
Math/Stats 342: Solutions to Homework
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November 17, 2011

Abstract

Below are solutions / sketches of solutions to the homework problems from Math/Stats 342: Prob-
ability (Mount Holyoke College, Fall 2011, Professor Steven J. Miller, sjm1@williams.edu). The
course homepage is

http://www.williams.edu/Mathematics/
sjmiller/public html/342.

Note to students: it’s nice to include the statement of the problems, but I leave that up to you. I am only
skimming the solutions. I will occasionally add some comments or mention alternate solutions.
If you find an error in these notes, let me know for extra credit.
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n Prob(not a match) Prob(no matches)
1 1.000 1.000
2 0.990 0.990
3 0.980 0.970
4 0.970 0.941
5 0.960 0.903
6 0.950 0.858
7 0.940 0.807
8 0.930 0.750
9 0.920 0.690

10 0.910 0.628
11 0.900 0.565
12 0.890 0.503
13 0.880 0.443

Table 1: Table of probabilities that there are not two people sharing a birthday in a 100 day year. The first
column is n, the second is the probability that, given no matches among the first n − 1, the probability
that n is not a match. The third column is the probability that there is no match among the first n.

1 HW #1: Due Thursday, September 15, 2011
Problem: (1) If you have 100 days in the year, how many people do you need in a room for there to be at
least a 50% chance that two share a birthday?

Solution: Our formula from class approximates the number of people needed in a year with N days
to be 1/2 +

√
N2 log 2. Taking N = 100 gives approximately 12.27. Let’s find the answer by brute force

(the actual answer, not an approximation). We want the first n so that

100

100
· 99

100
· 98

100
· · · 100− (n− 1)

100
≤ .5,

as this product is the probability we do not have a birthday in common with n people in a year with
N = 100 birthdays. See Table 1.

Problem: (2) Generalize the argument from class of 20 blocks of 5 to blocks of size 6 (I can do 10 of
size 10 without too much work). Note we still have 100 spins, and each spin has a 50% chance of being
red, 50% chance of being black.

Solution: Let an be the probability we don’t have 5 consecutive blacks in n spins, and bn the prob-
ability that we do have 5 consecutive spins are black in n spins. We break the 100 spins into 16 blocks
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of length 6 and one of length 4. Clearly the block of length 4 never has 5 consecutive blacks. For the
16 blocks of length 6, each block has 26 = 64 possible strings of red and black. The only ones that
have 5 consecutive blacks (or more) are BBBBBR, RBBBBB, and BBBBBB. Thus 61/64 do not have 5
consecutive blacks.

If none of the 16 blocks of length 6 have 5 consecutive blacks, by multiplying the probabilities we get
an upper bound for an (it is an upper bound as we could have 5 in a row split between two blocks):

an ≤
(

61

64

)16

· 1,

so

bn ≥ 1−
(

61

64

)16

≈ .536.

3



2 HW #2: Due Tuesday, September 20
Problem: Page 9: #3: Sampling with replacement: Box contains tickets marked 1, 2, . . . , n. Ticket drawn
from random and then replaced and another drawn.

Solution: (a) Probability first ticket is a 1 and second is a 2 is just 1/n2. This is 1/n times 1/n, as the
outcome of the first event has no influence on the probability of the second.

(b) The numbers are two consecutive integers, with first one less than second. The answer is (n −
1)/n2. If the first ticket is an n can’t happen; the probability the first is not n is (n − 1)/n, and then for
any number other than n, exactly one number works for the second.

(c) The second number is bigger than the first. Lots of ways to do this. If our first number is k (which
happens with probability 1/n), the probability the second number is larger is (n− k)/n. Thus our answer
is the sum

1

n

n− 1

n
+

1

n

n− 2

n
+ · · ·+ 1

n

n− n
n

=
0 + 1 + 2 + · · ·+ n− 1

n2
.

We showed that 1 + 2 + · · · + m = m(m + 1)/2 in class, and thus the probability is 1
n2

(n−1)n
2

= n−1
2n

=
1
2
(1 − 1

n
). Another way to see this is let x be the probability the first number is larger, y the probability

the second number is larger (note x = y by symmetry) and z the probability they are the same. We can
easily compute z, which is just 1/n. As x+ y + z = 1, we find 2y + 1

n
= 1 or y = 1

2
(1− 1

n
).

(d) Repeat (a) through (c) but now assume there is no replacement. (a) becomes 1
n

1
n−1 , as now when

we draw the second ticket there are only n − 1 possibilities. Similarly (b) becomes n−1
n

1
n−1 , as again the

second ticket now has n− 1 options and not n options. For (c), by symmetry the probability the second is
larger is the same as the probability the first is larger. The probability they are the same is now zero, and
thus the probability the second is larger is just 1/2.

Problem: Page 9: #5: Suppose a deck of 52 cards is shuffled and dealt.
Solution: (a) How many ordered pairs of two cards? There are 52 · 51 ordered pairs.
(b) What is the chance the first card is an ace? It’s just 4/52 = 1/13 (as there are four aces).
(c) What is the chance the second card is an ace? Two possibilities: first is an ace and the second is an

ace, or first is not an ace and second is an ace. The probabilities of this are

4

52

3

51
+

48

52

4

51
=

12 + 192

52 · 51
=

204

52 · 51
=

1

13
.

