao=mi+1

- Prob({best, second} ={my, ms})

The probability that the best and second best are in posifion, m, is just
—%1 (there are two positions where we may place the best cardatabng
the n people, and then one position remaining for the second lzestidate;
alternatively, we could view this ak/ (’2‘)) What is the probability we win,
given that the best two candidates are at positions, m»}? The argument is
the same as before —we need the best person among thefirst candidates

to be in the firstt candidates. Thus, the probability we win in this case is just
and so summing oven, andm, we find

mi1— mi—1"

9 n—1 n
= 1

S oy ml—lnn—w WD) 2 T 2
mi=k+1mo=mi+1 mi1=k+1 m2:m1+1

2k — 1
 nn—1) Z my — 1(n—m1).
mi=k+1

We do one of the most common, useful tricks to evaluate the-suve write

n —my asn — 1 — (my; — 1). The reason we do this is that the denominator is
my — 1, and this will lead to nice simplifications. We thus find thelpability

of winning, in this case, is

L T D
n(n —1) a1 T mi=k+1
_ n(i’jl) [(n— 1)(Hypog — Hiot) — (n — 1 — k)]
2k n—2 k
< Sl ()]
2k n k

Combining all the different probabilities, we see the phabiy of winning is
k 2k k
Prob(win) =~ —2+E <1_E> +_ [10gﬁ_1+ }
n n n k

As k will be of the same size as thek /n? term is negligible and may safely be ignored.
If we letz = n/k as before, we see we must optimize the function

1 1\ 2 1
g(z) = —(1——)+—<logx—1+—)7 I<z<n
x x

€T €T
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The algebra and calculus is easier if instead we etk /n = 1/z, as this gives

1
h(y) =y —y) +2y(=logy —1+y), —<y<l.
After some algebra, we see the derivatives are
/ " 2
h'(y) = =342y —2logy, h'(y) = 2— ;

Numerically solving giveg ~ 0.30171, and we easily see this is a maximum. Further,
this is clearly better than the endpoint strategieg ef 1/n ory = 1, and thus the
maximum probability is whep ~ 0.30171. Substituting this into our formula, we find
the probability of winning with this strategy is about 0.392or in other words we have
greater than a 50% chance of getting one of the top two catedida

Let’s summarize our results:

Goal k/n (i.e, percent look at) Probability of winning
Best candidate About1/e ~ 36.8% About 36.8%
One of top two About 30.2% About 51.2%

What if we applied our original strategy of looking at the ffiks~ n/e people —
what would be the probability that we end up with one of the best? Substituting in
y = 1/e gives a probability 0% = §+ e% As in this strategy we have a probability of
1/e of ending up with the best person, we must therefore havezapility of 1/¢? of
ending up with the second best. A natural question is whabdaeyxpect the probability
to be of ending up with one of the be&people given that we look at the firat/e
people?

It is also interesting to note that the difference in the pimlity of getting one of
the top two if we look atr/e ~ .368n versus looking at302n is small, namely about
50.3% to 51.2%.

In general, if we want to get one of tlfebest, about how many people should we
interview? If we want one of thébest, would it perhaps be better to intervieyweople
and then take theecondor maybe even the third, the fourth, ...) person better than
best we've seen?

Another generalization is in determining the probabilitgttwe end with a candidate
in the tope percent. How many people would we interview in this case? tWioald
our probability of success be?

Finally, we can consider the generalization where we haveatifiable rankingnd
knowledge that the candidates are drawn from a fixed digtobufor example the uni-
form distribution ona, b], though we do not know or b. We then interview the first
people and try to estimate the valuesuadndb. This method involves order statistics,
which appear in problems ranging from the distribution ohpée medians to inferences
in statistics.
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Section 4.14: Problem 45bc: The kurtosis of a random variabl¥ is defined by
kur(X) := E[(X — u)*]/o?, wherep is the mean and is the standard deviation. The
kurtosis measures how much probability we have in the tails.

Let X ~ Poiss(\), so the mass function ig(n) = \*e */n! forn > 0 and O
otherwise. For a Poisson random variable with paramgtehe mean is\ and the
standard deviation i) (or equivalently the variance i), and thus

kur(X) = 2 n=o(n ;\2))\6 /n

There are several ways to try and analyze this. One way isparekout(n — \)*.
Whenever we have amn we can cancel that with thein »n!, and we are left with terms
such ag* )\ /(n —1)!. We could then write» as(n — 1) + 1, expand and do some more
canceling. While this will work, the algebra becomes tediolihe point of this exer-
cise is to see that, while there are numerous ways to solveldeon, it is important to
weigh their advantages and disadvantages. For instanceganveither make the linear
combinations easy at the cost of more involved differeimigtor we can have easier
combinations at the expense of more tedious differentiatt@r this problem, it seems
as if the easiest algebra is when we make the differentiditawd but the combinations
easy. It takes awhile to develop a feel for which approachbeiimost tractable for a
given problem. This is one reason why we provide so manyreiffesolutions.

First solution. One of the best ways to compute the moments of Poisson (aed oth
discrete) random variables is through differentiatinguiitees. Consider the identity

o0 n

x
et = Z—
n!

n=0

We could keep applying the operatodfix to this and obtain the moments, and then by
expanding(n — \)* piece everything together. A faster way is to apply the dpera
—A+ x% four times and then set= \. If we do that we obtain

d d d d\ , - Py

n=0

After some long but standard differentiation, we find the\dgive above equals
e (N — 4Nz + 6 °z(1 4+ 2) — 4z (1 + 3z + 2®) + z(1 + Ta + 62° + 2°)) ;

settingz = )\ gives

o0 )\n
et +3N\%er = Z(n — )t g
n=0
which means the kurtosis is
_ e 1

A 2 A\ _ L
kur(X) = e (Ae* +3X%Y) = 3+)\.
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Second solutionin terms of keeping the algebra simple, it might be easiekpard
(n — A\)* and apply the operatar-L four times.

Third solution. Another possibility is to applyl/dz four times and then build back.
For example, we start with

[e.e] n

T
et = Z—
n!

n=0

Differentiating with respect ta once gives

n—1
e

> X
et = E n-
n:
n=0

Takingz = X\ and multiplying both sides bye=* gives

AN > ‘ )\"6_)‘ o
A€ et = Zn = E[X],
n=0

n!

which implies the mean i&. If we differentiatec” twice with respect ta;, we find

[eS) _ [eS) _ [e's) _
N " 2 ) " 2 " 2
e’ = En(n—l)- = E n - — —En- —.

Takingz = X again and multiplying both sides by~ gives

o0 _ o —
5 x ) )\ne A )\ne A
Ae et = E n* - —E n- ;
n! n!
n=0

n=0
as the last sum ig, we find

n,—\

21 _ 2 _ 2
E[X?] = ;:on = AT+
Continuing in this way we can gé&{X?| andE[X*], and then substitute into

E[(X — )] = EIX*] — 4uE[X?] + 64°E[X?] — 4°E[X] + u".
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Fourth solution.For our fourth solution, we use some ideas from linear alge¥fe
start, as always, with the identity = > /2" /n!, and we differentiate this 4 times:

00
€ = —
n!
n=0
oo _
N " 1
e = E n-
n!
n=0

e’ = Zn(n—l)x;
e’ = Zn(n —1)(n—2)- I:;
& = Zn(n—l)(n—2)(n—3)-$;;.

