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Summary for the day

@ Complex Analysis:
o Definitions.
o Accumulation point theorem.

@ Integral Transforms.
© Laplace and Fourier.
© Schwartz space and Inversion.
o Complex Analysis Theorem.

@ Central Limit Theorem:
© Statement and standardization.
© Poisson example.
< Proof with MGFs.
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Complex Analysis
°

Holomorphic = Analytic

Holomorphic, analytic

Let U be an open subset of C, and let f be a complex
function.

@ We say f is holomorphic on U if f is differentiable at
every point z € U.

@ We say f is analytic on U if f has a series expansion
that converges and agrees with f on U. This means
that for any z, € U, for z close to z, we can choose
a,’s such that

f(z) = ian(z—zo)”.




Complex Analysis
°

Holomorphic = Analytic

Holomorphic equals Analytic

Let f be a complex function and U an open set. Then f is
holomorphic on U if and only if f is analytic on U, and the
series expansion for f is its Taylor series.

o If f is differentiable once, it is infinitely differentiable
and f agrees with its Taylor series expansion!

@ Very different than what happens in the case of
functions of a real variable.
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Complex Analysis
.

Limit points

Limit or accumulation point

We say z is a limit (or an accumulation) point of a
sequence {z,}22, if there exists a subsequence {z,, }:°,
converging to z.
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Complex Analysis
.

Limit points

Limit or accumulation point

We say z is a limit (or an accumulation) point of a
sequence {z,}2, if there exists a subsequence {z,, }2,
converging to z.

@ If z, = 1/n, then O is a limit point.

@ If z, = cos(wn) then there are two limit points, namely
1 and —1. (If z, = cos(n) then every pointin [-1,1] is
a limit point of the sequence, though this is harder to
show.)




Complex Analysis
.

Limit points

Limit or accumulation point

We say z is a limit (or an accumulation) point of a
sequence {z,}:2, if there exists a subsequence {z, }2°,
converging to z.

o Ifz,=(1+(—1)")"+ 1/n, then O is a limit point. We
can see this by taking the subsequence
{21, 23,125,277, ...}, note the subsequence
{20, 22,24, ...} diverges to infinity.

@ Let z, denote the number of distinct prime factors of
n. Then every positive integer is a limit point!
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Limit points

Limit or accumulation point

We say z is a limit (or an accumulation) point of a
sequence {z,}2, if there exists a subsequence {z,, }2,
converging to z.

@ If z, = n? then there are no limit points, as
Iimn*)oo Zn = OQ.

@ Z, any odd, positive integer, set

3z, +1 ifz,is odd
Znya = . .
zn/2 if z, is even.

Conjectured that 1 is always a limit point.
10




Complex Analysis

Accumulation points and functions

Theorem

Let f be an analytic function on an open set U, with
infinitely many zeros z;,2;, 23, .... Iflimy_, z, € U, then f
is identically zero on U. In other words, if a function is
zero along a sequence in U whose accumulation point is
also in U, then that function is identically zero in U.




Complex Analysis
°

Accumulation points and functions

Consider h(x) = x3sin(1/x):

0.000015 |-

......

Figure: Plot of x3sin(1/x).

Show x?sin(1/x) is not complex differentiable. It will help
if you recall €'Y = cosf +ising, or sinf = (e'? — e~'%)/2i.
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Integral
Transforms




Integral Transforms
°

Laplace and Fourier Transform

General framework: Given K (t, s), consider

g(s) = /Oof(t)K(t,s)dt.

—00




Integral Transforms
°

Laplace and Fourier Transform

Laplace Transform

Let K(t,s) = e~*. The Laplace transform of f, denoted
Lf, is given by

(LF)(s) = /0 Tt (t)edt.

Given a function g, its inverse Laplace transform, £71g, is

o)) = fm L [ esig(s)ds
g - T—oo 27I c—iT g
L [T erin
— c+ir)t iVid .
Jim >— 7Te g(c+ir)idr




Integral Transforms
°

Laplace and Fourier Transform

Fourier Transform
Let K(x,y) = e~2™, The Fourier transform of f, denoted

-~

Fforf,is .
fly) = / f(x)e 2™ dx,

— 00

where e’ = cos# + i sinf. The inverse Fourier transform
of g, F1g, is

(Flg)x) = / " g(y)erdy.

Other books define the Fourier transform differently,
sometimes using K(x,y) = e or K(x,y) = e ™ /v2r.




Integral Transforms
°

Laplace and Fourier Transform

@ Laplace and Fourier transforms are related. Let
s = 2xiy and consider functions f(x) which vanish for
x < 0. See the Laplace and Fourier transforms are

equal.

@ Given a function f we can compute its transform.
What about the other direction?




Integral Transforms
°

Schwartz Space

Schwartz space

The Schwartz space, S(R), is the set of all infinitely
differentiable functions f such that, for any non-negative
integers m and n,

n

(1+x2)md f

sup axn

xX€eR

< 00,

where sup, g |9(x)| is the smallest number B such that
lg(x)| < B for all x (think ‘maximum value’ whenever you
see supremum).




Integral Transforms
°

Inversion Theorem

Inversion Theorem for Fourier Transform

Let f € S(R), the Schwartz space. Then

f(x) = /_oo (y)e?™dy.

[e.9]

f,g € S(R) with f = g then f(x) = g(x).