Very interesting that it comes out 1/13. Why is this reasonable? If you see the two cards on the table, no
way to know which one was picked first, and thus the 1/13 should be expected.

(d) What is the chance both are aces? It’s 4
52

3
51

.
(e) What is the chance of at least one ace? We just did the chance of two aces; we could calculate the

chance of exactly one ace and add. That’s 4
52

48
51

+ 48
52

4
51

. Alternatively, it’s 1 minus the probability of no
aces. The probability of no aces is 48

52
47
51

, so the answer is 1− 48
52

47
51

.

Problem: Page 10: #7: Roll two dice.
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Solution: (a) What is the probability the maximum of the two numbers is less than or equal to 2? This
means each die is at most 2. Each die is at most 2 with probability 2/6, so the probability both rolls are at
most 2 is (2/6)2 = 1/9.

(b) What is the probability the maximum is at most 3? It’s now (3/6)2 = 1/4.
(c) The maximum of the two numbers is exactly a 3? Either first roll is a 3 and next is a 1 or 2, or the

first is a 1 or 2 and the second is a 3, or both rolls are 3. We add the probabilities of each of these three
possibilities, and get

1

6

2

6
+

2

6

1

6
+

1

6

1

6
=

5

36
.

Note what we’re really doing is finding Prob(A∪B), whereA is the first roll is a 3 andB is the probability
the second roll is a 3. This probability is Prob(A) + Prob(B)− Prob(A ∩B).

(d) Repeat (b) and (c) replacing 3 with x for all x from 1 to 6. For (b), it’s just (x/6)2. For (c), it’s

1

6

x− 1

6
+
x− 1

6

1

6
+

1

6

1

6
=

2x− 1

36
.

Summing this for x = 1 to 6 yields 36/36, or 1. This is reasonable, as one of the numbers from 1 to 6
must be largest!

Problem: Page 30: #3: 500 tickets marked 1 thru 500 sold in a raffle. I have tickets 17, 93, 202 and
friend has 4, 101, 102, 398. One ticket chosen at random. Make an outcome space for the situation,
indicate how each of the events can be represented as a subset of outcome space.

Solution: (a) One of my tickets is the winner. The outcome space is the numbers 1 to 500, and this
event is that one of tickets 17, 93 or 202 is drawn (for fun, note this has probability 3/500).

(b) Neither I nor friend wins: The outcome space is as before, and now the event is all numbers from
1 to 500 except 4, 17, 93, 101, 102, 202, 398. For fun, note the probability of this is (500− 7)/500.

(c) The winning number is one away from a number on my ticket. Outcome space as before, now
event is the numbers 16, 18, 92, 94, 201, 203, and for fun the probability of this happening is 6/500.

Problem: Page 30: #10: Find expression of events in terms of Pr (()A),Pr (()B),Pr (()C),Pr (()A∩
B), et cetera.

Solution: (a) The probability that exactly two of A,B,C occur. Need either A,B and not C, or A,C
and not B, or B,C and not A. The probabilities of these are Pr (()A ∩ B ∩ Cc), Pr (()A ∩ Bc ∩ C),
Pr (()Ac ∩ B ∩ C). We need to break these probabilities into the nice intersections that are assumed
known; sadly we aren’t allowed to use complements directly. That said, we have a nice observation:
Pr (()A ∩ B ∩ Cc) + Pr (()A ∩ B ∩ C) = Pr (()A ∩ B). Why? The first probability is the probability
that A and B happen and C doesn’t, while the second is the probability A and B happen and C does; their
sum is thus the probability that A and B happen, irregardless of C. We thus find

Pr (()A ∩B ∩ Cc) = Pr (()A ∩B)− Pr (()A ∩B ∩ C).

Substituting, the probability that exactly two happens is just

Pr (()A ∩B) + Pr (()A ∩ C) + Pr (()B ∩ C)− 3Pr (()A ∩B ∩ C).
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(b) The probability that exactly one of A,B,C occurs. Well, the probability that all three occur is
Pr (()A ∩B ∩ C). We calculated above the probability that exactly two occur. The probability that none
occur is done in part (c). Our answer is just 1 minus these three probabilities. There must be a better way!
Let’s look at the inclusion / exclusion argument. Consider

Pr (()A)+Pr (()B)+Pr (()C)−2Pr (()A∩B)−2Pr (()A∩C)−2Pr (()B∩C)+3Pr (()A∩B∩C).

Where did this come from? If an x occurs in exactly one of A,B,C then it is counted just once above.
If it occurs in exactly two of them, it is counted twice from Pr (()A) + Pr (()B) + Pr (()C) and then
it is counted −2 times from the intersection of two elements terms (only one of the three intersections of
pairs is non-empty). If it occurs in all three of A,B,C then it is also in all three intersection of pairs, as
well as the triple intersection. The numbers have been chosen so that this adds up to 0. Thus the only net
contribution is from items occurring in exactly one of the three events A,B,C.