I
o

n

We taker = A and multiply thek" equation above by*, and find

[e.e]

)\n
D

n=0

oo An
et = an

N = Z(n2 —n)- s

n

A
Mer = Z:(n3 —3n% 4 2n) - )
n=0

[e.e] n

A
Mer = Z(n4 —6n° + 11n* — 6n) - o
n=0

We want to evaluate

e—)\ © A™ -2 > n

4 = € 4 3 2412 3 4 )\
ﬁ;(n_)‘) Tl V;(n — AN\ + 6N\ — 4nA +)\)'H'

We writen* — 4n3)\ + 6n2)\2 — 4n)\® + \* as a linear combination of the terms above.
This is just solving a system of equations (for example, wg negardn* — 4n3\ +
6n2)\% — 4n)\® + \* as the vectof1, —4, 6, —4, 1,0), with the last component 0 as there
IS no constant term). Solving the associated system of esagives

nt —AnP)\ + 6022 — 4n )\ + \?
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equals
1-(n*—6n®+ 11n? — 6n)
+ (6 — 4\) - (n® — 3n® + 2n)
+ (7= 12X+ 6A?) - (n* — n)
+ (1 —4X+6X% —4X%) - n
+at-1
and thus the kurtosis is

1—2 [1 M (6 — 4NN 1 (T — 12X + 6A2)A% +
(1 —4X 4 602 — 423 e + 1

1 1

ConsiderX ~ Exp(A), which has mean and standard deviation both equa/) 1o
The density ofX is fx(x) = A\e™** for z > 0 and 0 otherwise, and thus we have

oo ¢ 1\4y —ax
kur(X) = J7 (2= 5) Ae " dx

= / (u — 1)*e “du.
0

There are several ways to proceed at this point. We can attedly parts or we can
expand out. We choose to expand out, as we will recognizertheexr. We find

1
kur(X) = / (u* — 4u® + 6u® — 4u + 1)e “du
0

1 1 1 1 1
= / ure tdu — 4/ wde tdu + 6/ ule tdu — 4/ ue “du + / e “du
0 0 0 0 0

= T(5) — AT(4) + 6T(3) — AT'(2) + T(1),

where we are using
I'(s) = / e "ustdu, Re(s) > 0.
0

AsT'(n + 1) = n! for n a positive integer, we have
kar(X) = 41—4-31+6-21—4-1140! = 9.
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8. HW #8

Due Thursday November 5: Section 5.1: #1c. Section 1.8: €28 you say any-
thing about this sum when is large?). Section 4.9: #6. Additional Problems: (1) Let
Xi1,...,X, be independent random variables having the standard expalndistribu-
tion. Using convolutions, find the density f&r, + X5; more generally, find the density
for Xj 4+ --- + X,.. (2) Find the Fourier transforms gfandg, wheref is the density
of the uniform distribution ono, 1] andg is the density of the uniform distribution on
[—1/2,1/2]. (3) Let Xy,..., X, ben independent standard normals. Using convolu-
tions, showX? + X7 has a chi-square distribution with 2 degrees of freedom name
generally thatX? + - - - + X2 has a chi-square distribution withdegrees of freedom.

Section 5.1: Problem 1c: We want to find the generating function fétm) = (1 —

p)p!™ /(1 + p) form € {...,—1,0,1,...}. The generating function is defined by
G(s) = E[s*], so in our case we have
G(z) = E[s¥]
3 e Ao
m=—00 1"‘]7
_ L=p m
1—p o o
= — sp)™ + s)™—1
L S Y
1—p [ 1 1
- —1].
L+p {1—Sp+1—(p/8) ]

So long agsp| < 1 then the first sum converges, while the second sum convefrges i
Ip/s| < 1. Combining these, we see the generating functidn) is well-defined so
long asp < |s| < 1/p. Unlike previous problems, instead of having convergence i
ball about the origin we now have convergence in an annutatqout) region.

To calculate the mean and the variance, we use the followimgilas:
EX] = Gx(1), Var(X) = G%(1) + Gx(1) - G (1)*.

We now see the power of generating functions; we can diffet( x(s) easily, and
this is much better than evaluating sums. Fortunatelys) is defined at = 1 (which,
providedp < 1, is always inside the annular region). We have

E[X] = G(1) = 0.

While we could perform the algebra to compatg (1), there is no need if we only care
about the mean. The reason is the probability distribus@ymmetric about, = 0. It
is worth recording that

_1-=p p _ P
) = T [ Toar -G
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To calculate the variance, the only additional informatieaneed i’ (1), which
IS

1—p[ 2p? 2p° 2p
T+p L(=psp  O=(/s)s (1= (/)5
1—p 2p(1+p)
I+p (1-p)3

2p
(1—p)*

G//(1> —

Additional problem (1). We are given thai, ..., X,, are independent standard ex-
ponential random variables. Thus the density function émheasf(z) = e=* forxz > 0
and0 otherwise. The density fok; + X5 is simply the convolution of with itself, or

fxiaxe(z) = (z)

(/)
— [ 1wfe -

As f vanishes whenever it is evaluated at a negative numbemtherf (¢) restricts the
integration to be fron® to co. The second factor;(x — t), is zero unlesg < z. Thus
for x > 0 we have

X
fX1+X2 ('T) = / e_te_(m_t)dt
0

X
= / e *dt
0

= zxe *.

As a quick check, we test to make sure * is a probability distribution. It is non-
negative on0, co), and it does integrate to 1 (it is jub({2) = 1!, or alternatively we
could just integrate by parts).

One of the most common mistakes made by probability studetat$orget that the
densityfy,(z) ise™* only whenz; > 0; in other words, it is common to mistakenly use
this as the definition for alk. This cannot be right; note that as — —oo the factor
e~ " tends to infinity, and is not integrable. In summary, a compitiall is to say that

fX1+X2('T) = / e toe g = / e *dt = 6_$/ dt,
0 0 0

and clearly there is no way this integral will be finite!
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Let’'s calculate the density foK; + X5 + X3. As convolution is associative, the
density is jus{ f x f) = f, so arguing as above we find

= /te_te_(m_t)dt
0

= /te_xdt
0

Let's do one more to make the pattern clear, and then we’legdize our observa-
tions and prove them by induction. F&F +- - -4+ X, we have the density (g f* f)* f,
and thus

Frvixarxs(z) = / " Foen(t)f (@ — t)dt

[xiprx, () = /_ fxi4 20155 (8) f(x — t)dt

= —etem@ gt
, 2
e 6—5[? J—
0 2

JJS

a.
Based on the above calculations, we conjecture that the $umnalependent stan-
dard exponentials has density functiorfz™ /n!. We now prove this by induction. We

have done the basis case above. Assuming it holds,fere must show it holds for
n + 1. But

—T

== (&

frorownen®) = [ o Of - 0d

= [ Letetagy
o nl
T v tn

o n!

== €

This is the Gamma distribution, and is a famous, importansig

Additional problem (2). We calculate the Fourier transform of the uniform density on
[0, 1]. We have

0 1
o) = / f(a)e 2" de = / o 2mint gy,
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If ¢ = 0then the answer is clearly just 1. For otlgewe use the fact that ¥ = cos 6
— isin 6. For us, we have

e = cos(2mag) — i sin(2mxf),

and hence

/o [cos(2mz€) — isin(2mxf)] dx

&._))
—
A2}
~—
I

1 1
= / cos(2mx€)dx —2'/ sin(2mz)dx
0 0

sin(2mz€) 1

. cos(2mxg) ‘ '

2mé . 2mé .
_ sin(27mE) . [cos(27E) 1
N 2r€ T ( omE 27r§) '

Consider now the uniform distribution dr-1/2,1/2]. The only thing that changes
in the above analysis is the last step, where now insteadatfiaing the integrals &t
andl we evaluate at-1/2 and1/2. We thus find

1/2 1/2
. _ sin(27mxg) _cos(2mx€)
~1/2 ~1/2
_ sin(7w€)
= v

note how much cleaner the answer is in this case.

Additional problem (3). Recall a random variable has a chi-square distribution with
degrees of freedom if it has density

1 d_1 —a/2
fie) = a0
0 otherwise,

wherel is the Gamma function (the generalization of the factomalction), which is
given by

I(s) :/ ¥ e dr.
0

We know that if X; has the standard normal distribution, th&# has the chi-square
distribution with 1 degree of freedom. We writgfor the normalization constant of the
chi-square distribution witl degrees of freedom.

We first consider the case of the sum of two chi-square digtdbs, each with 1
degree of freedom. The density is

(foxh)@) = / A0 — e

N /m et el cr(x — t)_l/ze—(:v—t)ﬂdt.
0
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The range of integration stops atas f,(x — t) is zero if the argument is negative.
Simplifying yields

(fr*fi)(z) = cfe—x/Q/O 2z — t) V24t

There are two ways to proceed. The first is to try and evallagaritegral directly. It
may be possible to do this through brute force, but it won’plEasant. Note that the
final answemustbe a probability distribution. Thusye do not need to figure out the
integral exactly; it suffices to determine thelependenceThe reason is that if we know
the xz-dependence, then we get the normalization constant bgratiag (f; = f1)(z)
with respect tar and setting the result equal to 1.

Thus let us make the following clever change of variablest seuzr anddt = xdu;
ast runs from 0 tar we haveu runs from 0 to 1. This yields

Frefle) = e [ oo = au) o

1
_ 2 -z T —1/2/1 _ . \—1/2
= cje x1/2x1/2/0 u (1 —u) " du.

The u-integral can be done in closed form, as it is proportionahtegrating the Beta
density (with parameters = 5 = 1/2); however, there is no need! Lettidg denote
the value of the:-integral, we see

(fi* fi)(z) =

Clc%e_x/Q if 2 >0
0 otherwise.