@ Interplay useful in probability: MGF is an integral
transform of the density:My (t) = [~ e™f(t)dt.

o Iff(x) = 0for x <0, this is the Laplace transform .
Take t = —2niy then it is the Fourier transform.
Related to the characteristic function ¢(t) = E[e"™].
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Key Results from Complex Analysis

Theorem

Assume the MGFs My (t) and My (t) exist in a
neighborhood of zero (i.e., there is some § such that both
functions exist for [t| < d). If Mx(t) = My (t) in this
neighborhood, then Fx(u) = Fy(u) for all u. As the
densities are the derivatives of the cumulative distribution
functions, we have f = g.




Integral Transforms
.

Key Results from Complex Analysis

Theorem

Let {X;}ic be a sequence of random variables with MGFs
My (t). Assume there is a ¢ > 0 such that when |t| < ¢ we
have lim;_ ., My, (t) = Mx(t) for some MGF Mx(t), and all
MGFs converge for |t| < . Then there exists a unique
cumulative distribution function F whose moments are
determined from Mx (t) and for all x where Fx(x) is
continuous, limp_, o Fx, (X) = Fx(x).




Integral Transforms
.

Key Results from Complex Analysis

Theorem: X and Y continuous random variables on

[0, o) with continuous densities f and g, all of whose

moments are finite and agree, and

© 3C > 0stVvc < C, ec*Dif(e!) and ec+ig(et) are
Schwartz functions.

@ The (not necessarily integral) moments

i(f) = [ xetodx and (@) = [ xeg(xx
0 0

agree for some sequence of non-negative real
numbers {r,}>° , which has a finite accumulation point
(ie., limy_ o =1 < 00).
Then f = g (in other words, knowing all these moments
uniquely determines the probability density).




Integral Transforms
°

Application to equal integral moments

Return to the two densities causing trouble:

1

_ —(log?x)/2
W) = one
f(x) = f1(x)[1+ sin(2rlogx)] .




Integral Transforms
°

Application to equal integral moments

Return to the two densities causing trouble:
1

fl(X) — W e—(logzx)/Z
f(x) = fi(X)[1+ sin(2rlogx)].

@ Same integral moments: ek®/2,
@ Have the correct decay.

@ Using complex analysis (specifically, contour
integration), we can calculate the (a + ib)"moments:

Forf, : e@t)?/2

Forf,: e(@t®)?/2 ! ((:"(f"Jri(b*ZW))z/2 — e(a+i(b+27r))2/2> )




Integral Transforms
°

Application to equal integral moments

Return to the two densities causing trouble:

1

fl(X) — W e—(logzx)/Z
f(x) = fi(X)[1+ sin(2rlogx)].

@ No sequence of real moments having an
accumulation point where they agree.

o a®moment of f, is
ea2/2 + e(a72i7r)2/2 (1 . e4ia7r) :

and this is never zero unless a is a half-integer.
@ Only way this can vanish is if 1 = 4@,
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Central Limit Theorem
°

Normalization of a random variable

Normalization (standardization) of a random variable

Let X be a random variable with mean p and standard
deviation o, both of which are finite. The normalization, Y,
is defined by

_X-EX] X-upu
- StDev(X) o

Note that

E[Y] = 0 and StDev(Y) = 1.




Central Limit Theorem
°

Statement of the Central Limit Theorem

Normal distribution

A random variable X is normally distributed (or has the
normal distribution, or is a Gaussian random variable)
with mean . and variance o2 if the density of X is

f(x) = \/% exp (—%).

We often write X ~ N(u, o?) to denote this. If x = 0 and
0% =1, we say X has the standard normal distribution.

-




Central Limit Theorem
°

Statement of the Central Limit Theorem

Central Limit Theorem

Let Xy,..., Xy be independent, identically distributed
random variables whose moment generating functions
converge for |t| < § for some ¢ > O (this implies all the
moments exist and are finite). Denote the mean by ;. and
the variance by o2, let

X1+ -+ Xy

Xy — -

and set .
XN — U
N = .
T g/ UN
Then as N — oo, the distribution of Zy converges to the
standard normal.




Central Limit Theorem
°

Statement of the Central Limit Theorem

Why are there only tables of values of standard normal?




Central Limit Theorem
°

Statement of the Central Limit Theorem

Why are there only tables of values of standard normal?

Answer: normalization. Similar to log tables (only need
one from change of base formula).




Central Limit Theorem
°

MGF and the CLT

Moment generating function of normal distributions

Let X be a normal random variable with mean p and
variance ¢2. Its moment generating function satisfies

5212
My (t) = ert52.

In particular, if Z has the standard normal distribution, its
moment generating function is

M (t) = et/2.




Central Limit Theorem
°

MGF and the CLT

Moment generating function of normal distributions

Let X be a normal random variable with mean p and
variance ¢2. Its moment generating function satisfies

5212
My (t) = ert52.

In particular, if Z has the standard normal distribution, its
moment generating function is

M (t) = et/2.

Proof: Complete the square.




Central Limit Theorem
°

Poisson Example of the CLT

Example

Let X, X4, ..., Xy be Poisson random variables with
parameter \. Let

— X+ + Xy X — E[X]
Mog = ——1L0 = —2
N StDev(X)
Then as N — oo, Y converges to having the standard
normal distribution.




Central Limit Theorem
°

Poisson Example of the CLT

Example

Let X, X4, ..., Xy be Poisson random variables with
parameter \. Let

T = Xt X X — E[X]
" N ’ StDev(X)’

Then as N — oo, Y converges to having the standard
normal distribution.

Moment generating function: Mx(t) = exp(A(e! — 1)).
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