(c) The probability that none ofA,B,C occurs. The probability at least one occurs is Pr (()A∪B∪C),
so our probability is 1− Pr (()A ∪B ∪ C). We expand the union using inclusion / exclusion, and find

1− Pr (()A ∪B ∪ C) = 1− [Pr (()A) + Pr (()B) + Pr (()C)− Pr (()A ∩B)− Pr (()A ∩ C)− Pr (()B ∩ C) + Pr (()A ∩B ∩ C)] .

Problem: Prove if A is a subset of B then Pr (()A) is at most Pr (()B).
Solution: We have B = A ∪ (Ac ∩B). Thus

Pr (()B) = Pr (()A) + Pr (()Ac ∩B) ≥ Pr (()A),

as Pr (()Ac ∩B) ≥ 0.

6



3 HW #3: Due Tuesday, September 27
Problem: Section 1.4: #1. 92% women right handed, 88% men right handed. Determine if statements
true, false or need more info.

Solution: (a) overall population right handed is 90%. Need more info. What if 100,000 and only 100
men? Or vice-versa? Only true if same number men and women.

(b) Overall proportion of right handed is between 88% and 92%. True: lowest when all men, highest
when all women.

(c) If sex ratio is 1-1, then (a) is true. Correct. If P people, have fraction right handed is (.92P +
.88P )/P = .90.

(d) If (a) is true then sex ratio is 1-1. True. If not, then by (c) wouldn’t have 90% right handed.
(e) If at least 3 times as many women as men, then ratio of right handed is at least 91%. True. If

have w women and m men, with w ≥ 3m, then ratio is (.92w + .88m)/(w +m) = .88 + .04 w
w+m

. If we
consider w = xm, then the ratio w

w+m
equals x

x+1
, with x ≥ 3. Using calculus, we see that as x increases

this ratio increases, and thus the lowest value is when x = 3, which gives 3/4. Substituting this above we
find the percentage is at least .88 + .04 · 3

4
= .91.

Problem: Section 1.4: #3. Suppose Pr (() rain today) = .4, Pr (() rain tomorrow) = .5 and Pr (() rain today
and tomorrow) = .3. If it rains today what is the chance it rains tomorrow?

Solution: Let A be the event it rains today, B the event that it rains tomorrow. We’re told Pr (()A) =
.4, Pr (()B) = .5 and Pr (()A ∩ B) = .3. We are asked to find Pr (()A|B), which is Pr (()A ∩
B)/Pr (()B), or .3/.5 = .6 or 60%.

Problem: Section 1.4: #9. Three high schools have senior classes of size 100, 400, 500. Scheme A:
make a list of all 1000 students and choose one randomly; Scheme B: pick a school at random then a
student at random; Scheme C: pick school i with probability pi such that p1 + p2 + p3 = 1, and then pick
a student at random in that school. Find choices for pi so that Scheme C and A are equivalent.

Solution: (a) Show Schemes A and B are not probabilistically equivalent. This is similar to the
problem we did in class with 50 white and 50 black marbles – if we had one jar with 50 white and 49
black and the other just 1 black, we have almost a 75% chance of picking a black marble. Same here. In
Scheme A each person in first school is chosen with probability 1/1000; in Scheme B choose that school
1/3 of the time, and then each person is chosen 1/100 of the time, so a person in the first school is now
chosen 1/300 of the time.

(b) Each person needs to be chosen 1/1000 of the time. Thus

p1
1

100
= p2

1

400
= p3

1

500
, p1 + p2 + p3 = 1.

We find p1 = p2
4

= p3
5

, so p2 = 4p1, p3 = 5p1. Substituting gives 10p1 = 1 so p1 = 1/10, and thence
p2 = 4/10 and p5 = 5/10. Note pi is the size of the high school divided by the sum of the sizes of the
high schools.

Problem: Section 1.6: #5. You are one of n students in class.
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Solution: (a) What is the chance another student has the same birthday as yours? Assuming all days
equally likely and none on February 29, probability is 1/365.

(b) How many students so that have at least a 50% chance someone shares your birthday? Probability
n people don’t share your birthday is (364/365)n. If this equals 1/2, then n = log(1/2)/ log(364/365) ≈
252.652, or 253 days.

(c) Why is this different than the birthday problem? Difference is that it is not enough to have a pair
involved in the same birthday, but one of the pair must be the ‘special, pre-assigned birthday’ (yours).

Problem: Section 1.6: #6. Roll a fair 6-sided die until roll a number previously rolled.

Solution: (a) For r = 1, 2, . . . calculate the probability you rolled exactly r times. Probability is
clearly zero whenever r ≥ 8. This is the famous Pidgeon-hole principle; we must have our first repeat by
the 7th roll. Similarly probability is zero when r = 1 as no chance for a repeat. When r = 2, probability
is 1/6 (first roll can be anything, second roll must equal first). When r = 3, first roll can be anything,
second must be different, third must be the same as the first or second: 1 · 5/6 · 2/6 = 10/36.