For this to be a probability distribution, the integral mbst 1, which implie€; ¢} =
1/2. Again, we emphasize that while we could have compUielaly brute force, there
was no need. To show that we have a chi-square distributitm2xdegrees of freedom,

it suffices to show that we have the correetlependence, as then the normalization
constants must match.

We now turn to the general case. We proceed by induction. \We &laeady handled
the base case; now we must sha§ + --- + X2, is a chi-square distribution with
n+ 1 degrees of freedom. By inductiot? + - - - + X2 is a chi-square distribution with
n degrees of freedom. Calling the normalization constgntndc; again, we see that

(oo f)(0) = / T RO h @ — )t

= / cnt? e ™2 e (x — t)_%e_(r_t)/zdt.
0
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The exponential factors combine to giwve*/?, and we again sét= uz anddt = zdu,
and find

1
(fre-xfi)(z) = CnC1€_z/2/O (zu) 2~ (x — xu)_%xdu

1
— n_q _1 n_ _1
= e Py 293/ w2 N1 —u)"2du
0

n+1 -1

1
= o 2 6_$/2/ w1 - u)_%du. (8.1)
0
Again, itis possible to evaluate theintegral in closed form (it is essentially the integral

of a Beta density with parameterg2 and1/2); however, all that matters is that it has
no z-dependence. Calling this integral, we find

(frs--ox fi)(@) = {

Note thex-dependence is exactly that of the chi-square distribwtiibim» + 1 degrees
of freedom, and thus the normalization const@nt,c; must equal the normalization
constant of the chi-square with+ 1 degrees of freedom. We emphasize again that we
could have computed this constant by brute force, but tleaiettvas again no need!

For completeness, we state what the Beta density isulet[0,1] anda, 5 > 0.
Then the Beta distribution with parametersnd is given by the density

F(Oé + ﬁ) a—1
wgll) = ——————=u
92l = T (B
for u € [0, 1] and0 otherwise. As this is a probability distribution, it intedes to 1 and
thus
1
/ u* (1 — u)ﬁ_ldu = LO‘)F(B)
0

C(a+p)
This is the integral we need if we want to do the integrals abov

n+1 _ .
Cocnciz z Le®/2 if x>0

0 otherwise.

(1-— u)ﬁ_l

9. HW #9

Due Thursday November 12 (though you may place in my maillmyie up till
10am on Friday 11/13): (1) LeX,, ..., X,, be iidrv random variables with the geo-
metric distribution with parameter, soProb(X; = k) = (1 — p)*~!p for k a positive
integer and O otherwise. Lef = (X, + --- + X,,)/n. FindE[X], Var(X), and the
moment generating function &f = (X —E[X])/StDev(X). (2) Calculate the Laplace
transforms of the following densities (a) an exponentiatribution with parametexk;
(b) uniform distribution orfa, b] with « > 0. (3) For each function compute the com-
plex derivative at = 0 or prove the function is not differentiable there: (d}) = z;
(b) f(2) = 2% (c) f(z) = z, where ifz = z + iy thenz = x — 4y. Recall that the
derivative is defined by

h—0
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whereh = hy + ihsy tends to0 4 0i along any path but isever0 in any calculation.
(4) Prove the product rule of differentiation, namely tHaf iand g are differentiable
then the derivative of (z)g(x) is f'(x)g(x) + f(x)g'(x). Using this, induction and the
fact that the derivative of is 1, compute the derivative af* for any positive intege.
Note that this proobypassesaving to use the binomial theorem to expdmd+ h)™!
(5) Calculate the limits a&e, y) — (0, 0), or prove the limit does not exist: (a)

23 + 170122y + 246013/4.

lim :
(x,y)—(0,0) x? + y?
(b)
8 8 10 10
lim r° +y oz +y

(zy)—00) |22+ 48  xt 4 yl0

(Extra Credit) Prove or disprove: notation as in the firstypem, the MGF ofY” con-
verges to the MGF of the standard normahagnds to infinity.

Problem 1. To compute the expected value, we use the expected valueuofi é&sghe
sum of the expected values. Thus

E[X] = E[Xi+- --+X,)/n]

as the mean of a geometric random variable with parametgijust1/p. While we
have seen this result before, it is easily proved using momgpemerating functions; as
we will need to work with these functions anyway for the refighe problem, let’s take
a moment and rederive this result.
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Let X be a random variable with the geometric distribution withgpaeterp. Then
its moment generating function is

Mx(t) = E[etx]

k=1

= ) 1l-p)'p
k=1

= Y-
1_pk:1
P o, w D
1_p;( ( ) -
D 1 D

One of the most useful properties of moment generating fomstis thatE[X¢] =
d*Mx (t)/dt* K in particular, the mean is simpB[X] = M%(0), so
t=

/ p 6t(1 - p) / 1
W= T aea e MO T
There are several ways of doing the algebra; we could usethwifa for a geometric
series starting at = 1 and not starting at = 0 which required us to subtract off the
n = 0 term. Why do we prefer this? The reason is that the resultipgession only
hast dependence in the denominator; if we started the sum-=atl we would have
dependence in both the numerator and denominator, whichsnea have to use the
quotient rule to find\/% (¢).

Knowing the moment generating function &f when X ~ Geom(p) simplifies the
remaining parts of the problem. For the variance, we have

Var(X) = Var((Xi+---+X,)/n)
1 n
= EZVM(XZ)
1=1
1
= E%LV&I(X)
_ Lt t-p 1-p
on2 P2 np? "’

where we used/ar(X) = (1 — p)/p*>. We can easily derive this from the moment
generating function. AE[X?] = M%(0), we have

Var(X) = E[X?] - E[X]* = M%(0) — M%(0)%
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We've already computedi/’ (0), and thus only need to fintl/% (0). We have

" _ d p et(l_p>
wo = & (Faen )
p ( e'(1-p) 26”(1—29)2)
L—p\(1—et(1=p)? (1—¢e(l—p))?
ML) = 1fp(1]9_2p+2(1];p>)
1+2(1;P)
p p
p+2—-2p 2—p.

P2 P

Therefore the variance is
2—p 1 1—0p
_ 2 _ _
Var(X) = My (0) = Mx(0)* = == = 5 = ==
The last part of the problem asks us to compute the momentaergfunction of
Y = (X — E[X])/StDev(X). Let

b = E[X] =

_ 1— 1=
a = StDev(X) = \/np2p = \/p\/ﬁp
In the arguments below, we constantly udgy . 5(t) = ¢ My (at). We have
My(t) = Mx_y(t)
= MY/a—b/a<t)
e M (t/a)
e Mix, 4y x,)m(t/a)

ot/ ¢
€ o/ MX1+“'+Xn (a_n)

t t
=t () ()
an an

t n
= €_bt/aMX <—) .
an

Earlier, however, we showed that

P 1 P
Mx(t) = 1-pl—(ef(l—p) 1-p

Substituting yields

w0 = e () (e -
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with

Problem 2. We first compute the Laplace transform of the standard exgaigwhich
has density functiorf(z) = e~* for z > 0 and 0 otherwise. We have

(Cf)(s) = / T f(edt

= / e temstdt
0

— / 6—(1+S)tdt
0

1 [e.e]
— / e~ U1 4 5)dt
0

1+s
1

1+s’
so long as > —1 (we need this in order to ensure that the argument of the ey
IS negative, as otherwise the integral diverges).

We now compute the Laplace transform of the uniform distigsuon [a, b] with
a > 0. The density function i (z) = = if « < 2 < band 0 otherwise. Thus

(Cf)(s) = / " Ftyeat
|

= ot
/a b—a’
1 b

i / e s dt

1 b
= e sdt
i
—1

= eas e )

e—as _ e—bs

(b—a)s

Problem 3. While the problem only asks whether or not the functions #feréntiable
atz = 0 (and if so what the derivative is), we consider the more gdrase as the
argument is essentially the same. Wehlet h; + ih, below, withh — 0 + 0i. For (a),
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we havef(z) = z so

i JEFM =) s
h—0 h h—0 h h—0

thus the function is complex differentiable and the deneais 1.
For (b), we havef(z) = 2? and
_ 2 .2
i JEEN—IE) L )R-
h—0 h h—0 h
224+ 2zh + h? — 22

= lim2z+ limh
h—0 h—0
= 2240 = 2z
We are using the following properties of complex numbér§: = 1 and2zh + h? =

(22 + h)h.
For (c), we havef(z) = z, and thus

g LEF = FE)

h—0 h—0

z+h—-2
—

Unlike the other limits, this one is not immediately clearetlus writez = z + 1y,
h = hy 4+ iho (and of cours&€ = x — iy, h = hy — ihy). We therefore find the limit is

lim g = lim -
h—0 hy + ihe h—0 hy 4 ihy

This limit does not exist; depending on haw— 0 we obtain different answer. For
example, ifhy = 0 (traveling along the-axis) the limit is justim;_,o ~;/h; = 1, while

if hy = 0 (traveling along the-axis) the limitis justim,, o —ihy /ihy = —1. Thus this
function is not complex differentiable anywhere.

