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ABSTRACT. In studying applications of Benford’s Law to images, the size of certain
coefficients of Fourier expansions play a central role. In particular, we need to bound

bn =
∞∏

k=0

(
1 +

α2
n

(ck + 1)2

)−1

, αn =
2πn

log 10
.

If c+1
αn

< 1 then below we show that

bn ≤ log2 10
log2 10 + (2πn)2

· exp
(

c + 1
c

)
· exp

(
− π2n

c log 10

)
.

Better bounds are obtainable with only slightly more work. It is worth noting that we
have lots of decay; the coefficients are falling off at least as fast as 1/n2 as well as
exponentially with n. We show

∞∑
n=2

bn ≤ g(c),

where

g(c) = 0.0421603 ·exp
(

c + 1
c

)
·exp

(
− 2π2

c log 10

)
·
[
1− exp

(
− 2π2

c log 10

)]−1/2

.

In particular, for c = 1 we obtain a bound of 5.24 · 10−5, and for c = 2 a bound of
.00232.

1. ESTIMATES FOR bn

In previous work, the modulus squared of the Fourier coefficients

bn = |an|2 =
∞∏

k=0

(
1 +

α2
n

(ck + 1)2

)−1

, αn =
2πn

log 10
(1.1)

were encountered. It is desirable to obtain estimates on how rapidly bn decays with n.
We provide some below, concentrating on ease of exposition rather than best possible
(though of course the bounds can be improved a bit if needed).
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We have

bn =
∞∏

k=0

(
(ck + 1)2 + α2

n

(ck + 1)2

)−1

=
∞∏

k=0

(
(ck + 1)2

(ck + 1)2 + α2
n

)

=
1

1 + α2
n

∞∏

k=1

(
1− α2

n

(ck + 1)2 + α2
n

)

log bn = − log(1 + α2
n) +

∞∑

k=1

log

(
1− α2

n

(ck + 1)2 + α2
n

)
. (1.2)

Using

log(1− u) = −
∞∑

`=1

u`

`
, (1.3)

we find

log bn = − log(1 + α2
n)−

∞∑

k=1

∞∑

`=1

1

`

(
α2

n

(ck + 1)2 + α2
n

)`

. (1.4)

Thus we obtain an upper bound for log bn (and hence an upper bound for bn) by only
keeping the ` = 1 term above (each summand is positive, but is hit by a negative sign).
Thus

log bn ≤ − log(1 + α2
n)−

∞∑

k=1

α2
n

(ck + 1)2 + α2
n

. (1.5)

We argue (somewhat) crudely below; a better estimate is obtainable by using the
Euler-MacLaurin formula. We have

∞∑

k=1

α2
n

(ck + 1)2 + α2
n

≥
∫ ∞

x=1

α2
ndx

(cx + 1)2 + α2
n

; (1.6)

the reason for this is that the integrand is monotonically decreasing, and the sum is
basically the upper sum approximation. Because of the minus sign, we thus increase
the bound on log bn if we replace the sum by this integral (a better estimate would be to
pull off the first term and then use the integral switch, but let us see what this yields).
We find

log bn ≤ − log(1 + α2
n)−

∫ ∞

x=1

α2
ndx

(cx + 1)2 + α2
n

= − log(1 + α2
n)−

∫ ∞

x=1

dx

1 +
(

cx+1
αn

)2 . (1.7)

We change variables. Let u = (cx + 1)/αn (so dx = αn

c
du). Thus

log bn ≤ − log(1 + α2
n)− αn

c

∫ ∞

c+1
αn

du

1 + u2
. (1.8)
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As the anti-derivative of (1 + u2)−1 is arctan(u) and arctan(∞) = π/2, we find

log bn ≤ − log(1 + α2
n)− αn

c

(
arctan(∞)− arctan

(
c + 1

αn

))

= − log(1 + α2
n)− αnπ

2c
+

αn

c
arctan

(
c + 1

αn

)
. (1.9)

Thus we are left with estimating the remaining arc-tangent. The Taylor series of
arc-tangent is

arctan(x) =
∞∑

`=0

(−1)`x2`+1

2` + 1
. (1.10)

WE ASSUME FROM NOW ON THAT c+1
αn

< 1. As we are only
concerned with n ≥ 2, this is a weak condition, and holds whenever
c < 4.45. Using 0 < x < 1 implies 0 < arctan(x) < x (this follows because we
have an alternating sum of terms which decrease in absolute value), we have

log bn ≤ − log(1 + α2
n)− αnπ

2c
+

c + 1

c
. (1.11)

Exponentiating yields

bn ≤ 1

1 + α2
n

· exp
(
−αnπ

2c

)
· exp

(
c + 1

c

)
. (1.12)

While we could obtain better estimates with a little more work, already this estimate
is nice. Plugging in the value for αn yields

bn ≤ log2 10

log2 10 + (2πn)2
· exp

(
c + 1

c

)
· exp

(
− π2n

c log 10

)
. (1.13)