If r = 4 have 1 · 5/6 · 4/6 · 3/6 = 60/63.
For r = 5 have 1 · 5/6 · 4/6 · 3/6 · 4/6 = 240/64.
For r = 6 have 1 · 5/6 · 4/6 · 3/6 · 2/6 · 5/6 = 600/65.
For r = 7, last roll must agree with one of first 6 rolls: 1 · 5/6 · 4/6 · 3/6 · 2/6 · 1/6 · 1 = 120/65.
(b) What is p1 + · · ·+ p10? The sum must be 1; one of these events must occur.
(c) Calculated sum equals theoretical predictions.
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4 HW #4: Due Tuesday, October 4
Problem: Section 2.1. Page 91: #2 (not the relative frequency part). In 4 child families, each child equally
likely to be a boy or girl. Which would be more common among 4 child families: 2 boys and 2 girls, or
different numbers of boys and girls?

Solution: There are
(
4
2

)
= 6 ways to have 2 boys and 2 girls; as there are 24 = 16 ways to have four

children, there are 16-6 or 10 ways to have a different number of boys and girls. Thus, it is more common
not to have equal numbers of boys and girls with 4 children.

Problem: Page 91. #7. You and I roll a die, if I get a strictly larger number I win. If we play five
times, what are the chances I win at least 4?

Solution: First figure out the probability I win in one attempt. If you roll a k then I have 6 − k
numbers that I could roll that are larger (this makes sense; note I can’t win if you roll a 6). As you roll k
with probability 1/6, the probability I win is

6∑
k=1

Prob(first roll is k)
6− k

6
=

1

6

5

6
+

1

6

4

6
+

1

6

3

6
+

1

6

2

6
+

1

6

1

6
+

1

6

0

6
=

15

36
.

There’s another way to see this. There are 36 ways to choose a pair of numbers. Six of these will have
the two numbers the same, the other 30 will have the two different. Of those 30, half the time I’ll have the
larger, and half the time you will.

We now turn to the question. It’s a Binomial process with n = 5 and p = 15/36. Thus the probability
I win at least 4 times is(

5

4

)
(15/36)4(21/36) +

(
5

5

)
(15/36)5 =

3125

31104
≈ 10.0%.

Problem: Page 91. #10. Toss a fair coin n times.
Solution: (a) What is probability have k − 1 heads given have k − 1 or k heads? Probability have

k − 1 heads is
(

n
k−1

)
(1/2)k−1(1/2)n−(k−1) =

(
n
k−1

)
(1/2)n, while the probability we have k heads is(

n
k

)
(1/2)k(1/2)n−k =

(
n
k

)
(1/2)n. As Prob(A|B) = Prob(A ∩ B)/Prob(B), we can find the desired

answer. Let A be the event that we have k − 1 heads, B the event that we have k − 1 or k heads. Note
A ∩B = A. Thus our answer is

Prob(A)

Prob(B)
=

(
n
k−1

)
(1/2)n(

n
k−1

)
(1/2)n +

(
n
k

)
(1/2)n

=

(
n
k−1

)(
n
k−1

)
+
(
n
k

) =

(
n
k−1

)(
n+1
k

) .
We now do some algebra, using the expansion for the binomial coefficients:(

n
k−1

)(
n+1
k

) =
n!/(k − 1)!(n− k + 1)!

(n+ 1)!/k!(n− k + 1)!
=

k

n+ 1
.
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(b) What is the probability that we have k heads given that we have k − 1 or k heads? The answer
should just be 1 minus the probability above, but to check our work let’s do it the long way. The argument
is essentially the same as before; the only difference is that rather than have

(
n
k−1

)
in the numerator at the

end we have
(
n
k

)
, which leads to(

n
k

)(
n+1
k

) =
n!/k!(n− k)!

(n+ 1)!/k!(n− k + 1)!
=

n− k + 1

n+ 1
;

note the sum of these probabilities is indeed 1.

Problem: Section 3.1. Page 158: #3. Roll a fair die twice. S is the sum of the rolls.
Solution: (a) What is the range of S? S takes on the values {2, 3, . . . , 12}.
(b) Find the distribution of S. There are 36 rolls. Six of these have a sum of 7, one has a sum of 2,

one has a sum of 12, and in fact the number that have a sum of k ≤ 6 is k (and so Prob(S = k) = k/36),
while the number that have a sum of k ≥ 6 is 12 − k (and so Prob(S = k) = (12 − k)/36 here). Note
these probabilities are non-negative and sum to 1.

Problem: Page 158: #10. Have n + m independent Bernoulli trials with probability of success p. Sn
is the number of successes in the first n trials, Tn in the last m.

Solution: (a) What is the distribution of Sn? It is just Binomial with parameters n and p as sums of
Bernoulli are Binomial and can just forget about the last m.

(b) What is the distribution of Tm? Similarly, it is Binomial with parameters m and p.
(c) What is the distribution of Sn + Tm? It is just Binomial with parameters n+m and p.
(d) Are Sn and Tm independent? Yes as we are assuming p is given. If p were unknown then, as in an

example in the book, one could argue that observing Sn gives information on Tm.