If we continue to argue along these lines, we find that a fonds complex differ-
entiable if thex andy dependence is in a very special form, namely everything is a
function of 2 = z + dy. In other words, we do not allow our function to depend on
z = x — 1y. If we could depend on both, we could isolate eutwhich is z + z) and
y (which is (= — z)/i). We can begin to see why being complex differentiable once
implies that we are complex differentiable infinitely offeramely because of the very
special dependence amandy.



54 STEVEN J. MILLER (SIM1@WILLIAMS.EDU)

Problem 4. Let A(x) = f(z)g(z). Then

Alr) = }ng(l) (x+h2L A(x)
o S Rt h) — J)gla)
bSO h
— lim f(x +h)g(x + h)-F(x)g(x+h)+(x)g(x+h) — f(z)g(z)
h—0 h
_— f(:c+h;—f(x) g(x+h)+f(x)g(x+h]i—g(x)

glz +h) —g(x)

LN ) R
B R SRR T

= [@)g(x) + f(2)d (z).

We proceed by induction to prove the derivativeadf is nz"~! for n a positive
integer. The base case is clear (and we are in fact told we sgyee this). Thus we
are left with proving the inductive step, namely given tht terivative ofr™ is nz"*
we must prove the derivative of ™! is (n+1)z". Let f(x) = 2" andg(z) = x. We use
the product rule; by inductioff’(x) = nz"~* (and of course/(z) = 1). The product
rule tells us that

(2" = fl(x)g(x) + f(x)g'(x) = na" ' -z +2"-1 = (n+1)a"

Thus, although initially it appears that we need the bindthi@aorem to compute the
derivative ofz”, we can actually bypass it by using induction and the produet

As an aside, the derivative af for general- € R cannot be obtained by arguments
such as those above. We can find the derivative(of = x*/7 by using the power rule
applied toA(z) = h(z)? = P, and then solving fok'(x). The algebra starts with

Al(z) = qh(z)T 0 (z) = paP~t, h(z) = zP/9.

We now isolate' (), and find

oy ooopePTt o p @t p ey powy

W(z) = qh(z)=1 ¢ 2@/ qx o qx ’
For general, we need to writer” = exp(rIlnz) and use the chain rule. Why do we
need to do this? We can interpfet+ i)™ whenn is an integer, but what does it mean

to have(z + h)V??

Problem 5. For (a), the limit is zero. The easiest way to see this is tovedno polar

coordinates, with = r cosf andy = rsinf. As (z,y) — (0,0), we haver — 0. The

numerator is bounded by + 1701r* + 246017, while the denominator ig®. Thus the
ratio of the numerator over the denominator is at mos26302r2, which tends to zero
asr — 0. For (b), we must consider the following limit:

hm JJS _'_ yS B xlO + ylo
(@y) =00 (22 +y® 2t +ylo
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Let's check some special paths(h), g(h)) with ~ — 0 to build intuition. We always
assume: # 0 below.

x|y Difference of Ratios | Limitash — 0
h | 0 hS — hb 0
0| h 1—-1 0
R e
h? | 0 h1? — pi2 0
0 | h? 1-1 0
ho |ah? | el pb — Laghs po 0
ah?| h | Sltpt — S b pt? 0

The evidence sure seems to suggest that the limit is zera zéro if we approach
the origin along any line containing the origin, or on anyeparabolay = ma? or
x = my?, as well as quadratically decaying along ther y-axes. Unfortunately, we
cannot prove a limit exists by checking a fixed number of gatlescan only prove the
limit exists by checkingll possible pathsor by finding a path where the limit does not
exist. For example, we must also consider the path in Figure 1
It turns out that, if we investigate cubic paths, we see tiné liloes not exist. Specif-

ically, consider the path = 33, or more specifically(z,y) = (h3 k). This leads
0 h24 + h8 hSO + th

lim — ;

h—0 | hS +h8 K12 4 10

the first term looks likeh® /1S = h? for smallh, while the second looks likg!® /h!0 =
1. Thus the limit along this path is 1, which does not equal tte¥ipus limits of zero;
thus this function does not have a limit@sy) — (0,0).

We leave it as a fun exercise to the reader to think about hassthange example
was generated, and to come up with a related example thatiinais @among cubics but
not among quartics.

Remember that foph| < 1, |h"| > || if n < m (for example|h?| > |h®]). Thus
for smallh the numerators and denominators are controlled by the enpadivers of..
One way we can analyze these quantities is factoring:

h24—|—h8 ) h8 h16 + 1 ) 21—|—h16

_ _ b2 i A
RN A i N R SR v S T SR v S v S R

=01,
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FIGURE 1. Path(rcos(1/r),rsin(1/r)) asr — 0. If the limit ex-
ists, then we must get the same limit along this path as aloagniore
standard paths such as straight lines, quadratics, eticeter

where we use the limit of a product is the product of the linjiiovided at least one
exists).

The behavior in this problem is strange — the limit existsiaradro along any straight
line or the standard parabolas, but not along a cubic. Howneareconcile this? The
explanation is as follows: while the limit is zero along eattaight line, the rate of
convergence depends on the steepness of the line. In parti€uwe go along the path
x = y>, we cut through these lines so quickly that we see a diffasehavior. A plot
helps; see Figure 2.

To try and get a sense, we look at how the limit exists alongpuarlines in Figure 3.
Looking at these plots, we can see the difference in behamarif we choose a certain
path(z, g(x)) we won't have a limit of zero.

Extra Credit Problem. The moment generating function of the standard norméf js
so the logarithm of the standard normal’'s moment generditingtion ist>. Knowing

this, it is natural to try and show thitg My (t) — t? asn — co. Another reason why
it is natural to look at logarithms is that/y (¢) involves factors to the™ power, and
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1.0

05

0.0

-0.5

8+ 8 10+ 10
FIGURE 2. Contour plot of;2+zg — ﬁ4+510 .

—0.1;
—0.2;
—0.3;
—0.4;

-0.5F

-0.6F

-0.7%

FIGURE 3. Plots ofg(z,y) = iiiiz — ifjjfoo along the linegh, 2h),

(h,3h) and(h,4h). Thezx-axis ish and they-axis is the value of. We
can see that while these paths all have the same limit, thaypagph that
limit differently.

taking logarithms brings down the We have

log My(t) = log [6"’”" (1 ﬁp)n (1 - (et/mlz(l -p) 1) ”}
1

[ (@l —p) 1}
eon (1~ p) }
T (@ (1 - p))

t
+n— 4 nlog(l - p) = nlog [1 = (¢*"(1 - p))]

bt
= ——+nlogL+nlog{
a 1—0p

bt
= —— +nlog P +nlog{
a 1

bt
= ——+nlog b
a 1

bt t
= +nlogp+ P nlog [1 — (et (1 - )]

t t

= —— 4+~ +nlogp—nlog[1— (e/™(1 -
o T a Tlosp nlog [1 — (™ (1 - p))]
1—pt

- —Tpa—i-nlogp—nlog[l—(et/“"(l—p))}.
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Notean = —11,_”\/5 so forn largee!/*" is approximately 1; in fact, we have
t t2 t3
t/an -1 v v o)
‘ Tan T 2(an)? * <n3) ’
whereO(z) means there is a universal constarguch that the error is at moSt:. The
reason we stop the expansion here is that we multiply theitbgaby n; once we have

an error of size)(1/n/2) or smaller it will be dwarfed in the limit.
Usinglog(1 — u) = —u — u?/2 + O(u?®) we have

nlog[L— (e/*"(1—p))] = ”bgb_“**ﬁO*"i+§%%5+0(é%>)

an

= nlog|p—(1—p) L+L+O .

B &P PI\ an 2(an)? n3/?

B l—p [t t? t°

= nlogp+nlog [1——p <%+72(an)2+0<m>)}

1—p /[t 2 nf{l—pt)? 3
— plogp—n—2 (L4 Y V_D(2ZPP) Lot
nlesp P (an - 2(an)2) 2 ( p cm) - nl/?