From this it should be easy to get great estimates on
∑

n bn. We have plenty of
decay to exploit. One natural way to proceed is to use the Cauchy-Schwartz inequality
(although perhaps it is better to use a Holder-type inequality and optimize the exponent).
Below we assume cn, γn ≥ 0, as this is what happens in our applications. The Cauchy-
Schwarz inequality states that

∣∣∣∣∣
∞∑

n=2

cnγn

∣∣∣∣∣ ≤
√√√√

∞∑
n=2

c2
n

√√√√
∞∑

n=2

γ2
n. (1.14)

For us,

cn =
log2 10

log2 10 + (2πn)2
, γn = exp

(
− π2n

c log 10

)
. (1.15)

Lemma 1.1. Notation as above, we have
∞∑

n=2

c2
n ≤ log 10

8π

(
π − 2 arctan

(
2π

log 10

)
− sin

(
2 arctan

(
2π

log 10

)))

≈ 0.00177749
∞∑

n=2

γ2
n = exp

(
− 4π2

c log 10

)
·
[
1− exp

(
− 2π2

c log 10

)]−1

. (1.16)
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Proof. We have

∞∑
n=2

c2
n =

∞∑
n=2


 1

1 +
(

2πn
log 10

)2




2

=

(
1 +

(
2 · 2π
log 10

)2
)−2

+
∞∑

n=3


 1

1 +
(

2πn
log 10

)2




2

≤
(

1 +

(
2 · 2π
log 10

)2
)−2

+

∫ ∞

2

(
1 +

(
2πx

log 10

)2
)−2

dx (1.17)

(as the integrand is monotonically decreasing, thus we only increase the integral by
starting at 2 instead of 3). We first change variables by letting y = 2πx/ log 10, and find

∞∑
n=3

c2
n ≤ log 10

2π

∫ ∞

4π/ log 10

dy

(1 + y2)2
. (1.18)

We now change variables by letting y = tan θ, so dy = sec2 θdθ:
∞∑

n=3

c2
n ≤ log 10

2π

∫ π/2

arctan(4π/ log 10)

sec2 θdθ

(1 + tan2 θ)2

=
log 10

2π

∫ π/2

arctan(4π/ log 10)

sec2 θdθ

sec4 θ

=
log 10

2π

∫ π/2

arctan(4π/ log 10)

cos2 θdθ

=
log 10

2π

[
θ

2
+

sin(2θ)

4

]π/2

θ=arctan(4π/ log 10)

=
log 10

8π

(
π − 2 arctan

(
4π

log 10

)
− sin

(
2 arctan

(
4π

log 10

)))

≈ 0.00072228. (1.19)

Thus
∞∑

n=2

c2
n ≤

(
1 +

(
4π

log 10

)2
)−2

+
log 10

8π

(
π − 2 arctan

(
4π

log 10

)
− sin

(
2 arctan

(
4π

log 10

)))

≈ 0.00177749. (1.20)

If instead we use Mathematica to numerically evaluate the sum, we get approximately
0.00140459 (we could easily get closer to this result by keeping more terms). In partic-
ular, we see our estimation is pretty good (we are off by about 26%).
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We now turn to the sum of γ2
n:

∞∑
n=2

γ2
n =

∞∑
n=2

exp

(
− 2π2n

c log 10

)

= exp

(
− 4π2

c log 10

) ∞∑

`=0

(
exp

(
− 2π2

c log 10

))n

= exp

(
− 4π2

c log 10

)
·
[
1− exp

(
− 2π2

c log 10

)]−1

. (1.21)

While our bound depends on c, we can evaluate it exactly as it is a geometric series. ¤

Lemma 1.2. We have
∞∑

n=2

bn ≤ 0.0421603 · exp

(
c + 1

c

)
· exp

(
− 2π2

c log 10

)
·
[
1− exp

(
− 2π2

c log 10

)]−1/2

.

(1.22)

Proof. This follows immediately from the previous lemma and the Cauchy-Schwartz
inequality. ¤

We can now give some good estimates on
∑

n≥2 bn for various values of c. Instead of
using our exact bound of about .001777 for the sum of c2

n we instead use the numerical
bound of about .001405. We have

∞∑
n=2

bn ≤ g(c), (1.23)

where

g(c) = 0.0421603 · exp

(
c + 1

c

)
· exp

(
− 2π2

c log 10

)
·
[
1− exp

(
− 2π2

c log 10

)]−1/2

.

(1.24)
Thus

c g(c)
0.50 2.70 · 10−8

0.75 4.20 · 10−6

1.00 5.24 · 10−5

1.25 2.38 · 10−4

1.50 6.55 · 10−4

For larger values of c we find
c g(c)

1.75 .00135
2.00 .00232
2.25 .00356
2.50 .00501
2.75 .00664

Graphically, we find
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