Problem: Page 158: #16b. From #3 of this section, if S is the sum of two rolls of a die, we know
Prob(S = k) is k/36 if k ≤ 6 and (12 − k)/36 if k ≥ 6. Using the convolution formula, to find the
probability the sum of four rolls of a die is 8 is

6∑
`=2

Prob(first two rolls are `)Prob(second two rolls are 8− `);

the range of summation is from 2 to 6 as the sum of two rolls is at least 2 and at most 12. We find this
probability is

2

36

6

36
+

3

36

5

36
+

4

36

4

36
+

5

36

3

36
+

6

36

2

36
=

70

1296
≈ 5.4%.

Problem: If X is uniform on [−1, 1], find the probability density function of Y if Y = X2.
Solution: Let fX , FX be the pdf and cdf of the random variable X , and fY , FY the pdf and cdf of

the random variable Y . We solve this problem by using the CDF method. We first compute the relevant
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quantities for X . We have fX(x) = 1/2 if −1 ≤ x ≤ 1 and 0 otherwise; it has to be 1/2 as we need
fX(x) = c in [−1, 1] for some constant; as the length of this interval is 2 and the integral must be 1, the
height cmust be 1/2. As FX(x) =

∫ x
−∞ fX(t)dt, we have FX(x) = 0 if x ≤ −1, (x+1)/2 if−1 ≤ x ≤ 1,

and 1 if x ≥ 1.
We now turn to Y . We have

FY (y) = Prob(Y ≤ y)

= Prob(X2 ≤ y)

= Prob(−√y ≤ X ≤ √y)

= Prob(X ≤ √y)− Prob(X ≤ −√y)

= FX(
√
y)− FX(−√y).

We might as well assume y ∈ [0, 1]; if y < 0 then FY (y) = 0 and if y > 1 then FY (y) = 1. For y ∈ [0, 1],
√
y ∈ [0, 1] and hence FY (y) =

√
y+1

2
− −√y+1

2
=
√
y. Thus fY (y) = F ′Y (y) = 1

2
y−1/2. Note this is

non-negative and does integrate to 1 on the interval [0, 1].
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5 HW #5
Problem: Page 182: #1: 10% numbers on a list are 15, 20% are 25, rest are 50. What is the average?

Solution: Let there be n numbers. The mean is 10n
100n
· 15 + 20n

100n
· 25 + 70n

100n
· 50 = 150+500+3500

100
= 41.5.

Note the answer is greater than 15 (the smallest number on our list) and smaller than 50 (the largest on
our list). Also 70% of the numbers are 50, so we expect the mean to be close to 50.

Problem: Page 182, #4: All 100 numbers in list are non-negative and average is 2. Prove that at most
25 exceed 8.

Solution: Imagine there were 26 that were greater than 8. What would these contribute to the mean?
Well, if the 26 numbers were 8, we would have a contribution to the mean of 26

100
· 8 = 2.08; as the other

numbers are non-negative, the mean would have to be at least 2.08, contradicting the fact that the mean is
2.

Problem: Page 182, #7: Have n switches, i-th is closed with probability pi, X is the number of
switches closed. What is E[X], or is there not enough information?

Solution: Let Xi = 1 if switch i is closed, and 0 if it is not. Note E[Xi] = pi and X = X1 + · · ·+Xn.
By linearity of expectation, E[X] = E[X1] + · · ·+E[Xn] = p1 + · · ·+ pn. Without knowing these values,
cannot say more.

Problem: Page 182, #10: A and B independent events with indicator random variables IA and IB.
Solution: (a) What is the distribution of (IA+IB)2? Squaring, it is I2A+2IAIB+I2B = IA+2IAIB+IB

as the square of an indicator random variable is just the indicator. It can only take on the values 0, 1, and
4. It is zero when A and B don’t happen, or it is 0 with probability (1 − Pr (A))(1 − Pr (B)). It is 1 if
exactly one of A and B happens, so it is 1 with probability Pr (A) (1− Pr (B)) + (1− Pr (A))Pr (B). It
is 2 if both happens, or it is 2 with probability Pr (A) Pr (B).

(b) What is E[(IA+IB)2]? We use I2A+2IAIB+I2B = IA+2IAIB+IB and the linearity of expectation
to see that this is E[IA] + 2E[IAIB] + E[IB]. The middle term is just E[IA]E[IB] = Pr (A) Pr (B) as the
random variables are independent, and so this answer is just Pr (A) + 2Pr (A) Pr (B) + Pr (B). As an
aside, if we had (IA + IB)n, what do you think this will approximately equal for n large?

Problem: Page 182, #11: There are 100 prize tickets among 1000 in the lottery, what is the expected
number of prize tickets you’ll get if you buy 3 tickets? What is a simple upper bound for the probability
you win at least one prize – why is your bound so close?

Solution: We can have either 0, 1, 2 or 3 prize tickets. We could try to do this by using binomials /
various probability distributions, but linearity of expectation is a great way. Let pi be the probability that
our i-th ticket is a winner; letXi be 1 if the i-th ticket is a winner and 0 otherwise. SetX = X1+X2+X3.
As each pi = 100/1000 = .1, each E[Xi] = .1, and by linearity of expectation E[X1 + X2 + X3] = .3.
What is amazing is that it’s okay that the random variables are dependent! Is this result surprising? No;
we expect to need 10 tickets before we have one winning ticket, so having about .3 of a winning ticket is
reasonable. The probability we do not win a prize is

(
900
3

)
/
(
1000
3

)
= 403651/553890 ≈ 72.8757% (we

have to choose 3 tickets from the 900 losing tickets). A quick approximation is to say each ticket wins
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with probability .1, and then use Boole’s inequality (page 32) to get about .7. The reason it’s so close is
that the probability of two or more winning tickets is so small.