P a p? 2a2n

1—pt ¢ t3
where we used the definition afin the final step. Substituting this intog My (y) we

see most of the terms cancel, yielding
t2 t3

Asn — oo for any fixedt this converges t¢? /2. Thus as: — oo we havdog My (t) —
t2/2, implying thatMy (t) — ¢'°/2 as claimed.

It is worth noting that while we were able to prove the claitme above algebra is
quite long and tedious and not at all enlightening. Whils thiessentially a proof of the
Central Limit Theorem in this special case, the final resedinss almost miraculous.
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10. HW #10

Due Thursday November 19 (though you may place in my mailgp#lul0am on
Friday 11/20):

(1) LetX,..., Xy beiidrv with mean 0 and variance 1, and fét= (X, +--- +
Xn)/N. For any fixedck > 0, prove that asvV — oo we have

lim Prob(]X — 0] >¢€) = 0.
N—00

Hint: try using Chebyshev’s theorem.

(2) Let

I S
0 if x =0.

(a) Provef is continuous.
(b) Letm be any fixed positive integer. Prove that, ., 2™ f(z) = 0.

(3) Assume you have a table of probabilities of the standardhal random vari-
able X; in other words, you can easily look up probabilities of thédwing
form: ®(z) = Prob(X < a). (The cumulative distribution function of the stan-
dard normal is used so often it gets a symbol reserved foameatyd.)

(@) ShowProb(X < 0) =1/2.
(b) LetY ~ N(u,o) be a normal random variable with mearand variance
o?. ExpresProb(Y < a) in terms of®, 1, o and of course.

(4) DO EXACTLY ONE OF THE FOLLOWING:

(a) Find any math research paper or expository paper whes pobabil-
ity and write an at most one page summary (preferably in TAX)ou continue
in your careers, you are going to need to read technical papet summarize
them to your superiors / colleagues / clients; this is thusmitally a very useful
exercise. Make sure you describe clearly what the pointefpidper is, what
techniques are used to study the problem, what applicatimre are (if any).
Below is a sample review from MathSciNet; if you would likesee more, you
can go to their homepage or ask me and I'll pass along manyeobiles I've
written. I've chosen this one as it’s related to a paper omoanly shuffling
cards (this paper is linked in the additional comments fractoBer 27): Bayer,
Dave and Diaconis, Perslrailing the dovetail shuffle to its lairAnn. Appl.
Probab.2 (1992), no. 2, 294-313.

Rarely does a new mathematical result make both the New YorsTand
the front page of my local paper, and even more rarely is yeureawer asked
to speak on commercial radio about a result, but such agtiwias caused by
the preprint of this paper. In layman’s terms, it says youudtichuffle a deck
of cards seven times before playing. More technically, thealiway people
shuffle is called a riffle shuffle, and a natural mathematicatlel of a random
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shuffle is to assume all possible riffle shuffles are equ&ighii With this model
one can ask how close isshuffles of an n-card deck to the uniform distribution
on all n! permutations, where ‘close’ is measured by variation dis& It was
previously known that, as — oo, one need#(n) ~ 32log, n shuffles to get
close to uniform. This paper gives an elegant and carefattrent based on
an explicit formula for the exact distanckk, n) to uniformity. To quote the
abstract: ‘Key ingredients are the analysis of a card tricidathe determination
of the idempotents of a natural commutative subalgebraarsgtmmetric group
algebra.’ — Reviewed by David J. Aldous

(b) The following three problems: Problem #10 in Sectiorl&afd Prob-
lem #17 in Section 3.1&and Problem #1 in Section 1.8.

(5) Extra Credit: Prove which of the following from lecture converges slowtest
the standard normal: uniform, Laplace or Millered Cauchy.

(6) Extra Credit: Define

C'k(a)

fr(x) = T (an)

whereCY(a) is chosen so that the above is a probability density.

(a) Finda andCj3(a) so that the density above has variance 1.

(b) More generally, for any integdr > 3 find « andCy(a) so that the density
above has variance 1.

Problem 1. Chebyshev’s theorem states that if a random variableas finite mean
py and finite variancer?, thenProb(|Y — uy| > ko) < 1/k*. Let's takeY =
X = (X; +---+ Xy)/N. ThenE[Y] = 0 (as eachX; has mean 0) anfar(Y) =
& 3N Var(X;) = 1/N, sooy = 1/V/N.

We must determine how many standard deviatioiss As one standard deviation is
1/v/N, it takesk = /N standard deviations to be at leastway from the mean. As
e is fixed andN — oo, eventually this number is arbitrarily large. Thus by Chetogv
we find

Prob(|X — 0| > ¢) = Prob <|Y -0 > E\/N0y> < %,
which clearly tends to zero for any fixedas N — oc.

It is worth remarking that Problem 1 is actually a very famausl very important
theorem, namely thé/eak Law of Large Numbers The Central Limit Theorem is a
strengthening of this, where in addition to knowiNg, — 1 we know how it converges
as well.

Problem 2. We first note that this is not a randomly chosen function. Thane of the
two densities we saw earlier that have the same integral mtsnhet are different.
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(a) To prove thatf is continuous, it clearly suffices to check the behaviorf ais
x — 0. We thus need to sholim,_,, f(z) = 0. To evaluate this limit, it is natural to
try and use L'Hopital’s rule. | prefer to move thep(—(log z)?/2) to the denominator
and lety = 1/z; this gives a nice ratio ofo/co with the variable tending to infinity.
Thus we must evaluate

. Y
lim
v=oo /21 exp((log y)?/2)
If we try and use L'Hopital’s rule, we run into some diffici@$ as the derivative of the
exponential factor isxp((logy)) - logy - i which gives

lim y — 1 y

v=o0 /2 exp((log y)?/2) /o5 V2r exp((logy)?/2) - logy

We can surmount this by changing variables yet again, geitia= ¢ or w = log .
Thus we must study

. e’
Jl—r}olo V2mew? /2
There is actually no need to apply L'Hopital’s rule, as we campute the limit directly.
Itis
1
lim =0
w=oo /21 exp(w(y — 1))
For another approach, we again change variablesyvithl/x — oo and find our

limit equals

m L L Y
Yy—00 /27T e(logy)2/2 \/ﬁ y—+00 e(logy)2/2
L S O A
\/% y—00 (elogy)(logy)/Q
1 . Y

o o
Aslogy — oo, fory large the denominator is clearly greater thé&t, which suffices to
prove our claim. It is very natural to approach the probleis tay. The reason is that
we are happy when an exponential hits a logarithm, as the uwctibns are inverses
and cancel. Thus we want to exploit the fact that we are exg@atang a polynomial in
the logarithm ofr.

Another way to attack this problem is to study the limit:as> 0 of the logarithm of
our quantity; if this limit tends to negative infinity therethimit of the original quantity
tends to the exponential of negative infinity, or zero. Wkahe limit of the logarithm?
It is just

lim log

1 log2r  (log x)Q]
z—0 V2max?

—(ogz)?/2|  _ 3
¢ } tim {log T 2
log2m log x
= — lim log x - —-1].
2 x—0 2

As x — 0, both factors involving logarithms tend to minus infinitpdathus their prod-
uct tends to infinity; as we multiply by negative one, the tiaddove is minus infinity,
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and hence the original limit is just zero.

For (b), we want to prove théitn,_,. 2" f(x) = 0. Let's analyze the factaros®)*/2,
Arguing as in the alternative proof for the previous part find

_ \/Elog T .

log z

e(logm)2/2 _ (elogm)lo% — (l’) 5

Thus

m

x
Y 27Tx2\/§10gx ‘

log x

" f(x)

If we takez so large thatog z > 4m, then/x > z?™, and thus the denominator
grows faster than the numerator, so the limitis zero. Spadiyi

" f(x)

™ m 1

x
— > —
V22 \/Elog v V2mra2p?m Vorp2am’

which clearly tends to zero as— oo.

Problem 3. (a) The density of the standard normal is symmetric about0 (in other
words, it is an even function), as it is just

_ 1 e—x2/2

As the density is symmetric about 0, we have

00) = [ s = [ sy

as the sum of these two integrals must equal 1, each one efdheequal to 1/2.

The reason this problem is so important is that there are tifeerent tables of prob-
abilities for the standard normal, and noting the symmestiyseful in converting from
one to another. Specifically, we could be given the probghilom —oo to = (which is
®(x)), the probability from—z to = (which is®(x) — ®(—xz)), or the probability from
0 tox (whichis®(xz) — ®(0) = ®(x)).

(b) AsY ~ N(u,o0), we haveZ = (Y — u)/o ~ N(0,1). To see this, note that
clearly Z is normally distributed, and we've adjusted everythinglst ¥ has mean O
and variance 1, implying is the standard normal. We can solve 10iin terms ofZ,
and findY = ¢Z + u. We therefore have

Prob(Y <a) = Prob(cZ+ p<a)
= Prob(cZ <a—p)

- Prob(Zga_u>

e
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11. HW #11

Due Thursday November 1O ANY FIVE OF THE PROBLEMS BEL OW. If
you choose to do either problem 6 or 7 (you of course may abedd thoth), you must
email me your .tex file and .pdf, and note on the homework ybmisuo the grader
which of these problems you elected to do.

(1) LetX, Xy, ..., Xy be independent exponential random variables with parame-
ter \. Find the moment generating function f&k. Directly using the moment
generating function, prove the central limit theorem for + --- + Xy (i.e.,
mimic what we did for the Poisson).

(2) Let f(x) be a Schwartz function of-o0, 0o). In particular, this means thgitis
ak times continuously differentiable probability density my positive integer
j. In other words, the first derivatives off exist and each of these derivatives
is continuous. Prove there is some const@nepending oryf, f/, ..., f®

such that agy| — oo, | f(y)] < C/|yl*.

(3) We sayf is a continuous probability density supported[e/B, B| if f(z) =0
if |x| > B; equivalently if X is a random variable with density we say
X is supported or]—B, B] if f is supported orj—B, B]. For example, if
X ~ Unif(2,5) then X is supported on—5, 5], while if X ~ Exp(1) then
there is noB such thatX is supported o B, B].

o Prove or disprove: iff is supported ofi—B, B] then the2k™" moment
of f is at mostB?~,

o Prove or disprove: Let), denote thek™ moment off. Assume that

Thenf is supported ofi— B, B]. (In other words, the probability of
taking on a value: with |z| > B is zero.)

o Prove or disprove: Assumé,, the2k™ moment off, satisfies
(RN < uh, < (2k).
Then there is some finit8 such thatf is supported oifi—B, B].

(4) Is the following argument correct: Consider

w5 02"

For largeN the first factor looks like*" since

(1+2)" - ((H%)N)N ey = e,
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Similarly we see that the second factor looks lik&?V, and thus the product
tends to 1 asv — oo. If this argument is wrong, what should the limit be? In
other words, find

g [ 3) " 0 5)

if the argument above is incorrect.

(5) Let A be an arithmetic progressionwofintegers with common differencg this
means there is someg such that

A = {ng,no+d,nog+2d,...,n9+nd}.

Prove|A + A| = |A — A|, where
|A—|—A| = {a1+a2:a1,a2€A}
|IA—Al = {a1—as:a5,ay € A}

This implies that arithmetic progressions are ‘balancétif sumsetd + A is

as large as their difference sét— A). Hint: show without loss of generality
that we may take, = 0 andd = 1 when we count the number of differences or
sums.

(6) Write up a problem of your choosing and a solution. You nase someone
from the class check it. If the problem is unclear or the sokuits wrong, unlike
previous homework assignments this time you will lose moint

(7) Read a paper involving probability and give a one pagensam.

Problem 1. We first compute the moment generating function of expoaérdndom
variables with parametex. It is

Mx(t) = E[e¥]

R

There are many ways to do algebra; we chose to multiply by Baridrm of% as the
exponential’'s argument is(A—t)z. In other words, we essentially have an exponential
with parameten — ¢, and thus we just need to do some algebra to get the righttgensi
which integrates to 1. Multiplying by=! leads to integratingxp(—(\ — t)z)(\ — ¢),
which is an exponential with parameter ¢.
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The Central Limit Theorem involves studying the limitingttibution of

ZN =

As the moment generating function of a sum of mdepender[tcrmwariables is the
product of the moment generating functions, we have

N N
—ut t N t
My, (t) = [[erv M _ Ny .
an(t) = [l e X(a\/N) ‘ X(a\/N)

n=1

Taking logarithms we find

tv N
log My, (t) = _n ?‘/7+NlogMX(

t
oV N ) '
We now stop arguing in full generality and instead use thetfzett we have a sum of
exponential random variables with parameterThe mean and the standard deviation
are bothl /A, so

At
log Mz, (t) = —tV'N + Nlog My (W)

Substituting for the moment generating function yields

t
log Mz, (t) = —tv/N — Nlog (1 - \/—N) :
We Taylor expand, using
2

log(1 — u) — _(H% )

log Mz, (t) = —N_“V(\/—N*%% O(ﬁ))

12 1

My, (t) = ¢*/2eON9),

which converges to the moment generating function of thedstad normal agv — oc.
Using our results from complex analysis, the fact that then@at generating functions
exist in a neighborhood of the origin and that they conveaythe moment generat-
ing function of the standard normal, we now obtain that theesponding densities
converge to the density of the standard normal.

The proof is algebraically much nicer than the general cagal\iing moment gen-
erating functions because we have such a nice closed forressipn for the moment
generating function of exponential random variables.

and find

which implies
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Problem 2. We have
f) = [ rweriva.

Recall that a functiorf is Schwartz if for any non-negative integensandn there is a
constant’,,, , such thatf™(z)| < C,,../(1+22)™. In other wordsf and all its deriva-
tives decay faster than the reciprocal of any polynomial.Wkiée the denominator as
1 + z? and notz? or x so that our bounds are well-defined whee- 0 too.

We ‘evaluate’ the integral by integrating by parts. There @o convergence issues,
as f and all its derivatives are of rapid decay. We set f(z), dv = e ™y
sodu = f'(x)dx andv = (—2miy)~te 2", If you are uncomfortable integrating
functions such ag—2™*¥, break it up intocos(2rzy) + isin(2rzy). As f is Schwartz,
the boundary terms (evaluatingz)v(x) at +oo) vanish because of the rapid decay of
f,and thus

- 1

f(y) — 27T7;y/_ f/(x)e_zﬂmydl’,

where there is no minus sign as the minus sign from the derévaf the exponential
factor cancels the minus sign from integrating by parts. eRépg thisk — 1 times
yields

~

_ 1 ) () =20y gy
F) = o | I

where f*) represents thé" derivative of f. As f is Schwartz,f*)(x) decays faster
than any polynomial iz, and hence the integral above exists. It is therefore balinde
independent of; (so long agy # 0, but we may assumg # 0 as we care about the
behavior for largey), say byC;, for someC;, depending ory*).

Explicitly, we use the fact that the absolute value of angraéis at most the integral
of the absolute value, and then Usé| = 1 for reald. Again, if you are not comfortable
with working with complex valued functions, write it as aineiece plus a sign piece,
and work with each piece individuallye have

Fo| < e [ 19 @

As |f®)(z)] < Cr1/(1 4 2?), the integral converges and is finite (it actually equdls
Letting Cy, = wCy.1/(2m)*, we find
70l < o

which gives the desired decay.

The purpose of this problem is to give the beginning of a pod@hn important fact,
namely that the Fourier transform of a Schwartz function$elwartz function. Thisis
an ingredient in the proof of the Fourier Inversion Theordihis is the first, and most
important, step in proving this claim. We now need to showtedlderivatives oj?have
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the appropriate decay. We sketch the proof. It all starth thi¢ relation

) = j[ f(x)e 2oy,

We differentiate with respect tg a total ofn times. Asf is Schwartz, we may inter-
change the differentiation with respectit@nd the integration, and we find

o

f(n)(y) = /_OO f(z)- (—27Tix)"6_2mxydx = (—27?2')"/ g(x)e_%”ydx,

where

g(x) = fla)a".
The proof is completed by noting thatz) is a Schwartz function and then using the
bounds from the first part of the problem. The arguments Hergtriate another im-
portant property of the Fourier transform: there is a relatbetween multiplying our
original function byx" and takingn derivatives of the Fourier transform. This inter-
play is one reason why the Fourier Transform is extremeljulisesolving differential
equations.

Problem 3. For (a), note

B B
i = [ g < 5 [ -
-B —-B

this is because?” is largest when: = +B, and thus thek™" moment is at most equal to
what we obtain when we replaeg® with B?*. In attacking problems like this, it helps
to think about what we should aim for. It is very good if we endintegratingf (x), as
we know this integrates to 1. How large can the factordfbe? As—B < = < B,
2?* < B?* and we do not decrease (and almost surely increase) theeofdle integral
if we replacer?* with B2,

For (b), the claim is true. This problem seems like a convaryga). In part (a) we
showed that if the function is supported [in B, B] then the2k™™ moment is at most
B?; here we are saying we know the limit of thé2k root of i, is at mostB — we
want to show that this implieg lives in [- B, BJ.