Problem: Page 182, #13ad: Roll fair die 10 times. Find numerical values for expectations of (a) sum
of numbers in the rolls and (d) the number of multiples of 3 in the ten rolls.

Solution: (a) We’ve shown before that the expected value from rolling a fair die is 3.5. As expectation
is linear, if we roll 10 die it’s just 10 times this, or 35. Equivalently, let Xi be the number on the i-th roll,
X = X1 + · · ·+X10, and note each E[Xi] = 3.5.

(b) The multiples of 3 are 3 and 6, so each roll has a 2/6 or 1/3 chance of being a 3. Let Yi be 1 if the
i-th roll is a multiple of 3 and 0 otherwise. We have E[Yi] = 2

6
·1+ 4

6
·0 = 2/6. Setting Y = Y1 + · · ·+Y10

and again using linearity of expectation, we find E[Y ] = 10 · 2
6

= 20/6 ≈ 3.33.
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6 HW #6
Problem: Page 202, #2: Let Y be the number of heads from tossing a fair coin 3 times. Find the mean
and variance of Y 2.

Solution: First we find the density of Y . We have Pr (Y = 0) = 1/8, Pr (Y = 1) = 3/8, Pr (Y = 2) =
3/8 and Pr (Y = 3) = 1/8. Thus Pr (Y 2 = 0) = 1/8, Pr (Y 2 = 1) = 3/8, Pr (Y 2 = 4) = 3/8 and
Pr (Y 2 = 9) = 1/8. The mean is thus 1

8
· 0 + 3

8
· 1 + 3

8
· 4 + 1

8
· 9 = 24

8
= 3. The variance of Y 2 is

1
8
· (0− 3)2 + 3

8
· (1− 3)2 + 3

8
· (4− 3)2 + 1

8
· (9− 3)2 = 60/ ≈ 8.57143.

Problem: Page 202, #3abcd: X, Y, Z independent, identically distributed random variables with mean
1 and variance 2.

Solution: (a) E[2x+3Y ] = 2E[X]+3E[Y ] = 2·1+3·1 = 5. (b) Var(2X+3Y ) = 4Var(X)+9Var(Y )
= 4 ·2+9 ·2 = 26. (c) E[XY Z] = E[X]E[Y ]E[Z] = 13 = 1. (d) Var(XY Z) = E[X2Y 2Z2]−E[XY Z]2

= E[X2]E[Y 2]E[Z2]−E[X]2E[Y ]2E[Z]2. As Var(X) = E[X2]−E[X]2 = 2, so since E[X] = 1 we have
E[X2] = Var(X) + E[X]2 = 3. Thus Var(XY Z) = 33 − 13 = 26.

Problem: Page 202, #12: Random variable X with expectation 10 and standard deviation 5.
Solution: (a) Find the smallest upper bound you can for Pr (X ≥ 20). Note that 20 is 2 standard devi-

ations above the mean, and thus by Chebyshev’s inequality the probability of being at least 20 is at most
1/4. (b) Could X be a binomial random variable? If yes, it would have some n and a probability p. We
would have to solve E[X] = np = 10, Var(X) = np(1− p) = 5. There are many ways to do the algebra.
Substitute for np, which must be 10, in the variance equation to find 10(1 − p) = 5, so 1 − p = 1/2 or
p = 1/2. This then gives us n = 20, so yes, it is possible.

Problem: Page 202, #14: Suppose average family income is $10,000.
Solution: (a) Find upper bound for percentage of families with income over $50,000. Note that in-

come is non-negative (we hope!), so let’s try Markov’s inequality. So Pr (I ≥ $50, 000) ≤ E[I]/$50, 000
= 10000/50000 = 1/5. (b) If we know the standard deviation is $8,000, then we see that we are 4 stan-
dard deviations from the mean, so by Chebyshev the probability of being at least 4 standard deviations
away from the mean is at most 1/42. Not surprisingly, we can do much better when we know more.

Problem: Page 202, #27a: X is a random variable with 0 ≤ X ≤ 1 and E[X] = µ. Show that
0 ≤ µ ≤ 1 and 0 ≤ Var(X) ≤ µ(1− µ) ≤ 1/4. (b) Generalize.

Solution: (a) As 0 ≤ X ≤ 1, 0 ≤ E[X] = µ ≤ 1. For the second claim, note 0 ≤ X2 ≤ X ≤ 1
as 0 ≤ X ≤ 1. As Var(X) = E[X2] − E[X]2 = E[X2] − µ2, and E[X2] ≤ E[X] ≤ µ, we have
Var(X) ≤ µ− µ2 = µ(1− µ). Since µ ∈ [0, 1], a calculus exercise shows the maximum of the function
g(µ) = µ(1 − µ) occurs when µ = 1/2, leading to the value 1/4. Another way to see this is to note
µ(1− µ) = −µ2 − µ = −(µ− 1/2)2 − 1/4; as (µ− 1/2)2 ≥ 0 the minimum value is 1/4.