We give a proof by contradiction. Assume not. Then there issitpe probability
of our random variableX with density f taking on a valuer with |z| > B. We thus
find that for some > 0 there is gp > 0 such thafProb(|X| > B + ¢) > p. We need
to pass from this to a lower bound fpf, which is so large that theé/2k power tends
to infinity, as this will imply that there is no finit& such that all of the probability
lives in [— B, B]. We need to think of how to incorporate this into a lower bauAd
little thought tells us that if we want a lower bound, and wewrthere is a positive
probability of | X| > C' > B, it might be worth restricting the integral definipg, to
|z| > C. If we do this, we'll be able to replace att* in this region withC** and get a
lower bound.

In particular, this implies

oy = / 2 f(x)dx > (B +€)*Prob(|X| > B +¢) = p-(B+¢e)*.

[e.e]



68 STEVEN J. MILLER (SIM1@WILLIAMS.EDU)

Taking thel /2k root yields

k
pol > Pl (Bt e).

As p > 0, ask — oo we havep'/?* — 1, and thus

(note the greater than becomes a greater than or equal te iimti). This contradicts

our assumption, and thus is supported if—B, B]. The importance of this problem
is that an understanding of the even moments gives enornmasrds of information

about the probability density; in particular, if the monmgdon’t grow too rapidly than

the density is supported in some finite interval, while ifytigeow very rapidly then the

density is not supported in any finite interval. Why are weklog at the even moments
to the exclusion of the odd moments? The problem with the odohemts is that they
can be small even if the function is of unbounded support (hisk of the standard

normal).

For (c), our random variable is not supported in any finiterval [— B, B|. To prove
this, it suffices to study the lower bound, as this will imgigtmoments grow so rapidly
that the density is not finitely supported. Cleaid)!! > k!; both have the same num-
ber of terms, but each factor @fk)!! = 2k-(2k—2) - - - 2 is twice the corresponding fac-
torof k! = k-(k—1) --- 1. By Stirling’s formula, for large: we havek! ~ k*e=*v/2rk.
Thus

WAL > R (e () > TR
11/2k

From the first part of the problem, jf is supported iN—B, B] thenyu,,™ < B; as
k — oo we see there is no fixe#t that can work, and thus our function has unbounded
support.

There are lots of other relations we could have used, su¢higd > /(2k)! and
(2k)! = 2Fk!,

These three problems are meant to give a bit of the flavor ahbery of moments.
In particular, knowing a little bit about how large (or sm)aie moments are in the limit
allows us to deduce some things about the distribution, agohether or not it lives
in some finite interval.

Problem 4. The argument given is wrong. The problem is that while thennt@ims
are correct in each case, the secondary terms are ignoredré/Me a situation where
the two main terms cancel, and thus it is essential that wenstehd these secondary
terms as well. One way to do this problem is to take the expiadeof the logarithm.
This is a generalization of multiplying by 1, as we do nothimg in a useful way.

Let . .
Pe= (05)" 025"
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Taking such an approach, we find we must studyyas: oo,
x s
log Py = N21 (1 —) N?1 (1——).
og P og|l—+ N + og N

Taylor expanding, using

u2 u3
log(1 = - .
og(1l+ u) U + 3
u2 u3
log(1 — = - — — — ...
og(1 —u) U5 T3
we find
2 2
log P — N2 LT N3 N2 v N3
o Py (5 572 + OV)) + 3 (= = 5z + OV )
= -2+ O(NY,
which implies
Py = 6—1:26—0(1/N)7
and thus
lim Py = e~
N—o0
There is a simpler way to see this. Note
) ) T N2 T N2
P = J&E%O{(”ﬂ (1-%) }

= [0 3) (-5)

2\ V?
= (12N
o Nl—r>noo( NQ) ’

note, however, that this limit is just the definitionof**. The only difference between
the above and the standard definition is that we are uSthipstead ofNV; however, if
N — oo thenN? — oo as well.

For this problem, it is much easier to use the second apprcEtd idea is that the
algebra is nicer here because we have v times1 — u, which is justl — u? (for
u = z/N). This factorization and reinforcement occurs in many fgois. We present
both proofs as, for general questions, we don’t have therjurii exploiting such a
nice factorization. Pattern recognition is extremely imigot; we can easily stare for
hours at something that we know without realizing we knoweitdwuse it is presented
in a different light. After thinking to combine the two facsy we then have to see that
N — oo is the same ad’* — oo, and what we have is just the definitionefp(—z?).

It's worth emphasizing that this technique of combiningdex surfaces all the time
in advanced number theory courses.

It's worth spending a few moments thinking about the falggiarent given above.
There, we have a limit of a product We'd like to say that thisag the product of the
limit, but we must be careful. Those two limits ase and0, and0 times oo is not
defined. Itis clearly illegal to do what we did, namely to shg limit of the product is
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the product of the limits, but we don't take the limits, iretdettingN — oo in some
parts but not in other places so as to end up withande==",

In general, depending on how things tend to infinity and zes®,can makex - 0
equal almost anything. Consider

1
. 2+ _
i N7 >0
. 2 ™ .
AN =T
, 1

Jim N = 0.

If we were to say the limit of a product is the product of theitsnin each case we get
oo - 0, and yet each case has a different answer.

Perhaps my favorite problem involving - 0 argues that (at least in this case!) it
should be -1. Here’s the example: consider the product oslibyges of any two per-
pendicular lines not parallel to the coordinate axes. I¥®gy nice exercise to prove
this product is -1. As it equals -1 so long as the lines are addlfel to the coordinate
exes, itis natural to define the product of the slopes herer(éz-axis andx for the
y-axis) to be -1.

Problem 5. We first note thatA + A| and|A — A| are not changed by mapping each
x € Atoax + (8 for any fixeda and . The effect of this transformation is to take all
the sums and multiply by and then ad@ g, while for the differences it multiplies by
«. For definiteness, imagine we have the mapping 3z + 5 and taker; = 4, a; = 7.
Then originally the sum is 11 and the difference-i3. Our elements map to 17 and 26,
and now the sum i¢3 = 3 - 11 + 2 - 5 and the difference is9 = 3 - (—3).

As we have an arithmetic progression, we use the following:ma— (x — ng)/d.
This maps our initial arithmetic progression to the new pesgion{0,1,2,...,n}. It
is very easy to compute the sumset and difference set here.sdthof sums is just
{0,1,...,2n} and the set of differences is juStn, ..., n}. As both of these sets have
2n + 1 elements, the sumset and difference set are the same size.

Perhaps an easier way to view the problem is the followingay A = {0, 1, ...,n}
leadtoA+A = {0,1,...,2n}andA—A = {—n...,n}. To see this, note the smallest
element ofA + A is clearly obtained frond + 0, while the largest comes from+ n.

A little inspection shows we can get everything in betweerstdad of going from our
original arithmetic progression to this, we go the other \(gtgrt here and end up with
the original progression)This is an example of the very useful method of reverse en-
gineering. We first change variables by mappif@, 1,...,n} to {0,d,...,nd}. This
mapping changes all sums and all differences by a factdr btit does not alter how
many such factors there are. Similarly, if we include thagtationn,, then all sums
increase by the same amount (nanisly) while the differences are unchanged.
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Learning what change of variables to do and when to do it isrditeskill that fre-
quently takes a lot of practice, but it is important. For epéen frequently difficult
integrals are in integral table books, but in an equivaleatner that can be missed
unless we see the ‘clever’ change of variables problems.

This is a very important problem in additive number theorlge Teason is that such
sets are balanced (i.e., they have as many sums as diffejeribeese sets are often
used as a starting point in the construction of sum-doméhses in the following way:
if we start with an arithmetic progression, the hope is thatweaking it slightly we
can add one more sum than difference, and thus end up with-@lemrmated (or more
sum than difference) set.

12. HW #12

Due Thursday December 10 (though you may place in my maillpoxliuLlOam on
Friday 12/11):

DO ANY THREE OF THE PROBLEMSBELOW, BUT ONE OF THE THREE PROBLEMS
MUST BE PROBLEM #1. If you choose to do either problem 5 or 6 (you of course
may elect to do both), you must email me your .tex file and apdfnote on the home-
work you submit to the grader which of these problems youesdeo do.

(1) Everyone must do thisone: Take two homework or exam problems where you
lost points this semester because your logic was incorrect\What you wrote
was wrong and not just you left the problem blank). Write arsfieX doc-
ument where you state the problem and explain your reas@srg why you
made the mistake you did, and email me the TeX file. Make suuegye the
file a name which begins with your lastname (this makes it éasye to keep
track of who’s work I'm viewing).

(2) Come to my office and give a 5 to 10 minute presentation onestmpic on
probability that we have not covered in class. This couldhsedolution to a
problem we haven’'t done from a section we've studied, suriringra section
we haven't studied, summarizing a paper, .... The point sf éiercise is to
get practice orally presenting information (in additiorbeing good in its own
right, it helps if you ever need a letter of recommendatian| ean then talk
about your presentation skills).

(3) Consider a random variabl€ with the standard Laplace distribution, so the
density isf(x) = exp(—|z|)/2. According to Chebyshev’s inequality or the-
orem, what is the probabilityX’ is more thank standard deviations from the
mean? Do you think this a good estimate? What is the actubbpitity?

(4) Consider a Cauchy random variable so f(z) = m What does Cheby-
shev’s theorem or inequality say about the probabijliy > 2009? Estimate
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this probability.
(5) Write up a problem of your choosing and a solution.
(6) Read a paper involving probability and give a one pagensam.

(7) Work on one of the research projects mentioned in clag®ul elect to do this,
contact me.

Problem 3. For the Laplace distribution, the densityficr) = exp(—|z|)/2. The mean
is clearly zero, and thus the variance is

E[X?] :/ xze_md—x :/ e " dr.
} 2 ;

o0

One way to do this would be to integrate by parts twice. Forfilse we setu = z2
anddv = e~ %, and we seelu = 2xdr andv = —e~*. Continuing in this manner
yieldsE[X?] = 2, or the variance is 2. A faster approach is to recall the d&fimand
properties of the Gamma function:

I'(s) = / e sz ldx (if Re(s) > 0), I'(n+1) = n! (if nis a positive integer).
0

Our integral expression fdt[X?] is just’(3) = I'(2 + 1), and thus the answer is just
2! =2,

The first part of the problem asks for the estimate from Chiedy's theorem for be-
ing more thark standard deviations from the mean. Chebyshev’s theoreso kalown
as Chebyshev’s inequality) states

Prob(|X — p| > ko) < %
for any random variablé& with finite meanu and finite variance>. Thus Chebyshev
estimates this probability ds'4? (which of course is useless fér< 1).

Chebyshev’s theorem holds for all densities with finite selcomoment; it thus uses
very little information about the distribution itself. Itust hold for both uniform ran-
dom variables and exponential and Gaussians. It is thue kély that this greatly
overestimates the true probability. What is the true prdibg® As the variance i2,
the standard deviation ig2 and we are reduced to computing

00 k
Prob(|X| > kv2) = / 6_‘x‘d_x = / e tdr = e V2 = ( ! ) .
k

a>kvE 2 Vi eV?
Thus the true answer ggnificantlysmaller than Chebyshev. For example, whkena 2
Chebyshev gives .25 while the true answer is about .06; ferl0 Chebyshev gives .01
versus about - 10~7, which is magnitudes smaller! To really drive home the pdint
k = 100 then Chebyshev gives .0001 while in fact the probabilitgssithant - 10~52!

Problem 4. As this problem is similar to the previous, see Problem #3fetatement
of Chebyshev’s theorem. As the Cauchy distribution hasitefirariance, Chebyshev’s
theorem hasiothingto say about the probability 0| > 2009. The density function
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of the standard Cauchy distribution f§z) = m with cumulative distribution
function F(z) = 2922 Thus

d
Prob(|X| >2009) = / —
e|>2000 (1 + 22)

B 2/°° dz
o 2009 1 + 22

2
= — (arctan(oo) — arctan(2009))
T

_ 2 <g — arctan(2009)> :

m
How should we approximatectan(2009)? Plugging into Mathematica gives

arctan(2009) ~ 1.5702985667563642558, g ~ 1.5707963267948966192.

This is fine if we have a computer at our disposal; howevervflvee don’t?

Allis notlost, as we know the power of Taylor series, so Isitsple expandrctan(z)
and then evaluate it at= 2009. The problem with this is that we would need a Taylor
series expansion about infinity, not 0, as we want to see vdpgidns when we evaluate
the probability for large:. We can rectify this by recalling

T 1 .
arctan(zr) = 5 arctan <—) if x > 0.
x

The Taylor series expansion farctan is

B 0 (_1)nu2n+1 B u3 U5 u?
arctan(u) = ;W = u—§+€—7+-~
Thus
1 1
arctan | —— | =~ ——,
<2009) 2009
with an error on the order df/20093. Substituting gives
tan(2009) = = —
I n - — —
e 2 2009’
o)
Prob(|X| > 2009) = 2 (W ¢ (2009)) 2
Y = — | z —arctan ~ ;
' = r\2” % 20007

this gives a predicted value of 0.000316884, the actual ane?0.000316883882.
is quite close (and we could obtain better approximatiortls wiore terms).

Another way to approximate the answer is to say that, sinee2009, 1/(1 + 2?) ~
1/2%; the error in such an approximationligz?(1 + z?), which when integrated over
[2009, co) is of size1/20093. Using this approximation, we get

2 [ dx 2
PI‘Ob(|X‘ 22009) ~ ;/2‘0095 = m,
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the same answer we found with Taylor series and arctan teEngbut significantly less
work!).

For comparison’s sake, the probability that| > 2009 for the standard normal is
less than0~87423 while for the Laplace distribution it is abolit265 - 1071234,

In the original proof we used an identity farctan(x), namelyarctan(1/x) = w/2—

arctan(z) for x > 0. There are many ways to prove this. One way is to use the fatt th
arctan(x) is the anti-derivative of /(1+2?%). Asarctan(0) = 1 andarctan(oo) = /2,

we have
1 1 /1/:” dt
arctan | — = — _—
x Tty 1+t

We change variables, setting= 1/t sodu = —dt/t* or dt = —du/u®. The region
of integration is now fronxo to =, which becomes to oo as we have a negative sign.

Thus
arcta —1 = /x L Y
rctan
T o 1+ (1/u?) u?

B /°° du
), 1+w?

= arctan(oo) — arctan(x)

= g — arctan(z)

as claimed. A faster proof is to note that for any an@le= (0,7/2), tan(f) and
tan(§ — 0) have reciprocal tangents; thus:tan(z) + arctan(1/z) = 7 /2.

We end with one more way to solve the problem. Either changamibles or using
our arctan identity, we see the problem is equivalent touataig

1/2009 g4
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We use the geometric series to expand- z2)~1, interchange the integral and the sum,
and then evaluate term by term. Thus we have

arctan(z) = / _dt
0

1+¢2

= / Z —1?)"dt
0 n=o
0 nt2n+1

B Z 2n+1’

which is the claimed Taylor series expansion for arctanjevbome work is needed to
justify the arguments above, this is much faster than comgtite Taylor expansion of
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arctan from first principles.

Finally, since-L arctan(z) = 1/(1 + 2?) is so essential for this problem, we quickly
review it's proof. Using the quotient rule, we knof tan(z) = 1/ cos?(z). We use a
very useful identity: iff andg are inverse, differentiable functions such tfigg(z)) =
z, thenf'(g(z))g'(z) =1org(x) =1/f'(g(x)). Letting f denote the tangent function
andg the arctangent function, we have

d arctan(z) 1 )
dx ~ tan/(arctan(z)) cos” (arctan(z)).

While this is a solution, as writtetos(arctan(z)) is not that illuminating. We now
show thatcos(arctan(z)) = 1/v/1 + 22. To see this, lef = arctan(z), sotan(f) = z.
We construct a right triangle with side adjacent to the argkgual to 1 and side
opposite the anglé equal tox. Clearly this will havetan(f) = z/1 = x as de-
sired. Further, by Pythagoras the hypotenuse’s lengthlis+ 22 = /1 + 22. Then
cos(#) = 1/v/1+ z2; however, = arctan(x), SOcos(arctan(x)) = 1/4/1+ 22 as
claimed.

In summary, this problem reviews many of the key propertiéde@Cauchy distribu-
tion. Even though this density has infinite second momelnésetis a nice, closed form
expression for the cumulative distribution function, ahdg it is easy to integrate. We
have simple series expansions for the cumulative distabutnction, and can com-
pute the relevant probabilities without too much difficulfine hardest part is knowing
which identities to use to simplify the algebra or to appnoaie the answer.