(b) The argument proceeds similarly. As a ≤ X ≤ b,
∫ b
a
ap(x)dx ≤

∫ b
a
xp(x)dx ≤

∫ b
a
bp(x)dx, so

a ≤ E[X] ≤ b. For the variance, we could use Var(X) = E[X2]− E[X]2, but it’s better to reduce to part
(a). Let Y = (X − a)/(b− a). Note 0 ≤ Y ≤ 1 and µY = (µX − a)/(b− a). By part (a), the variance of
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Y is at most µY (1− µY ), which gives

Var(X) ≤ µX − a
b− a

(
1− µX − a

b− a

)
=

(µX − a)(b− µX)

(b− a)2
.

Note that Var(Y ) = Var((X−a)/(b−a)) = Var(X)/(b−a)2. Thus Var(X) ≤ (µX−a)(b−µX). Using
calculus, we see this is largest when µX = b−a

2
, which gives after some algebra Var(X) ≤ 1

4
(b− a)2. (To

see this, let f(u) = (u − a)(b − u) = −u2 + (b − a)u − ab, so f ′(u) = −2u + (b − a), so the critical
point is where u = (b− a)/2.)

(c) If half the numbers are 9 and half are 0, then the mean is 4.5 and the variance is 4.5, as everything
is 4.5 units from the mean. From part (b), the maximum the variance of X can be is 1

4
(9− 0)2 = 20.25 =

4.52. Thus the variance is as large as possible. This forces the mean to be 4.5, and then the variance is
maximized when half are 0 and half are 9. It’s not surprising that parts (a) and (b) are useful here.
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7 HW #7: Due Thursday, October 27
Problem: Section 3.4, Page 217: #1abc. Coin lands with probability p of heads, tosses independent.

Solution: (a) Probability of exactly 5 heads in first 9 tosses: need 5 heads, 4 tails, order doesn’t mat-
ter, so is just

(
9
5

)
p5(1− p)4 = 126p5(1− p)4. (b) Probability first head on the 7th toss: start with 6 tails

followed by a head, only one way this can happen: (1−p)6p. (c) Probability fifth head is on the 12th toss.
Means the 12th toss is a head and exactly 4 heads in first 11 (and thus 7 tails in the first 11). Probability
is
(
11
4

)
p4(1− p)7 · p.

Problem: Section 3.4, Page 217: #7abc. A and B toss a coin that’s heads with probability p.
Solution: (a) What is the probability A gets the first head? We did this in class. Let x be the probability

A wins. Then x = p + (1− p)2x, so x = p
1−(1−p)2 . (b) What is the probability B tosses the first head? It

is 1− x = 1−(1−p)2−p
1−(1−p)2 . (c) Now B gets to go twice. It can get hard if we try to think of the game stopping

after B tosses once or twice. The right way is to regard it as B’s turn. B could fail both times, which
happens with probability (1− p)2, or he could have at least one success, which happens with probability
1− (1− p)2. So now the probability A wins, say x̃, satisfies

x̃ = p+ (1− p)(1− p)2x ⇒ x =
p

1− (1− p)3
.

Similarly, B now wins with probability 1 minus this.

Problem: Page 217, #10: X is the number of Bernoulli trials (with parameter p) required to produce
at least one success and at least one tail.

Solution: (a) What is the distribution of X? Note Pr (X < 2) = 0. We either start with a head and
then wait for a tail, or start with a tail and then wait for a head. If we start with a head (happens with
probability p), then the probability it takes n− 1 tosses to get our first tail is pn−2(1− p); if we start with
a tail (happens with probability 1 − p), then the probability it takes n − 1 tosses to get our first head is
(1− p)n−2p. Thus Pr (X = n) = pn−1(1− p) + (1− p)n−1p.

(b, c) We want to compute the mean and variance of X . Let Xh be the random variable on how long
we have to wait for our first head with a coin with probability p of heads, and let Xt be how long we have
to wait for our first tail with this coin. Then X = (1 − p)Xh + pXt + 1. Why? With probability 1 − p
we start with a tail and then need to wait for a head, with probability p we start with a head and need
to wait for a tail. We then need to add 1 for the first toss. Thus E[X] = (1 − p)E[Xh] + pE[Xt] + 1
by linearity of expectation. From the book, we know E[Xh] = 1/p, and Var(Xh) = (1 − p)/p2.
Similarly E[Xt] = 1/q = 1/(1 − p) and Var(Xt) = (1 − q)/q2 = p/(1 − p)2. Substituting gives
E[X] = (1 − p)1

p
+ p 1

1−p + 1 = (1 − p + p2)/(p − p2), while Var(X) = (1 − p)2 1−p
p2

+ p2 p
(1−p)2 =

((1 − p)5 + p5)/((−1 + p)2p2). You could also do this problem by directly computing the mean and the
variance, but it is much easier to observe that we can write X as a sum of two simpler random variables.
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succandfail[num_, p_] := Module[{},
wait = 0;
For[n = 1, n <= num, n++,
{
numsucc = 0;
numfail = 0;
count = 0;
While[numsucc * numfail == 0,
{
If[Random[] <= p, numsucc = numsucc + 1, numfail = numfail + 1];
count = count + 1;
}];

wait = wait + count;
}];

Print["Observed average wait time: ", 1.0 wait / num];
Print["Predicted average wait time: ",
1 + (p/(1 - p)) + ((1 - p)/p)];
];

Problem: Section 3.5, Page 234: #4. Books have average of 1 misprints per page, what is the proba-
bility at least one page in a 300 page book has at least 5 misprints?

Solution: Assuming the number of misprints per page is a Poisson random variable with parameter
λ = 1, and the pages are independent. The probability of 4 or fewer typos on a page is

∑4
n=0 e

−11n/n! =
65/24e. Thus the probability that none of the 300 pages has 5 or more typos is (1− 65

24e
)300 ≈ 1.09 ·10−731

(so not that likely!).

Problem: Section 4.4, Page 310: #9a. Show if T is Weibull (λ, α) then Tα is exponential with
parameter λ.

Solution: This is a change of variable problem. Let Y = Tα. We do our CDF approach. We have

FY (y) = Prob(Y ≤ y) = Prob(Tα ≤ y)

= Prob(T ≤ y1/α) = FT (y1/α).

We now use the Chain rule and find

fY (y) = F ′Y (y) = F ′T (y1/α)
1

α
y1/α−1.

Substituting gives fY (y) = λe−λy as desired.
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8 HW #8: Due Tuesday, November 15
Problem: Section 5.3: #3a. W,X, Y, Z independent standard normal. What is the probability that W +
X > Y + Z + 1?

Solution: If Ai ∼ N(µi, σ
2
i ) then A1 + A2 ∼ N(µ1 + µ2, σ

2
1 + σ2

2) (assuming of course they’re in-
dependent). Thus W + X, Y + Z ∼ N(0, 2). This seems to require some integration, so let’s do some
additional thinking. Note our condition is equivalent to W + X − Y − Z > 1, and −Y,−Z are also
standard normals. Note W + X − Y − Z ∼ N(0, 4), and thus we’re asking what is the probability a
normal random variable with mean 0 and variance 4 is at least 1. It would be nicer to have a random
variable with mean 0 and variance 1, so let’s set S = (W +X − Y − Z)/2. Note the mean of S is 0 and
the variance is 1, and our condition is now S > 1/2, where S ∼ N(0, 1). Letting Φ be the cumulative
distribution function of the standard normal, the answer is just 1 − Φ(.5). It’s amazing how much easier
these problems are if you look at them the right way and spend some time doing algebra.

Problem: Calculate the probability a chi-square distribution with 2 degrees of freedom is at least twice
as large as its mean (so if the mean is µ, we want the probability it is 2µ or greater).

Solution: The density function is f(x) = 1
2
e−x/2. The mean of a chi-square distribution with k degrees

of freedom is k, so the mean is 2. We want the probability of being 4 or more, which is just∫ ∞
4

1

2
e−x/2dx = e−x/2

∣∣∣4
∞

= e−2.

Problem: Problems from my handout on Method of Least Squares notes: Page 9, #3.3. Consider the
observed data (0, 0), (1, 1), (2, 2). Show that if we use (2.10) from the Least Squares handout to measure
error then the line y = 1 yields zero error, and clearly this should not be the best fit line!

Solution: We will use equation (2.10) to calculate the error of the line y = 1. This gives an error
function E2(a, b) =

∑N
n=0 (yi − (axi + b)). Evaluating the sum with the line y = 1 (which means a = 0

and b = 1) gives an error of E2(0, 1) = (0−1) + (1−1) + (2−1) = 0. The problem with (2.10) is that
the errors are signed quantities, so during the calculation the positive errors cancel out the negative errors.

Problem: Problems from my handout on Method of Least Squares notes: Page 10, #3.9. Show that
the Method of Least Squares predicts the period of orbits of planets in our system is proportional to the
length of the semi-major axis to the 3/2 power.

Solution: Using the numbers from the handout, namely We

a =

∑N
n=1 1

∑N
n=1 xnyn −

∑N
n=1 xn

∑N
n=1 yn∑N

n=1 1
∑N

n=1 x
2
n −

∑N
n=1 xn

∑N
n=1 xn

, b =

∑N
n=1 xn

∑N
n=1 xnyn −

∑N
n=1 x

2
n

∑N
n=1 yn∑N

n=1 xn
∑N

n=1 xn −
∑N

n=1 x
2
n

∑N
n=1 1

,

we find N = 8,
∑8

n=1 1 = 8,
∑8

n=1 xn = 9.409461,
∑8

n=1 yn = 14.1140384,
∑8

n=1 x
2
n = 29.29844102

and
∑8

n=1 xnyn = 43.94486382. Feeding these into the equations for a and b in the handout give best fit
values of a = 1.49985642 and b = 0.000149738 (the reason b is so close to zero is we have chosen to
measure distances in astronomical units, precisely to make the proportionality constant nice).
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